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In order to interprete vibrational spectra of crystals (IR-ab-
sorption, IR-reflection, Raman- and Hyper-Raman-scattering, sti-·
mulated Raman scattering, and CARS) irreducible tensors of rank
1 to 3 are needed for the 32 classical crystallographic point groups,
The detection of quasi-crystals suggested it as useful to calculate
these irreducible tensors also for the point groups with fivefold
rotational axes. The form of irreducible tensors of rank 1 to 4 wit-
hout intrinsic symmetries are given in tables Jo~ a~ irreducible
representations of pentagonal point groups 5, 5, 10, 10m2, 52, 5m,
52m and for two icosahedron point groups 235 and (2/m) 35~

The notation of property tensors is in accordance with Birss'. In detailed
tables the components of property tensors which have to vanish because of
symmetry reasons are marked by small dots. On the other hand, components
which - due to symmetry - may not vanish are symbolized by free black
circ1es. When. two or more components are equal, they are connected with
aline. When two or more components have different signs but the same mo-
dulus they are also connected with a line but one or more circ1es are not filled.
When two components are equal in one representation, they must differ in
sign in another representation. For the sake of c1arity, letters instead of circles
are used for the non-vanishing components of property tensors which are
more complicated. When dealing with one-dimensional representations, the
same letter refers to the same value only within this representation. In the
case of representations which are degenerate to each other the same letter
always refers to the same value. Degenerate representations are marked by a
long straight horizontal line in the first line of the detailed tables of pro-
perty tensors.

1.THE PROPERTY TENSORS

Most physical properties of crystals are described by tensors. From the
mathematical point of view, a tensor is primarily characterizad by its ranko
Furthermore, it can be polar or axial, a characteristic which, taking into
account the rank, describes the parity behaviour. With regard to time reversal,
this can be invariant (i-tensor) or changed (c-tensor), Finally, the mathema-
tical relations defining a particular effect or, under certain conditions, also
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experimental conditions may determine intrinsic symmetries of the ten-
sors1,2,3,4,5

2. THE NEUMANN-MINNIGERODE-CURIE-PRINCIPLE AND ITS EXTENSION

Already F. E. Neumann (1798-1895) imagined a close inter-relation
between the structure of a crystal and its physical properties". Minnigerode?
stated as an 'empirical principle': 'The structural group of a crystal is eon-
tained in every group of its physical properties'. Nowadays, this would be
written shortly

Gobject C Gproperty' (I)

see Shubnikov and Koptsik", Finally, P. Curie? expressed this principle more
precisely, essentially by pointing out the role of dissymmetries, i. e. disturbed
symmetry. Later on Birss' developed a quantitative formula allowing calcu-
lation of the structure of property tensors for every point group, see also
Cracknell". In this context, an interrelation was given between the compo-
nents of the property tensors dQ~L (the number of cartesian coordinates
Q, er, -e, ... = x, y, z of the index defines the tensor rank) and the symmetry
operation R of the crystal point group.

For non-magnetic point groups it holds for polar i- and c-tensors

and for axial i- and c-tensors

(2)

(3)

According to Einstein's convention, summation has to be taken over all
indices apprearing multiple. Rae etc. are elements of the matrices describing
the generating symmetry operations of different point groups. Their valu es
can be seen directly from Jones' exact representation symbols!? of crystallo-
graphic point groups. Birss' has worked out a numerical calculation for the
total symmetric irreducible representations of all crystallographic point groups
and tensors up to rank 4.

Property tensors of non-total symmetric representations of the point
groups, however, are also needed, in particular for the evaluation of crystal
vibrational spectra. In the case of linear, non-resonant Raman scattering they
are known as 'Raman tensors' and are polar, symmetric i-tensors of rank 2.11

In .order to calculate the components of these irreducible tensors, equations (2)
and (3) have to be slightly modified. Following a suggestion of Bross'", we
write for polar tensors

and for axial tensors

(4)

(5)

~ij are the components of irreducible representation matrices for the
generating symmetry operations R of a point group. i and j run from 1 up to
the dimension of the irreducible representation in question. The description
oi a physical .property requires as many irreducible partial tensors in every
representation as is the dimension of this representation. These partial ten-

n
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sors are denoted by id and ia, respectively. Again, summation has to be taken
over twofold indices, in this case also on the left hand side over j.

Brandmiiller and Winter-š calculated the sets of cartesian irreducible
tensors without intrinsic symmetry for the 32 classical crystallographic point
groups up to rank 4. These include not only the usual Raman tensors but,
since calculated without intrinsic symmetry, also those for the resonance
Raman effect and because of the higher ranks the hyper Raman tensors too.

