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The significance of matrix defectivity in creating unusual
electronic states in polymers and crystals is discussed in (i) non-
-self-consistent, (ii) self-consistent, (iii) better than self-consistent
and (iv) real physical level of approximations. The simplest inter-o
mediate and almost intermediate one-electron states are derived
in a veryelementary way for end-perturbed finite monoatomic
linear chains by the direct recursion (transfer matrix) method. A
linear model chain is given with two-atomic elementary cells,
which has the inner-band intermediate state. Instead of the usual
energy-wave vector plot of the band theory, asimpler lambda-x
dispersion (LXD) diagram is introduced to represent the band
structure. Better terminations are proposed to the creation of inter-
mediate states in earlier studied polymers at the second (ab initio
Hartree-Fock) level on the ground of trivial first (Huckel) level
calculations. More complicated defectivities are sketched. Design
of polymeric intermediate states is treated.

1. IN~RODUCTION

Non-self-consistent LCAO procedures, such as the Hiickel or extended
Hiickel methods, describes sometimes surprisingly well certain dominating
properties of a broad class of molecules, polymers and solids. Applying
self-consistent or even more refined methods to these classes, some common
dominating mathematical characteristics must appear at all level of the
methods. Properties connected with a translational symmetry of the systems
belong to the above category. Therefore, it is not superfluous to search for
newer phenomena with the aid of the simplest LCAO approaches which
usually lead to linear matrix eigenvalue problems.

If the studied systems have translational symmetry, then the above
matrices have (at least partly) periodic block-structure(s) and one can apply
the direct recursion (transfer matrix) method (DRM)1-6to reduce the order
of the eigenvalue problem. The recursion matrix T describes how the
one-electronic states propagate from monomer to monomer in polymers
or from layer to layer in crystals. If T is diagonalizable, then only two
kinds of states can be produced. One is the delocalized bulk state which
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propagates with constant amplitude through the periodic part(s) of the
system. The another is the localized state which falls off exponentially.
Such are the defect, surface, impurity and interface states, for example.
To create states of different character, the defectivity of T is required.

A usual objection against the significance of the defective matrics is
that ,they are very rare. This is confirmed also by computer experiences.
Really, at the present accuracy of computers, a very small change in the
matrix elements is completely satisfactory to avoid certain singular properties
connected with defectivity, without any essential change in the calculated
quantities. However, the example

lim [ lim (I - er + P)"] = I + 00 P "" lim I lim (I - el + P)"] = O
~OU .:-++0 E-++O 1Z-+CXl

(here I = (~ ~), p = (~ ~) and I -I- P is a Jordan block) shows that counte-

rexamples also exist. In the language of physics, one can state that, for
example, the periodicity of the system can enhance the otherwise negligible
differences between the diagonalizable and the defective matrices.

Thus, one' can find new phenomena at the first, non-SCF (or simple)
LCAO level of approximations. Let the SCF studies belong to a second level.
Weshall speak also on a third, bet ter than SCF level. The fourth level will
represent the physical reality itself as the most important one. The possible
validity of the above discussed enhancement phenomena at the higher levels
is our next question. !

To the best of our knowledge", not too much attention is given to the
role of defective matrices in the electronic structure of polymers and crystals.
The third kind of their one-electronic states, the hypothetical intermediate
state (IS) has been treated in a few papersv"?". The IS is connected with
the appearance of the simplest Jordan blocksvi'". Its history has been recently
outlined in the introduction of". The present stage of the IS-hypothesis, in
relation to molecular biology (see also-"), is discussed .in a forthcoming paper-s.
A possible interpretation of the pyroelectric Iuminescence'" by an IS-mecha-
nism-" may lead from a first to a fourth level study. Quantum size effect'"
(QSE) experiments of the fourth level were proposed to the observation of
the ISSll. A second level (ab ini tio Har.tree-Fock) study'" confirmed the
earlier conjectures? that the IS which was discover-ed at the first (Huckel)
level, does really appear at the second level, too. Speculations on the appli ..
cability of the ISs in the future molecular computers will be soon published
in more detailt+ than earlier'". Finally, we quote here a mixed first and third
level study which was given for Kronig-Penney models both in relativistic
(unpublished) and non-relativistic approximations'". The ISs proved to be
exact solutions of both the Dirac and the Schrčdinger equations, demonstrat-
ing that their appearance is not a by-product of the finite basis (LCAO)
approximation.

