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We have applied the conjugated-circuit model to benzenoid
hydrocarbon radicals and predicted their aromatic stabilities.
Our predictions are supported by alternative theoretical schemes
such as the structure-resonance approach and by available expe-
rimental data. This work points to a considerable potential of
the conjugated-circuit model for qualitative and quantitative dis-
cussion of thermodynamic stabilities of polycyclic conjugated
radicals.

INTRODUCTION

In this paper we wish to rep ort the application of the conjugated-circuit
modelv ' to benzenoid hydrocarbon radicals. These radicals have been subject
of a number of previous studies, experimental and theoreticals including
the work of Streitwieser et al." on protodetritiation of benzenoid hydrocarbons,
the work of Unruch and Gleicher" on hydrogen abstractions from aryl-
methanes, who also carried out the SCF n-MO computations on selected
radicals and the work of Stein and Golden? on the z-bonding resonance
stabilization of benzenoid radicals using the modified form of the structure-
resonance theory", The work by Herndon'v" on resonance energies and radical
reactivities of benzenoid hydrocarbons and the work of Stein!' on benzenoid
radicals in coal conversion also belong here.

Since the thermodynamic (and kinetic) stabilities of benzenoid hydro-
carbon radicals are related to a great extent to their n-electronic structuresš.",
we decided to apply t.he conjugated-circuit model to these systems in order
to test the model and to compare it to some other models that have been
used to compute the n-resonance energies of benzenoid radicals6-1O,12.

* Reported in part at the IUPAC International Symposium on the Electronic
Structure and Properties of Molecules and Crystals (Cavtat, Croatia, August 29-
September 3, 1988).
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The structure of the paper is as follows. In the next section the conju-
gated-circuit model is outlined. The third section reports the concept of conju-
gated circuits in benzenoid radicals. In the fourth section the resonance
energies of selected benzenoid radicals are given and these are compared
to those computed by the structure-resonance model. In this section we also
compare our results with those obtained by the resonance stabilization
energy model. The article ends with some concluding remarks.

THE CONJUGATED-CIRCUIT MODEL

The conjugated circuit-model allows one to calculate the resonance
energies (REs) of conjugated molecules in a rather simple way. The RE is
a theoretical quantity which appears to be a reliable criterion for predicting
aromatic stabilities of conjugated systems13,14.It is defined as that part of
the molecular binding energy which denotes deviation from the simple bond
additivity.

A graph-theoretical analysis of Kekule valence structures reveals that
each Kekule structure can be decomposed into several conjugated circuits.
A conjugated circuit is defined as a circuit within an individual Kekule
structure in which there is a regular alternation of formal carbon-carbon
single and double bonds. For this reason, the conjugated circuits are neces-
sarily of even length.

The circuit decomposition of aKekule structure produces 4n+2 and/er
4n linearly independent, linearly dependent and disconnected conjugated
circuits. Linearly independent circuits are those which cannot be represented
by a superposition of conjugated circuits of smaller size. We denote 4n+2
conjugated circuits by Ro and 4n circuits by Qn. The total number of all
conjugated circuits with in asingle Kekule structure is equal to SC-1 (ar
K-1)15, where SC is the structure count (or the number of Kekule valence
structures K) for a polycyclic conjugated hydrocarbon. As an example, we
give- in Figure 1 all Kekule structures and conjugated circuits for pyrene.

The conjugated circuits count for pyrene is given by:

(1)

where the symbols have the following meaning: RJ is a conjugated circuit
of size 6 (i. e., a 4n + 2 circuit with n=1), R2 a circuit of size 10 and R3 a
circuit of size 14, whilst RJ . Rl stands for two disjoint circuits of size 6.