The limitation to the 32 classical crystallographic point groups is caused
by the fact that crystals are solids with periodically arrangend units, i. e.
with translational symmetry. Conformity of the point symmetry of a crystal
with translational symmetry requires the point symmetry operations to ful-
fil a condition: Only those rotations or rotational inversions around an angle rp
are allowed for which holds

2 cos rp € {- 2, - 1, O, 1, 2}. (6)

This condition is fulfilled only for angles ep = 0°, 360°, 60°, 90°, 120", and 180°.
If a rotation is n-Iold, this implies:

rp = 2 n/n. (7)

The compatibility between translational symmetry and the point symmetry
of a crystal thus reduces n to the values n = 1, 2, 3, 4, and 6, the consequence
being the existence of exactly 32 so called classical crystallographic point
groups. This seems to have been obvious first to Hessel-" in 1830. So far,
our discussion has concerned three dimensional crystals. Brown et aP5 have
given the corresponding data for dimensions 1, 2, and 4.

The term 'classical' indicates that there are also modern developments.
An example are the 58 magnetic crystallographic point groups." In the fol-
lowing text, however, we are referring to another extension of the crystal
concept, such as given e. g. by Mackay-",

3. THE PENTAGONAL POINT GROUP S OF MOLECULES

When regarding the structure of single molecules, the requirement of
translational symmetry is omitted and hence the restriction of n to certain
values. There are molecules with fivefold rotations or rotational inversions,
even if not numerous. Some corresponding molecules are listed in Table· r.

-, -
Examples of the two point groups 5 and 52m seem not to have been known
hitherto. Character tables of the 7 pentagonal point groups are given in seve-
ral standard books, such as e. g. Wilson, Decius, and Cross= and Salthouse
and Ware25. In molecular vibrational spectroscopy these character tables have
been used for a longer time in order to deduce the selection rules for IR-ab-
sorption- and Raman-spectroscopy and for normal coordinate analysis. Chec-
king these tables shows that for the abelian pentagonal point groups a quan-
tity E = exp (2ni/5) plays an important role and for non-abelian point groups
a quantity usually denoted by 7:. 7: is the well known Fibonacci number

7: = (:';5 + 1)/2 (8)
with

cos (2 n/5) = (7: - 1)/2, (9)
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TABLE I

The 7 Pentagonal Point Groups and Molecular Examples

Notation of point group Type Examples for molecules References

Schčnflies Hermann-

Mauguin

es 5 abelian (CH3)5C5, Pentamethyl cyclopentadienyl radica! 17

SlO 5 abelian

C5h ~=1O abelian (CH3)5F2I, Pentamethyldifluoridine 17,18m

D5h 52 -
:mm=1Om2 non- PaCI5, Protactiniumpentachloride 17,19

abelian C5HlO, Cyclopentane 20
(C5H5)2Fe, Ferrocene (prismatic form) 67

Ds 52 abelian (C5H5>2Fe, Bis(cyc1opentadienyl)iron (II) 17,21,22

c; 5m abelian (B 11H13)--, Tridecabydroundecaborate 17,23

DSd 52m abelian (C5H5)2Fe, Ferrocene ( antiprismatic form) 67

which number is of great importance for the theory of numbers. r is regarded
as the main characterizing quantity of .a fivefold symmetry and it appears
also in the context of the golden section.

4. THE ICOSAHEDRON POINT GROUPS AND MOLECULAR EXAMPLES

Also for the icosahedron point groups which contain fivefold rotational
axes t: appears as the character of irreducible representations.šv" Still, in
1961 Matossiš" stated that no molecules exist for the icosahedron groups and
in 1962 Hamerrnesh'? wrote in his standard work on group theory: 'The ico-
sahedron group ... has no physical interest, since in crystals fivefold axes
cannot occur, and no examples of molecules with this symmetry are known'.
Nevertheless, the character tables also for the icosahedron group s have
been given in books on molecular spectroscopy for some time. Accidentally,
however, an error appears in this context. For the five dimensional irreducible
representation H the character in the class of 15 twofold rotational axes does
not vanish24,25 but is 1. Cohan'" has pointed this out already in 1958. It is
easy to verify it by means of the orthogonality relations for the characters-v-r-".
Cotton'" (1963) and Harris and Bertolucci'" (1978) pointed out the B12H12---

-anion as an example of a molecule with a regular icosahedron structure. In
1981, E. v. Cointet'" calculated the summetry coordinates for a dodecaedral
molecule which was still hypothetical at the time but Ternansky, Balogh
and Paquette'" discovered the dodecahedran C2oH20 as 'the molecule of the
year 1982'. It shows the structure of a regular pentagondodecahedron. Further-
more, Kroto, et aJ.33 in 1985. found a cluster C60, the Buckminsterfullerene,
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showing the structure of a truncated icosahedron with 32 surfaces, 12 of
which are pentagonal and 20 hexagonal and with 60 vertices. This is a so
called semiregular, or archimedian body.