An elementary derivation for the simplest IS, an analytically solvable
model to produce an IS inside a band, first (Huckel) lev el proposals to a
second level (HF). study of more conveniently terrninated ~polyiners than
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earlier-", a sketch of more comp1icated defective recursion matrices and the
way to their design will be presented in the following sections.

2. IS AND AlS

AlS means here almost intermediate statev? which is very similar to an
IS as it will be shown below.

The electronic structure of an end-perturbed monoatomic linear chain
will be derived in the simple LCAO (Hiickel) approximation with the follow-
ing Coulomb parameters and resonance integrals:

f3 f3 f3 {J {J f3
a-O-O- ... -O-O-y

The eigenvalue problem to be solved is

fJ -i-
fJ

fJ
-,1.

fJ

(1)

tJ
-i-

fj
tJ-2 fJ

Let us define the usual vectors and recursion matricesv" as xJ·.'-l = (cj
) for

. Cj+1

j = 1, ... ,N-I, XI = (~J,XN+I = ( ~N), T = (_~ ~) with

li. = ~ , T" = T-D with D = (~ ~) and a = ; ,finally, r, = T-F with

F = (~ ~) and 9 = ; .The boundary condition is included into the definition

of XI and XN+I above. The recurrence relation is

(2)

and
XN+I = Ty TN-2 T" XI = (TN

- FTN-l_ TN-l D + FTN-2 D) XI

is the fundamental equatiorr'. Then

UT = TU (4)

is the auxiliary equatiorr' with its secular equation I T - tI I = I-~A~t I= t2_-

, .~ - J fl I fl I < 1
-At+l=O and eigenvalues t±=.A/2± Y(iI./2)2-1= \v'=W1= . Now

• =(~ n and U =G=~)ii T is simple and. = El + P, ,U = v = E = ±l,

U = (~ _;) when it is defective. Note that the U of the first case becomes
singular when ii approaches E. At the same time, the spectral resolution Ti =

. (-S-I S) fli - vi= U-I .lU = J J with S· = varies non-singularly. The band
-Sj Sj+1 J fl- V

(3)
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edges lie at A. = 2Ef3. Outside the band I ii I< 1, f1, = eX (x < O) and then Sj =
sh (jx)
_--'0."":"- yields a localized solution when it is substituted into (2):

sh x
Cj = (Sj - aSj_l) cl' (5)

. sin (jx) .
Inside the band I f1, I = 1, f1, = e'y' (O< x < n) and S: =. . Approachmg. sin x
the hand edge from either side, Sj ~ Ej-1 j. Therefore, the fundamental equ-
ation (3) will be valid for all of the possible electronic states (bulk, localized
and intermediate) if one substitutes just the above spectral resolution:

SN+I - (a + g) SN + agSN_I = O. (6)

The direct derivation for the defective T yields just the above limit? Sj =
= Ej-I j at the band edges. Thus, one can obtain from both procedure the
same fundamental equation for the IS from (6) (note that E2 = 1):

N + 1 - E (a + g) N + ag (N - 1) = O. (7)

This equation will have an extremely simple and N-independent form for
the new terminal parameters A and G defined as

A
a = e(l +---)

N-l

G
and 9 = e (1 + --lo

N-I
A + G = AG

(8)

Namely, (7')

as it was shown and discussed earher",

For O < x < n/(8N), sin (Nx) ~ N» in a (graphically) acceptable approxi-
mation. If (6) has a solution with such a x value, then the one-electron
state of energy A. = f3 (f1, + v) = 2f3 cos x ~ f3 (2 - X2) will be very similar to
the exact IS as it is striking from (5), in the same or even better approxi-
mation (depending on the actual atomic site):

cj = ej (ej - a [j -1]) Cl'

Therefore, it is an AlS. Roughly speaking, a critical energy intervals'" IA.-
- 2Ef31 < f3 n2/(64N2) exists, where all states become similar to the central
exact IS; they are AISs

3. IS INSIDE A BAND: AN ANALYTICALLY SOLVABLE MODEL

At least two atoms (or orbitals) must occupy the elementary cells of
linear polymers or atomic chains to create Van Hove singularities inside a
band where ISs can also appear (it is a »matrix effect«). One cannot get
general closed expressions for the electronic structure of these systems.
Therefore, it seems to be useful to search for easily solvable models to
study inner-band ISs. We describe here such amodel characterized by
second order intra- (A) and intercell (B) Huckel matrices.