The zr-reeonance energy is given in terms of conjugated circuits as
follows:

(2)

where Po (go) is the par ametric value corresponding to R, (Qo) circuit s and
=#=(4m+2) (=#=(4n») is the count of 4n + 2 (4n) conjugated circuits. Note that Pm (gm)
is the measure of the extent by which a specific conjugated circuit of size
4n+2 (4n) influences the thermodynamic stability of the conjugated molecule.
We will use in (2) only linearly independent conjugated circuit s of size 14
(n=3) or less. In considering only the smallest three conjugated circuits,
we have followed the empirical findings that only the smallest circuits make
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Figure 1. Kekulć structures of pyrene and their decomposition into conjugated

circuits
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appreciable contribution to the R.E8. The following sets of Pn and Sn (n= 1,
2, 3) parameters are used in the present work1,17,18:

I?I= 0.869 eV
1?2 = 0.247 eV
1?3 = 0.099eV

';1 = -0.781 eV
';2 = -0.222 eV
';3 = -0.090 eV

Since we wish to compare molecules of different sizes, we also compute the
RE per rc-electron (R.E/e) according to the expression'v-":

RE/e = RE/N (3)

where N is the number of 7t-electrons in the molecule.
There are two combinatorial problems connected with the application

of the conjugated circuit model. These are the enumeration of valence stru-
ctures (the structure count) and the enumeration of conjugated circuits (the
circuit count). Nevertheless, there are some efficient methods available in
the literature for the structure count and the circuit count, e. g., the transfer-
matrix method21,22.

CONJUGATED CIRCUITS IN BENZENOlD RADICALS

The number of valence structures (the structure count) of benzenoid
radicals is equal to the sum of the absolute valu es of the unnormalized
coefficients of a nonbonding molecular orbital (NBMO)23.24.The coefficients
follow the zero-sum rule'" and can be written by inspection'". Below we
show the structure counts for l-naphthyl and 2-naphthyl via the unnormalized
NBMOs.

J

o
-,3

2 -l
o o

sc = 10 SC = 9

Conjugated circuits can be generated in each valence structure of a
benzenoid radical by inspection (see below). In Figure 2 and Figure 3 we
give the valence structures and conjugated circuit counts for l-naphthyl and
2-naphthyl which illustrate the basis of our approach.

In alternant structures such as benzenoid radicals the isolated 7t-electron
can occupy only »starred« positions'". Once its location is chosen, one can
write the corresponding valence structure(s). Ii there is a valence structure
without conjugated circuits (e. g., valence structures H, I and J in Figure 2),
then it can contribute to the resonance stabilization only through acylic
conjugation'", such as that occurring in polyenes19.29,30 Such contributions
will be neglected at this stage, since they could be considered as secondary
in nature. Valence structures containing conjugated circuits contribute to
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Figure 2. The valence structures and conjugated circuits count for 1-naphthyl

R,+ R2

Total count: 6R1+2R2
Figure 3. The valence structures and conjugated clrcuits count for 2-naphthyl

the RE; the amount of contribution is given by the count of conjugated
circuits. Thus, the RE expressions for l-naphthyl and 2-naphthyl are:

RE (l-aphthyl) = (8 (il + 2 (i2)/10

= 0.745 eV (4)

RE (2-naphthyl) = (6 (il + 2 (i2)/9

= 0.634 eV (5)
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Figure 4. Valence structures of different phenanthryl radicals which contain

conjugated circuits

This result favours l-naphthyl as being more stable of the two and is in
agreement with experimental observations", Other theoretical studies also
obtained the same resultš-". In Figure 4 we have collected only those valence
structures of different phenanthryl radicals which contain conjugated circuits.
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In other words, the structures in which the location of odd 7t-electron uniquely
determines the bond types for all other bonds, and thus excludes the possi-
bility of having conjugated circuits, are omitted.

Below we give the conjugated circuits contents and the REs of phenan-
thryl radicals:

RE (l-phenanthryl) = (22g[ + 8g2+ g)/18
= 1.177eV (6)

RE (2-phenanthryl) = (18gl + 6 g2+ (13)/16
= 1.0'76eV (7)

RE (3-phenanthryl) = (20gl + 6g2+ g3)/17
= 1.115eV (8)

RE (4-phenanthryl) = (20gl + 8g2+ g3)/17
= 1.144 eV (9)

RE (9-phenanthryl) = (24Ql+ 4g2+ g3)/18
= 1.219 eV (10)

l-phenanthryl and 9-phenanthryl as well as 3-phenanthryl and 4-phenan-
thryl possess the same structure counts.