5. SOLIDS WITH LOCAL ICOSAHEDRAL SYMMETRY

In the meantime icosahedral units have been found with this local sym-
metry also in solids. In a series of papers concerning c1athrasiles, Gies and
Gerke34 describe pentagondodecahedral cages in synthetic dodecasile, which
they could identify by structure refinement. Wells'" reports that the three
boronstructures 'a - B12, (J - BIOSand tetragonal Bso contain icosahedral units.
In a - BJ2 e. g. the icosahedron groups are located in all points of a rhombo-
hedral lattice. There also exist icosahedral coordination groups in complex
O'-phase which are formed by a number of transition metals. The 12-ico-
sahedron coordination appears in Mn with Fe, Co, or Ni, not, however, in
Mn with V, Cr, and Mo. A case of particular interest is the structure of
Mg32 (Al, Znh9. One atom is surrounded by a icosahedron formed by 12 others.
Further, 20 atoms are arranged at the corners of a pentagondodecahedron.
Another 12 atoms are located over its 12 surfaces and they, in turn, form
another larger icosahedron.

6. CONSIDERATIONS CONCERNING NON-CRYSTALLOGRAPHIC LONG RANGE
STRUC;TURES

The experimental results reported so far pointed to the existence of
icosahedral and dodecahedral units as local symmetries in solids. The exi-
stence of a corresponding long range symmetry seemed impossible because
of equ. (6) There have been, however, speculations since some time age
whether so called non-crystallographic long range arrangements might exist
in solids. In 1962, Mackay'" considered whether a non-crystallographic close
packing of identical spheres with icosahedral symmetry might exist. Mackay
and F'inney"? published some very general considerations concerning structu-
rization in 1973. Their aim was to present the statistics of regular (crystal-)
structures and the regularities of statistical structures (liquids and gases)
from a unifying point of view. In a particular work, 'The generalized inverse
and inverse structure" (1977), Mackay also discussed the icosahedron. Refer-
ring to a work of Kepler'" from 1611, Mackay-? (1981) considered 'de nive
quinquangula' and showed that also infinite non-periodic patterns are
possible with partial structures exhibiting a fivefold rotational axis. He pri-
marily focused his attention on the two-dimensional Penrose-patternsv-" and
made, in this work, the first attempts to generalize the Penrose-pattern to
three dimensions, an idea which became concrete'" in 1982. Work by de
Bruijn=, Kramer'" and Neri+" is dedicated to the same subject.

7. ALLOYS WITH LONG RANGE ICOSAHEDRON SYMMETRY

All the relevant publications cited so far were purely theoretical until
in 1984 the definite experimental verification was published by Shechtman,
Blech, Gratias, and Cahn.v If a melt of Al with 10-14 atom % Mn, Fe, or
Cr is cooled quickly, a metallic metastable alloy of corn, up to 2 f.L size, is

J
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formed by a phase transition of the first order. Electron diffraction studies
on the corn showed the icosahedral point group (2/m) 35 not only locally
but also for the complete corn, so that a long range orientational order
mu st exist. The diffraction spots are as sharp as those of crystal s but cannot
be indicated by any Bravais lattice. Twin structures incidentally showing
also icosahedral symmetry could be excluded. The icosahedral phase is rem ar-
kably resistant to crystallization. Heating the sample up to 3000e for 6 hours
or to 3500e for one hour does not induce any crystallization. Only one hour
heating to 4000e causes a conversion to the stable A16Mn-phase. The symmetry
of the icosahedral phase is some where between that of a crystal (one of the
32 crystallographic point groups) and that of an isotropic liquid (three-dimen-
sional rotation group).