Let

and B = (_~ ~).
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Then

T = ( _B~l B' _B~l H ) with H=A-U

is the recursion matrix which has the reduced characteristic equation+"

I B' r1 + H + Bt I = O.

Let t + Cl = 2x and t - t-l = y. Then (9) reduces to

LI (l, x) = (2x - ),)2 - 4 (l + 1) = 0,

(9)

(10)

where the relation y2 = 4 (x2 - 1) was utilized. It is convenient to plot a
lambda-x dispersion diagram (LXD-diagram) to characterize the band stru-
cture of our model (see Figure 1.). The LXD-diagram is simpler than the
usual energy-vave vector plot of the band theory because the opposing wave
vectors are treated together and the complication caused by the exponential
dependence is eliminated. What is that diagram and how to use it?

Evidently, I t I = 1 if and only if t = e= with a real x. Then x =
= 1/2 (ei" + e-i")= cos x is also real and

-l;S;x;S; 1 (11)

defines the allowed bands. If curve Ll (A., x) = O crosses the region defined
by (11) in the (A, x) plane then it belongs to the allowed band(s). Outside that
regi on ~tir" 1 on one hand and t may have even complex values on the
other band, So we need generally a complex variable x to describe the
localized states, i. e., a third imaginary axis as it is done in Figure 1.

For A. > -1, (10) represents a parabola. This shows the most important
characteristics of the more general models: Band edge-type IS (BE-IS in
Figure 1), Van Hove-type innerband IS (VH-IS), doubly degenerated band
edge -type ISs with really complex t (complex Be-IS) and t = -1 without the
appearance of the IS (no IS).

The VH-IS produces also the turning over process", i. e., under the effect
of appropriately varied boundary conditions, the slope of the wave function's
line ar envelope can change its sign. Correspondingly, the center of charge
of this one-electronic state moves from one side of the chain the other. By
further variation of the boundary condition, the IS can be transformed
either into a bulk or into a localized state. One can then easily imagine that
a well localized state of one side of the chain can be transferred into another
localized state of its other side through an IS (BE-IS or VH-IS, as well).
This is the state-pump mechanismt" which can work even in the case of
perfectly insulating chains or crystals, promising beautiful applications in
a very broad field, starting with molecular electronics up to certain processes
in molecular biology, and back"?", The above described simple band-model
can largely help the further studies of these problems. Especially the appe-
arance of the doubly degenerated complex BE-IS seems to be very promising.

4. HUCKEL PROPOSALS FOR POLYMER TERMINATIONS IN HARTREE-FOCK
CALCULATIONS

Ab ini tio self-consistent field Hartree-Fock calculations for finite chains
of hydrogen atoms, ClOH2(»pentacetylene«, PA henceforth) and an eight-
-membered Water-stack have shown that, in concordance with earlier conje-
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Figure 1. The lambda-x dispersion (LXD) diagram of a special (see text) model
polymer with two atoms in the elementary cells. Lambda is the one-electro n energy,
x = (t + P)/2 = cos (Ck), where t and Cl are eigenvalues of the recursion matrix
T, k is the wave vector (one-dimensional) and C is a constant. The figure shows the
LI (l, x) = I B' t-1 + A - U + Bt I = O curve in the 3-dimensional space with one ima-
ginary axis Imx. The section of the curve running between the straight lines (see
shading) x = +1 and x = -1 defines the allowed band on the real eJ" Rex) plane.
In the case of our special example, this curve is a parabola defined by the two
roots Xi = (J./2) + Ci, + 1)1/2 and X2 = (J.i2) - eJ. + 1)1/2. Thus, the band has two brane-
hes for energy values taken between -1 and O and one branch from O to 8. Inter-
mediate states (IS) may appear where shown by the arrows (BE = band edge-type,
VH = Van Hove-type, »complex« means that the IS belongs to a complex eigenvalue
of T [here exp (± 2:n:il3)] and ()2 denotes double degeneracy, Below the lover edge
of the band eJ. = -1) Xi and X2 become complex and run along another parabola,
the plane of which is perpendicular to plane (l, Rex). The dotted branch Xi is

behind plane (l, Rex).