The RE criterion based on the conjugated circuits orders the phenanthryl
radicals according to their aromatic stabilities in the following way:

9-phenantryl> 1-phenanthryl > 4-phenanthryl > 3-phenanthryl > 2-phenanthryl
(11)

The same order is obtained if the REs are computed by the structure-
resonance model". However, the resonance stabilization energy model of
Stein and Golden", which is based on modified resonance-theoretical ideas
of Herndon, orders the phenanthryl radicals according to their Kekulć
numbers:

9-phenanthryl = 1-phenanthryl > 3-phenanthryl = 4-phenanthryl > 2-phenanthryl
(12)

RESONANCE ENERGIES OF BENZENOLD RADICALS

In Table I. we give resonance energy expressions for 28 benzenoid
radicals whose diagrams are given in Figure 5.

Numerical values of REs and REsle are reported in Table II. In this
Table we also list the 7t-bonding resonance stabilization energies (EnRSE) and
total stabilization energies (ER SE) of benzenoid radicals". These were calcu-
lated using the following expressions:

E1tRSE (eV) = 0.9835In [SC (R)] - 1.1851In [SC (RH)] (13)

where R (RH) stands for benzenoid radical (benzenoid hydrocarbon). In a
general case when 4n cycles appear, the se should be replaced by the
algebraic structure count (ASC)31. The ASe is defined as32:

Ase = se+ - se-; se+ > se- (14)
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The resonance energy expressions for benzenoid hydrocarbon radicals

Label Resonance energyexpressionBenzenoid radica!"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

"Benzyl
"l-Naphthyl
"2-Naphthyl
"'l-Phenanthryl
"2-Phenanthryl
"3-Phenanthryl
"4-Phenanthryl
"9-Phenanthryl
"l-Anthryl
"2-Anthryl
"9-Anthryl
"1- Pyreny 1
2-Pyrenyl

"'4-Pyrenyl
l-Chrysyl
2-Chrysyl
3-Chrysyl
4-Chrysyl
5-Chrysyl

"6-Chrysyl
1-Tetracenyl
2-Tetracenyl
5-Tetracenyl

"'l-Triphenylenyl
"2-Triphenylenyl

l-Perylenyl
2-Perylenyl
3-Perylenyl

(2Ql)/5
(8Ql+2Q2)/10
(6Ql+2Q)j9
(22(>1+ 8Q2+ (>3)/18
(18(>1+6Q2+(3)/16
(20(l1+ 6(>2+ (3)!17
(20(l1+ 8(12+ (>3)/17
(24(l1+ 4Q2+ (3)/18
(16Ql+8Q2+2(3)/16
(12(>1+6Q2+2(3)/14
(26Ql + 4Q2+ 2(3)/20
(40Ql+22Q2 +4Q3 +21;3)/29
(22Ql+12Q2+4(3)/19
(32Ql+16Q2+5Qa)/23
(52Ql+22Q2+4(3)/31 .
(42Ql+ 18Q2+3Q3)/27
(46Q1+20Q2+3(3)/29
(48Q1+ 20Q2+4(3)/29
(48Q1+20Q2+2(3)/29
(62Q1+ 14Q2+2(3)/34
(26Ql+ 16Q2+8(3)/23
(20Q1+ 12Q2+ 6(3)/20
(50Q1+ 16Q2+4(3)/32
(60Q1+ 14Q2+ 5(3)/32
(58(>1+ 10(>2+ 4(3)/31
(88Ql+40Q2+6(,>3+21;3)/48
(54Q1+ 24!!2)/27
(98Q1-H2('>2+ 6(,>3+ 21;3)/51

a Asterisk denotes known benzenoid radicals

where se+ (Se-) are valence structures of even (o dd) parity. Note that
SC = se+ + se-. For benzenoid hydrocarbons SC = ASe because se- = 033.