Some time later another important theoretical work was published by
Levine and Steinhardtw the title of which »Quasi-crystals: a new class of
ordered structures« became of great interest to many solid-state physicists.
The idea of a crystal with periodical translational order· is systematically
extended to the 'quasi-crystal' with 'quasi-periodic' order by replacing the
translation by a long-range-bond orientational order (BOO). This is consi-
dered a new phase of matter. The electron diffraction diagrams recorded by
Shechtman et a1.47 were simulated by Levine and Steinhardt on a computer
and the structure thus identified as a 'quasi-crystal'. The authors show the
interrelation with the Fibonacci-number of the golden section and point out
also that the icosahedral structure will cause new structural and electronic
properties of solids. In the meantime, a further number of papers on this
subject have been published, e. g.49-53.Bak54 in particular studied the sym-
metry, stability and elastic properties. He mentions that the critical para-
meter for the phase transition from the isotropic to the icosahedral phase
(also known as T-phase) is contained in the irreducible representation rs = H
of the icosahedron group. Urban, Moser, and Kronmuller=.š" show ed that the
transition from the quasi-crystalline phase to the amorphous state can be
activated by irradiation of 1 MeV-electrons at 130 K. Bancel and Heiny'"
were able to find further Aluminium transition element alloys with a quasi-
-crystalline phase. Biham, Mukamel and Shtrikrnan'" concluded from general
considerations that icosahedral and pentagonal structures may exist as therrno-
dynamically stable phases and they state that their analysis can be extended
also to other plane quasi-crystals with rotational axes more than 6-fold.
However, there is no lack of critical voices regarding long-range icosahedral
symmetry either-". In arecent work by Paulings" with the title »So-called
icosahedral and decagonal quasicrystals are twins of an 820-atom cubic
crystal« he writs: 'The icosahedral nature of the clusters in the cubic crystal
explains the appearance of the Fibonacci numbers and the golden ration. I
conclude that the evidence in support of the proposal that the so-called
icosahedral and decahedral quasicrystals are icosatwins and decatwins of cubic
crystals is now convincingly strong. I point out that there is no reason to
expect these alloys to have unusual physical properties'.
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8. THE IRREDUCIBLE TENSORS OF THE GROUP S WITH FIVEFOLD

ROTATION AXES61

In order to calculate the components of these tensors, equations (4) and
(5) were used. The generating symmetry operations for the different point
group s and their irreducibIe representation matrices are listed in TabIe II.
The corresponding matrices for the pentagonal point groups were listed in
analogy to the values for the crystallographic point groups!'', The matrices
for the icosahedron group 235 originate from Matossi's book." In this context
we have to note that on p. 153 an error appears in the last line. The equation
should be read correctly cos 2 ef; = (Y5 - 1)/(5- Y 5) = 1/Y5. In the present
work we denote Matossi's angle ef; by 1) and his ep by a, We, furthermore,
note that the matrices are given for the so-called 'passive symmetry operat-
ions' by Matossi!",

Table III gives a survey of the abelian point groups 5 (= es) and 5 (= SlO).
The form of the corresponding irreducible tensors has been abbreviated by
capital Ietters for the different irreducibIe representations in analogy to and
as an extension of the nomenclature used by Birss.' Table IV summarizes
these forms for tensors of ranks O (scalar), 1 (vector), 2 and 3. All components
which have to vanish by symmetry arguments are denoted by small dots.
The components of a vector in cartesian coordinates are written by a columm-

TABLE II

The Generating Symmetry Operations and Their Irreducible Representations for the
7 Pentagonal and the 2 Icosahedral Point Groups

·2lta=s

5 = Cs
(

cosa -sinn OJ
C5-t;. = sina cosn O

O O 1

A

Ey (Y= 1,2) 11=

(rom -sino; OJ a,_(: O

.D10 = C.5b C5-t;. = sina co so; O 1

O O 1 O

A' 11=1 11= 1

A" Ll=1 11=-1

Er (y= 1,2)
(COSYO; -sirrycc

Ll=C ~)11=
sirryo; cosyo; O

Ey" tt= 1,2) Ll=( c~syo; -Sinyo;) Ll=C O)O -Ismya cosju
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Table II continued

10m2=D5h

Ai.
Ai
Al
Az

Ei (r= 1,2)

E.(' (r = 1,2)

S2 = Ds

(

cosa. -since O J
S~ ee- Si~a. c~sa ~ 1

A= 1
A= 1
A=-l
A=-l

(

cosa -sina. OJ
Cs"';.= sina cosa. O

O O 1

c,,=(: -:D
"A= 1
A= -1
A= 1
A= -1

(
1 O O)

C2x= O -1 O
O O -1

5m= CSv

cosa. -since O

sina cosa. O

O O

A= 1
A= 1

A = (c~sa -sina.)
smu cosa.