ctures", the ISs do really appear at the second level, at the self-consistent
field level of approximations": However, the end perturbations (namely,
variations of the terminal bond lengths) necessary to generate ISs in the
above listed model chains were artificially large. Therefore, we are now
searching for better models. In the first step, simple Hiickel calculations
were performed for substituted PAs, using Streitwieser's parameters'" to
study their n-electro n systems. These are simple desk calculations, if the
direct recursion (transfer matrix) methodv" is applied. We found that the
upper edge of the valence (n) band of (OH)ClO(OH), (NH2)ClO(NH2), and

r



MATRIX DEFECTIVITY AND STRANGE STATE 109

(OH)CIO(NH2), the lower edae of the same band for ClCIOCland (CH3)CIO(CH3),

as well as the lower edge of the conduction (n) band of (BH2CIOBH2)'
(BH2)CIOF,and (OH)ClO(NH2) can probably produce IS more easily, already
after a small variation of the termin al bond lenaths around their equilibrium
value. Naturally, the parameterization of the Huckel method includes some
parts of the correlation energy, which is absent in the HF method, so one
must compare them carefully. One can hope. however, that the dominating
characters are appropriately included into both methods, so the above pre-
dictions may be useful orienting points in a HF study.

5. MORE COMPLICATED DEFECTIVITIES AND THEIR DESIGN

In the general second order case, the intra- and interceIl matrices A
and B lead to general second order algebraic polynomials .1 (A, x). These
represent conics in the real (A, x) plane. The sections of the conics lying
between lines x = +1 and x = -1 represent the aIlowed band structure
(see equation (11)). The intersections d the conics with the above straight
lines can generally yield ISs (hoth BE- and VH-IS$) only if appropriate
boundary conditions are fulfilled. but they generaIly cause singularities in
the density of states (DOS) of the infinite systems, in both cases: (i) when
the systems are periodic and (ii) when they are bounded but taken in the
infini te size limit. Both the ISs and the above singularities are, however,
absent for the conic's tangent point s to the straight lines x = + 1 or x = - 1.

Thus, keeping in mind the graphs of the different conics (ellipses, circles,
parabolas, hyperbolas, as well as their trivial limit cases, the points, straight
lines and their crossing pairs). one can easily imagine how to form the usu al
one- and two-band systems, say, with partly, completely overlapping or
separated bands. The parabolic LXD-diagram (Figure 1.) shows roughly what
is given doubly in the elliptic and hyperbolic cases in general.

In the more general case when A and B are of order n, L1 (A, x) = O as
an algebraic 'polynomial equation of the same order can produce amore
complicated LXD-diagram, but the notable characters remain similar to
those which were found in the second order case. Naturally, the higher order
recursion matrices can have Jordan blocks of higher size as well as pairs
of truncated Jordan blocks being k by k + 1 and k + 1 by k rectangular
matrices in their normal forms. So, the way is open to discover newer and
more complicated strange electronic states than the ISs. How to manipulate
with these singular or defective T matrices? An inversion-free DRM (IF DRM)
was developed to treat simple (diagonalizable) but singular T matrices". Its
generalization for the defective matrices is in progress'". The classification
for the characteristic defectivities of the T matrices as well as the procedure
to obtain the normal forms will be given there. The effect of these defecti-
viti es on the electronic wave function will be also studied.

Finally, in the knowledge of the above mathematical results, it will be
possible to teIl which parameter sets included in matrices A and B can
produce the desired strange electronic structure, so we shall be able to
search for a realistic physical system which is characterized by just such
a parameter set. In this way the design of systems with strange electronic
states will become a realistic task with the advantages described elsewhere'"!".
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6. CONCLUSION
It was shown that matrix defectivity can produce interesting phenomena

in the approximated electronic structure of linear polymers. These results
are acceptable for three-dimensional crystals, as well, because their descript-
ion in the direction of a crystal axis is mathematically analogous to the
problems of linear polymers. It is not yet clear, whether the above pheno-
mena are really observable, i. e., whether they appear in the real world
or not. This question was discussed elsewhere7-11,1~-14 as well as quantum
size effect (QSE) experiments were proposed to observe the ISSll.

We believe that matrix defectivity has a significance in many diverse
fields of the nature. We should like to mention here only two such fields,
where it is quite clear from the similarity of the forrnalism, namely, the
vibrations of polymers and crystals and the electrical circuits. It would ne
interesting to review the role of defective matrices in natural sciences. If
any of the readers of the present paper do it, then it will have achieved
its aim.
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SAŽETAK

Defektnost matrica neobična elektronska stanja polimera

G. Bicz6

Razmatrana je signifikantnost defektnosti matrica u kreiranju neobičnih elek-
tronskih stanja polimera i kristala u nekoliko aproksimacija.