The ERSE of benzenoid radicals is given by:

ERSE (eV) = E1tRSE - 0.1995 (15)

where 0.1995 eV is the correction for Ea.

In Table II we furthermore give the REs of benzenoid radicals calculated
by Herndon's formula obtained by the structure-resonance model

(16)

where YI is the benzene (6-membered ring) resonance integral, Y2 is the
naphtalene (10-membered ring) resonance integral, [11 is the allyl resonance
integral and [12 is the pentadienyl resonance integral, whilst n], n2, n:; and vi,
are the numbers of each type of the resonance integral. The following are
the best correlative valu es of the resonance integral from above8,12,34
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Figur 5. Diagrams of the investigated benzenoid radicals

YI= 0.841 eV

Y2 = 0.336 eV

Pl = 0.501 eV

P2 = 0.159 eV



728 D. PLA vsrc ET AL.

TABLE II

RE

Resonance energies (in eV) of benzenoid hydrocarbon radicals

RE(SR)C RE(SR)/NLabel" RE/N E'ES/N

1
2
3
4
5
6
7
8
9

10
1l
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27c

28

0.35
0.74
0.63
1.18
1.08
1.12
1.14
1.22
1.00
0.86
1.19
1.39
1.18
1.40
1.65
1.53
1.56
1.622
1.616
1.69
1.19
1.05
1.49
1.75
1.72
1.81
1.96
1.88

0.050
0.067
0.057
0.079
0.072
0.075
0.076
0.081
0.067
0.057
0.079
0.082
0.069
0.083
0.087
0.081
0.082
0.0854
0.0851
0.089
0.063
0.055
0.079
0.092
0.091
0.086
0.093
0.090

0.76
0.96
0.86
0.94
0.82
0.88
0.88
0.82
1.09
0.96
1.30
1.04
0.78
0.96
0.92
0.78
0.85
0.85
0.85
1.00
1.18
1.04
1.50
0.81
0.77
1.16
0.63
1.22

0.56
0.76
0.66
0.74
0.62
0.68
0.68
0.74
0.89
0.76
1.10
0.84
0.58
0.76
0.72
0.58
0.65
0.65
0.65
0.80
0.98
0.84
1.30
0.61
0.57
0.96
0.44
1.02

0.080
0.089
0.060
0.049
0.041
0.045
0.045
0.049
0.059
0.050
0.074
0.050
0.034
0.045
0.038
0.031
0.034
0.034
0.034
0.042
0.052
0.044
0.069
0.032
0.030
0.046
0.021
0.049

1.33
1.93
1.81
2.47
2.35
2.37
2.41
2.48
2.26
2.1l
2.54
2.84
2.48
2.69
3.01
2.83
2.91
2.95
2.94
3.13
2.47"
2.33d

2.92']
3.07
3.05
3.37"
3.15d

3.42"

0.190
0.175
0.165
0.165
0.157
0.158
0.161
0.165
0.151
0.141
0.169
0.'167
0.146
0.158
0.158
0.149
0.153
0.1553
0.1547
0.165
0.130
0.122
0.154
0.162
0.161
0.160
0.150
0.163

a See Fig. 5
• Recalculated values from ref. 7
C Values obtained by formula (16) of Herndon8•12,34

" Calculated by us
C Result of Stein and Golden? 01' 2-perylenyl [SC(R') =9, SC(RH)=3, Ec.RSE=0.86eV,

ERSE=0.66 eVj is corrected by using corrected structure counts: SC(R')=27 and
SC(RH)=9.

Before indulging in the discussion of the data in Table II we will examine
in some detail the counts of valence structure for l-perylenyl, 2-peryIenyl
and 3-peryIenyl. Structure counts for benzenoid radicals which are considered
in Table II have been reported previously by Stein and Golden", and. a
number of them by Herndon-P-".

l-pyrenyl has 29 valence structures (Se = 29). These are given in Figure
6 in the condensed form (superposing structures having the same delocali-
zation as rt-electron fragments).