A= (~S2a -Sin2a)
_ sm2a cos2a_

A= 1
A= -1

A= (~ _~)

A=(~_~)

Table II to be continued

vector. The form NI ( :) implies that only the z-cornponent of a vector does
not vanish by symmetry arguments in the total symmetric representation.
For such non-vanishing components we use either a black full circle or, if
clearer or more convenient, small Latin letters. Full circles connected with
a straight line, as e. g. in the form N2, indicate that the two components have
to be identical for symmetry reasons, i. e. dxx = dyy• Identical small Latin
letters for different components of a tensor in one irreducible representation
or degenerate tensors such as for Q{ do also mean that the corresponding
components must be identical by symmetry arguments holds e. g. ldxz = -2dyz

.or Q{. A tensor component symbolized by an open circle connected with
another full circle means that e. g. dyz = -dxy holds (as for N2). Special sym-
metry conditions such as e. g. dxxx + dyxy + dyyx for Q3" are abbreviated by
A = a + b +c. Index numbers on the right hand side outside the brackets
denote the number of independent components which do not vanish for
symmetry reasons.

r
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235=1 et; = [:~:: ~::: ~)

O O 1
(

-I O O J
C~~~= O -cos2t') -sin2t'}

O -sin2t'} cos2t'}

A 1;.=1

I;. = [:~:: ::: ~)

O O 1
(

-I O O J
I;. = O -cos2t') -sin2t'}'

. O -sin2t'} cos2t'}

. [COS2a -sinžn O )
I;. = sin2a cos2a O

O O 1
(

-I O O J
I;. = O -cosž č' -sin2t'}'

O -sin2t'}' cos2t'}'

G
(

Sin2t')' cos2t'}' O OJ
I;. = cosž č' -sin2t'}' O O

O O O 1
O O 1 O

H

O O O O

-sinu

O

O

coso

O "12 "12O --5- --5-

I 2
- ""5 - E
2 1
-E E

O O O
O cosn O O

O O OO O cos2a -sin2a

ili
--5-

ili
--5-

O O sin2a cos2a O O

O sina O O O O

1 I
coso; = "4(E -1)= "2(~- 1)

I
sina = "2-rt+2

1 .rt: ~
cos2a = -"4(" 5 + 1) =-"2

sin2a = ..!.-[3"::t
2

cos2t'} = cosa 1 I
l-cosa = E = 2~-1

2 2
E = 2~-1

cos2t'}'= cos2a = _~ = _1_
l-cos2a E 1-2~

2 2
E = 2~-1

sin2t'}. =

sin2t'}'=

Table V correspondingly shows the forms of 4th rank irreducible tensors.

Table VI summarizes the abe1ian point group 10 (= CSh). Table VII pre-
sents the tensor forms of rank O to 3 and Tab. VIn those of rank 4.
In Tables IX to XIV the forms of the irreducible tensors are given for the
non-abelian pentagonal point groups.

The irreducible tensor forms for the two icosahedron point group s are
listed in Table XV to XVII. For the 4-fold and 5-fold degenerated irreducible
representations, respectively, fairly complicated interrelations exist between
degenerated tensors.
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TABLE III

Survey of the Abelian Point Groups 5 and 5

system quasi- point group genera- reps tensorof tensor of
Laue ting even rank odd rank
class Hermann- Schon- abstract elements

Mauguin flies poJar axial poJar axial
u u

pentagona! es Gst C5z+ A Nm Nm Nn Nn

il El Qm" Qm" Qn" Qn"

il E2 Rm Rm Rn" R "n

5 SlO GlOl SlOz+ Ag Nm Nn

= 5 x oder Au Nm Nn

C5z'+, I ilE1g Qm" Qn"

i)E1u Q " Q"m' n'

il E2g Rm R"n

il E2u Rm R"n

The Irreducible Tensor Forms of Rank O to 3 for the Point Groups 5 and 5

TABLE IV

quasi- 1(1) 1(2) 1(1) 1(2)
Laue
.class No(e)o (')0 Qo" o (-)0 Ro" o

5
'N1(J (;]2

QJ"

[;a) [1
RJ"

U
N2(~ J (' , eJ

Q2" l' , f J (C d 'J R{

(~ ~J. , f ' , -e d-<:'
g h ' 4 h -g , - , '2

N3

x~
A f Q3" B -<: h
e a -b d -g

m

---

d b -a e -g
C B -A -h

m -i k -i -i -k '

---

x p q n o o -n
q -p o -n -n -o

e 7 r s 12 s -r

A=a+b+c B=d+e+f
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TABLE V

The Irreducible Tensor Forms of Rank 4 for the Point Groups 5 and 5

lo)
quasi- N

A f -e R/·Laue 4
c1ass e a

u

5
d b
c B k

m -1

n
o -y

g h

-B c
b -d k

-m -1

---
a -e k
-f A -i

--- ---
-o k h -g I
n F m -E

-h g z" =z '

x~
O p P -y 't

1t I.. -Il Š -(5
e' ~'

---

Š Il -I.. 1t -(5
V P P -O -'t

~' -E'

--- ---

X
"/ s 1jI (I) (I) -1jI

s -"/ (I) -1jI -1jI -(I)

• 19 a' 13' 34 13' -a' 28

A=a+b+c C=a+b+c
11

B=d+e+f D=d+e+f A = 2(~ + Tj+ 'iH le) 1= 2(a+ ~ -'Y+E)
I

E=g+h+i 1 1
B = 2(- ~+ Tj + ~ - le) J=2(a- ~+'Y+E)

F=k+l+m 1 1

G=n+o+p
C = 2(~ -Tj + ~ -le) K=2(-a+~+'Y+E)

1 1
H=q+r+s D= 2(- ~-Tj +~+le) L=2(-a-~-'Y+E)

O=A+Il+v

P=Š+1t+P

r
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TABLE VI

Survey of the AbeLian Group 10

system quasi- point group genera- reps tensor of tensor of
Laue ting even rank odd rank
class Hermann- Schon- abstract elements

Mauguin flies polar axiaJ polar axial
g u u g

m C!.h GIOI 557 .•. A' Nm Nn

=50m oder A" Nm Nn

CSz+. <1z i) El' Rm
,,' Qm' Qn' R ••,

n

i,-EI" o,: Rm
..,

Rn
.., Qn'

i) EJ' R (4) Om'" ° '" Rn(4)m n

i) E2" ° .., Rm(4) Rn(4) O ..,m n

pentagona!

TABLE VII

The Irreducible Tensor Forms of Rank O to 3 for the Point Group 10
10 = c.,

Im 1(2) i(]) 1(2) lo) 1(2) lo) 1(2)

NoC.)] 00 Ro''' () ()o Qo' () (-)0 R~) (-) no 00''' n

N'O (1 R '" () m, Q,'

(:'J (l 'R~4) () (1 O,'" (),

Np~.1 ( 1 R2'"

( 'J
Q,' ( , fJ (e dJ R~4)

(~ :J ( 'J
O,'"

( 'J( , eJ" ' , 'f ' , -re d-<' " , " ,

g h . ;I h -g . ••. 2 ... o

N'A~I RJ" A f QJ' B -< R~4) h-b d -g

1 i k k -i

d b h -g

c B r -A ' -g -h
-I k -i -i -k

X q
-p l:., "A=a.+b+c B=d+e+f

9. DISCUSSION OF THE FORMS OF IRREDUCIBLE TENSORS AND THEIR INFLUENCE
ON THE PHYSICAL PRO PER TlE S

More than 50 years ago Herrnann'" deduced the influence of crystal sym-
metry on those material constants which can be described by tensors. In
analogy to but also in extension of his considerations, the following discussion
will be given. There are no peculiarities with fivefold rotations and point
groups in contrast to space groups. We are first going to discuss the totally
symmetric irreducible representations,
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TABLE VIlI

The Irreducible Tensor Forms of Rank 4 jor the Point Group TO

10 = CSh

N4 A r
e a .•

d b
c B •

: In

.g h

-B c •
b -a J.

• -In

a -e
-r A •

1

-h g

A=a+b+c
B=d+e+f

,O.

1(2)
,

1(1) 1(2)

G Q4' H
· s , -p
C f D -'c '

I--- -I-
r -o

· · n ; q
e a · -b d

E In · f -:-i
1 g · -h k

· · z' z"

q ~~.'. -n
· · o . c· r
đ b · -a e

- -
· p s.. ·H -. . -G

c D · f -c
I

k h -g 1
i F · In -E
· z" -z'-

O P P -v
le ,. · -11 I;'. · e' r;

;'." I; JL -A. le
v P · P -O ..
· · t' -E'

,. "I' /i'
s: -y

cx' 13' 32 W -o:

C=a+b+c G=n+o+p
D=d+e+f H.=q+r+s
E=g+h+i O=A.+I1+V
F=k+l+m P=~+1t+p

1(1)

n
o

-o
n

-,

'r

• 19 2'

Table VIlI to be continued
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Table VIlI continued
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1(1)

-E K

~ U

u

v
w

u

1(2)

~4) A [

J B

x y

~ :.-y

-p "

o
't

ep X
- - ..-

't

'-cr
X --{jl

20

'y -x

-ep -x

K C
Đ L

L -D
-CK

. r

. i . '-U

-x -y

X --{jl

u

-t

w
-y

-t

-y
-w

1(1) !Cl)
-k

8
1

I = 2(U + P - Y+ E)

1
J = 2(U- P+Y+E)

1
K = 2(-U+ P+Y+E)

1
L = 2(-U - P -YH)

I
A = 2(~ +" + ~ + K)

1
B =2(-~+"+~-K)

1
C =2(~-"+~-K)

1
D =2(-~-"+~+K)
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TABLE IX

Survey of the Non-Abelian Point Group 10m2

system quasi- point group genera- reps tensor of tensor of
Laue ting even ran.k odd rank
class Hermann- Schon- abstract elements