As we can see, the last structure in Figure 6 involves the 12 rt-electron
delocalization (this is the origin of Q3 terms in the RE expression of
1-pyrenyl in Table I). One can view such structures as being a combination
of two valence forms of opposite parity (Se+ = 1, SC- = 1) and thus effectiveIy
cancelling one another, making a netto count of 27 (ASe = 27). Let us
briefly mention a simple way of diagnosing parity of valence structures.
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Figure 6. Valence structures of l-pyrenyl in the condensed form, i. e., each structure
is the result of superposition of several valence structures having the same delo-
calization of Jt-electron fragments. The number beneath each condensed structure

indicates how many individual valence structures are superimposed.

Two different valence structures are of the same (opposite) parity if the
number of the 4n-membered rings in their superposition is even (odd)35,3G.

In the case of perylenyl radicals we agree with counts reported by
Stein and Golden? for 1-perylenyl (ASe = 46) and 3-perylenyl (ASe = 49),
but disagree with their value of Se(9) for 2-perylenyl:

1-perylenyl has 48 valence structures (Se = 48). These are given in
Figure 7 in the condensed form.

The last structure in Figure 7 involves 16 1t-electron delocalization. It
represents a superposition of three structures, two of which being of even
parity and one of odd parity (SC" = 2, se- = 1). Therefore, the count of
structures for 1-perylenyl is 46 (ASe = 46).

3-perylenyl has 51 valence structures (se = 51). These are given in the
condensed form in Figure 8. .

The same argument as for 1-perylenyl applies here. The netto count of
structures for 2-perylenyl is 49 (ASe = 49).

The disagreement with Stein and Golden? is in the case of 2-perylenyl,
for which they assign se = 9. However, as seen in Figure 9, there are
numerous valence structures for 2-perylenyl, a total of 27.

Interestingly, there is something unusual about 2-perylenyl radical in
comparison with the other two perylenyl radicals: It has still relatively few
valence structures, about half of those typifying other radicals of perylene.
In addition, it has no 4n contributions, in fact it only has Rl and R2 conju-
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Figure 7 Valence structures of l-perylenyl in the condensed form

gated circuits, just as naphthyl radicals, but in a somewhat different ratio:
26/9 rather than 8/9 as in 2-naphthylor 9/9 as in l-naphthyl.

Here we also wish to say a few words about the isovalent structures.
We will refer to molecules (ions and radicals included) as isovalent if they
have the same number of valence structures or the same algebraic structure
count.

In Table III we have collected all isovalent cases of this study. Inspection
of Table III clearly shows that there is a considerable difference in the
conjugation content (which we define as given by the count of conjugated
circuits in the collection of valence structures of a molecule) for different
cases. Differences in the count of Rl will make up the major contribution
to the anticipated differences among the isovalent systems. These contributions
have to be normalized with ASe value, thus Pl #(6) Ase is an important para-
metel' for indicating the possible ciifferences among isovalent structures that
the simple approach based on ASe alone cannot differentiate. From Table
III we see that the ratio Pl =#=(6) ASe is greatest for the pair: 2-chrysyl and
2-perylenyl, followed by 5-tetracenyl and l-triphenylenyl and the pair
9-anthryl and 2-tetracenyl. 2-perylenyl, as already stated, is unusual and
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Figure 8. Valence structures of 3-perylenyJ in the condensed form
3

9

.lffgi;Lre9, Valence structures of 2-perylenyl in the condensed form«,
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TABLE III

The comparison of isovalent benzenoid radicals

Ase = 16

2-Phenanthryl l-Anthryl

3-Phenanthryl 4-Phenanthryl

<
Ase = 18

l-Phenanthryl 9-Phenanthryl

<
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ASC = 20

9-Anthryl

26R1 + 4R2 + 2R)

ASC 2)

4-Pyrenyl

32Rl + 16R2 + BRJ

~SC 27

2-Chrysyl

>

>

733

2-Tetracenyl

l-Tetracenyl

<. 2-Perylenyl
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l-Pyrenyl <
40R1 + 22R2 + 6RJ + 2QJ

4-Chrysyl ~

48R1 + 20R2 + 8R, + 2R4

ASC J1

1-Chrysyl

52R1 + 22R2 + 6RJ + 2~4

ASC = )2

J-Chrysyl

46R1 + 20R2 + 6RJ + 2R4

5-Chrysyl

48R1 + 20R2 + 4Q, + 2R4

<: 2-Triphenylenyl

5-Tetracenyl < l-Triphenylenyl

50R1 + 16R2 + 4R) + 2R4'·' 60R1 + 14R2 + lOR) + 2R4
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can be viewed as naphthyl-naphthalene system which owes its additional
resonance stability to naphthalene moiety. 1-Triphenylenyl gained resonance
stabilization due to contributions of the conjugation of phenanthrene trag-
ments and 9-anthryl is also known as unusually stable (compared to other
anthryl radicals) primarily as all its valence structures contain conjugated
circuits. The smallest differences among isovalent systems of Table III are
found among 3-phenanthryl and 4-phenanthryl, the latter having a fraction
higher resonance stabilization due to the larger count of R2 conjugated
circuits. With the current paucity of independent data on radicals it is
difficult to examine how the above predictions fare. However, from the
SeF MO calculation of Unruch and Gleicher" we see that for the only case
they investigated that happens to have the same ASe, the case of 1-phe-
nanthryl and 9-phenanthryl, the calculated .:l ERSE (difference in resonance
stabilization energies of the compound and benzyl) differ, being 3.21 kcal/mol
and 4.10 kcal/mol. Thus, there is a definite difference in the two isovalent
systems and 9-phenanthryl which has a greater PI=#=(6)/ASehas a greater .:lERSE.

This suggests that the ratio Pl =#=(6)/ASemay be an alternative (or additional)
parameter of interest when discussiing resonance stabilizations of benzenoid
hydrocarbon radicals.

To test this assumption we plotted in Figure 10 the quantity Pl =#=(6)/ASe
which is shown in Table IV against RE in order to compare it with a plot

TABLE IV

Values of Ql#(6J/ASC in eV

Label"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

0.35
0.64
0.51
1.06
0.98
1.02
1.02
1.16
0.87
0.74
1.13
1.29
1.01
1.21
1.46
1.35
1.38
1.44
1.44
1.58
0.98
0.87
1.36
1.63
1.63
1.66
1.74
1.74

a See Figure 5
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RE vs TSe (Figure 11) and to investigate a parallelism between conjugation
content, the dominant term of which is given by the count of Rl conjugated
circuits and the algebraic structure count.

RE/eVI

20

o o

lS

o
o

1.0

QS

o.Ji QS' 0..10 1.5 2.0 J,Jo) / A~ leVi

Figure lO..A plot of RE vs e1'lf(6)/ASC

Inspection of Figure 10 and Figure 11 indicates that such parallelism
exists, but a higher correlation is achieved with p=#=(6)/ASe(r = 0.993) than
by ASe (r = 0.902).

The advantage of p=#=(6)/ASe is that it shows fewer accidental degeneracies
(in fact for the sample considered only two have been spotted, the value
of 1.02 for 3- and 4-phenanthryls and 1.44 for 4-and 5-chrysyl radicals). Thus,
p=#=(6)/ASe has »more flexibility« than ASe but, of course, further studies have
yet to show if the diversification introduced by p=#=(6)/ASe as compared to
ASe is adding to the power of the simple empirical correlation between
the conjugation content expressed in some simple way and RE or may not
be warranted, or perhaps even introducing larger average deviation for
quantities, such as A ERSE, than that of the simple approach.