Mauguin flies polar axial polar axia!
g u u g

pentagona! iOm2 Dg, G20 S5z +, C2~ At' 'Pm Pn

= 52€)m AI" Pm Pn

=W(V2 A2' o", on
A2" o", on
Et' U ., T' T' U·'m m n n

E "' T .. Um(4) Un(4) T"I m n

E2' Um(5) S " S" Uo(5)m n

Ez" Sm '" Um(6) U.(6) So"

TABLE X
The Irreducible Tensor Forms of Rank O to 3 for the Point Group iOm2 .t I

TABLE Xa

PTl Qtl
P2(\;. :) Q2(/.:)

• • • 2 ' •• 1

P3 o o o

t~

1(,) 1(2) le,)
So'"

I(~)
00 So" O 00 (-)

(1 Sl" (:) (1 St' (T
(' o ") S2" (O " O) (.o ") S2'" (.o'). , '.. . .. • f. • ••

• • . o • f • • ~ • o •••
('

• 4 (,2('2

/' .

aj Abelian Point Groups with Pure Rotations Only
Point group 5 (= es) is cyclic and thus an abelian point group' with

fivefold rotation (n = 5) as the generating element,' see Table II and" In"
This group has 5 irreducible representations in all, two pairs of which;'
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TABLE Xb

lOm2=Dsh
.!,

1(1) 1(2)
(-Ju To' O

('),2 TI' H
(" , 'J Ti (: : f), , f

• h • 2"2 h ' ,

A T3' -e
a +b ,

1

b -a
-A

-1

-p

"2

J. BRAND!\1VLLER AND R. CLAUS

1(1) 1<2) 1(1) 1(2) 1(1) 1(2)
Ou To" O Ou u~) O 00 u~) ('J

HI2

TI"

CJ n u\,) () n ul') ()
(: : eJ T2" (' , ') (C ' 'J u~) (' -eJ ( dJ

u~) (d -e ), , -c ' -e ' -e ' , d ' ,
g .. 2-2 ' -g , .•• 1-2 •.. 1-2

f T3" B u~) h ul')
e d h -g

k k -i

d h -g
B -h -g

m k -k -i -i

o
-o

"2 "2 '·2

respeciiilV'lHy,show complex: conjugate characters i. e, 'irreducible represen-
tations of the third kind' (ref. 10, p. 20) denoted by 'i', Group 5 appears in
the sequence of abelian pure rotation groups 1, 2, 3, 4, 5, 6, ... , 00. Any
distinction between polar and axial tensors is superfluous since it always
holds that, R =, + 1" i. e, tensors with even (g-) and odd (u-) parity exhibt
the same forrn, ,The results of extensive calculations in'" allow a comparison
of the tensor forms of different rank v in the total sy,mmetric representations
of point groups 1, 2, 3, ... , 00. We find the following characteristics: Up to
rankrv == n -'1,' the tensor forms :are identical to' those with n = infinity.
From.: ~a:nk v ;: -il on, the: number :a:f independent tensor components is larger
than for n = 00. Additional components which don't have to vanish by sym-
metry arguments thus appear for n = 00.

~. • .••• • oi' •

b) A:beiian Poini Groupswith Rotatumat Lnuersunis
" '/ ., ,.
i. ;.:. .. , ... . .

: .Point groupaIi and 10 show identical forms to, those of 5. Only all odd
tensors of the totally symmetric .representations Ag' and AJ vanish for parity
reasons,

c) The Non-Abelian Point Group 10 m2 i= DSh)
The results fit the sequence Dnh without any problems. Again we find

that up to rank v = n - 1 the irreducihle tensor forms are identical to those
fqr the continuous point group Dooh,6l NQW, because of the rotational inversion,
however, even and odd tensors differ: all odd tensors vanish in the total
syrntlljl~tri'c.irreducible representation.r.A,' forparity reasons.
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TABLE XI

The IrreducibZe Tensor Forms of Rank 4 for the Pqint Group 10m2
TABLEXla

10 m 2 = DSh

a

b
c

g

c
b

a
A

1

g

A=a+b+c

n

1(1) 1(2)

f
e

d
B

h

-B
--<I

-e
-f

n
-h

• 10

B=d+e+f

1(1) 1(2)

-k

m

4·2

k

o

-m

4·2
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TABLEXJb

'10 m 2 = DSh

lo} 1(2) 1(1) 1(2) 1(1) 1(2)

T4
,

H G T4" u4'"
-p

f D C -c
--- --- ---

-o
q n

e d a -b

--- --- ---
m F E .. -i

k g -h
z" z'