Since the RE based on conjugated circuit s embraces both quantities,
p=#=(6)/ASe and ASe, the above results also indicate the importance of ben-
zene-like circuits for the aromatic stability of benzenoid radicals.
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o o

o
o

RE eV!
2.0

lS

1.0

05

s lS 20 302S 3Slo I.S1.0 So Ase
Figure 11. A plot of RE vs. ASe

15 2.0 25 3.0 35 RE (SR) leVI

Figure 12. The linear correlation between resonance energies of benzenoid radicalf
computed using the conjugated-circuit model (RE) and structure-resonance model

(RE(SR»
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We will now first compare the REs obtained by the three model s conju-
gated-circuits model, structure-resonance theory and resonance stabilization
approach by way of linear correlation:

RE (A-model) = p RE (B-model) + q (17

High correlation is obtained between the resonance energies cornputed
by the conjugated-circuit model and the structure-resonance model (eq. (16))
(see Figure 12).

The statistical parameters for the line ar relationship shown in Figure
12 are as follows:

n = 28

p = 0.805

q = -0.717

r = 0.986

SD = 0.067

F-test = 910.777

There is practically no correlation between the REs obtained by the
conjugated-circuits model and the resonance stabilization energies (ERSd
(r = 0.45).

It is not surprising that RE and RE(SR) correlate so well because the
conjugate-circuit model and the structure-resonance theory are closely related
semi-empirical VB approaches.v" However, they differ in their application
to 1t-radicals because the-conjugated-circuit model did not take into account
the resonance polyenic contributions such as allylic and pentadienylic reso-
nance structures. It appears that our initial guess that their contributions
to the resonance stability of benzenoid radicals are of the second order was
correct judging from the agreement with the structure-resonance theory
which used the allylic and pentadienylic resonance structures. Apparently,
the' most important structural contributions to the aromatic stability of
benzenoid radicals are the conjugated circuits, and amongst them the smallest
ones.

Finally, the aromatic stability of benzenoid radicals increases roughly
with the size of the isomers, If the size of two group s of isomers is the
same, then the stability roughly increases with the structure count for parent
benzenoid hydrocarbons. If both features, the size and the SC of parent
molecules are the same when their stabilities are comparable.

CONCLUDING REMARKS

It appears that a simple VB computational scheme, named the conjugated-
circuit model, can be used confidently for predicting the 1t..resonance energies
of benzenoid radicals. This approach is on a par with the structure-resonance
theory as the comparison between the two has shown. Since both apprcaches
are related, the above indicates that the structural features responsible for
the aromatic stability of rc-radicals are conjugated circuits. Amongst the
conjugated circuits the most important are benzene-like circuits denoted by
RI. That benzene-like fragments may play an important role in the chernistry
of benzenoid hydrocarbons has been empirically suggested even before the
\.1 -'J '1-

n
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advent of quantum chemistry ", thus anticipating perhaps the Huckel 4n+2
rule. Thereforc, ..the heart of the aromatieity of rr-radicals (as well as of all
polyeyclie conjugated systems) may be in eonjugative properties of small
rings and not in the boundary of the eolleetion of fused rings. The conjugated
eireuits belonging to larger boundaries ordinarily bring negligible eontri-
bution to the RE.
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SAŽETAK

Model konjugiranih krugova. Primjena na radikale benzenoidnih ugljikovodika

D. PLavšić, N. Trinajstić, M. Randić i C. Venier

Model konjugiranih krugova primijenjen je na radikale benzenoidnih ugljiko-
vodika. Izračunane su njihove rezonancijske energije i upotrijebljene za predvi-
đanje njihovih aromatičkih stabilnosti. Ta su predviđanja potvrđena i drugim teo-
rijskim modelima kao što je npr. jednostavni strukturno-rezonancijski model. Teo-
rijska su predviđanja također potvrđena eksperimentalnim podacima. Ovaj rad
upućuje i na to da model konjugiranih krugova pruža velike mogućnosti za kvali-
tativno i kvantitativno proučavanje termodinamičke stabilnosti policikličkih konju-
giranih radikala.