----:-- --- ---
q -n

r o
d e b -a

--- --- ---
P

H -G
D f c -C

--- --- --- --- ---
k h -g

F m _E
z" -z'

--- --- --- --- ---
p p O -y

lt 1; A. -~
s· e'

--- --- --- --- ---
Š lt ~ -A.

p p v -O
S' -e'

--- --- --- --- ---
Ii' y'

li' -1
(3' 16-2 (3' ('1.' 16-2- -('1.' 1-2

C=a+b+c G=n+o+p
D=d+e+f H=q+r+s
E=g+h+i O=A.+~+v

F=k+l+m P=Š+lt+p

Table Xlb to be continued
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TT

00'

o' '\ ~-... !~;.i' j ',q rf lJ'"

Table Xlb continued

1(1) 1(2) 1(1) 1(2) 1(1) 1(2)

-e uiS) J K ui6) A
et. J ~ B

u

- - - ---
~ K TI C

Y L ~ D
-I u

---
y w

-1) w
X -x y y

- - - ---
-y L 1') -D.

~ K TI -c
-I u -- -...~.~..-

- - - ---
-et. J ~ -B

e J K --A

-I -u

--- --- ---
-1) w

-y -w
-x -x '! -y

--- --- -
,
- - ---

(J 1:
-(J 1:

ep -ep X X
--- --- - - - ---

-(J 1:
-(J ~

ep -ep x -x
--- --- ---

'I' -'I' cl) cl)

-'I' -'I' cl) -ol

1'2 10'2 10'2

1 A 1
J =2(et.+~-y+e) =2(~+TI +~+K)

1 1
J =2(et.-~+y+e) B =2(-~+I]+1')-K)

1 1
K= 2(-et.+~+y+e) C =2(~-I] +~- K)

1 1
L =2(-a.-~-y+e) D =2(-l;-I]+~+K)
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TABLE XII

Survey of the Non-Abelian Point Groups 52, 5m, and 52m

system quasi- point group genera- reps tensor of ie~sorof
Laue !ing evenrank oddrank
c1ass Hermann':' Schon- abstract elements'

Mauguin f1ies polar axial polar axial
g u u g

pentagona! 5Zm 52 DS CSz+;C2x Al Pm Pm Pn Pn
=5@2 A2 om om Q,. Q,.

El T '" T ••, T ••, TO'm m n n

E2 Um(7) Um(7) Un(7) Un(7)

5m eSv CSz+,Oy Al Pm om Q,. Pn
=5@m A2 om Pm Pn Q,.

El Tm(4) Tm(5) Tn(5) Tn(4)

E2 U';(8) Um(9) Un(9) Un(8)

52m D5I C5z+, C2x,I Alg Pm Pn

=52@i Alu Pm r,

TABLE XIII

The IrreducibZe Tensor Forms of Rank O to 3 for the Point Group s 52, 5m, and 52m

TABLEXilla

52m

1(1) 1(2) 1(1) 1(2) lo) 1(2)

Po (oh QoOo 00 To'" o 00 T~) o 00 tg) (-)

Ptl QI(J (1 TI'"

(~a) H, TIt) n n, T~) (~a)
P2(~ .1 Q2(( J T,'" C,J

Tt) (' , ') (' ') Ti) (: : f)(' ' ') ( , e), , f
~ : : 2'2

' , -e ' ' f
. h' N

' -g , . h· N h ' ,

PJ QJ~dA TJ'" -c 1'\4) B A ri) -c
J

t~
-b -b

-a

c -A B c -A •

-1 -1

/ ~
p

-p -p

o 4 ,,' S s-z r ,,'
A=a+b+c B=d+e+f A=a+b+c
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1(1) \ (2)- \0) \(2) lo)
00 U~) o 00 U~) o 00

(1 U\7) U (1 U\8)

U (1
(C . 'J u1l (' -r-c 'J (C . 'J u~) (' ~'J (. d 'J. -c . l~C :: . -c . -c .. d •.

• . • 1-2 . '.' 1·2 •• . • •. 1'2

h g

1(2)

U~l O

u7)
(J

u1l (d . 'J. -d .

o

-g

-g

-i

-g

• -n

-n

-i

o o o
-no -o o

" 4·2 4'2 4'2

d) The Non-Abelian Point Groups 52, 5m, and 52m

These groups also fit the sequenc;es DD> Cnv, and Dnd. In the pure rotat-
ional group 52. there are no differencesbetween polar and axial tensors.
Point group 5m also contains rotational inversions. the consequence being
that the forms of polar and axial tensors differ: For 52 m, all components
of the odd tensors vanish in the total symmetric representation. Again, it
holds (which 'proved to be the rule) that up to rank v= n -1 the irreducible
tensors in the total symmetric representation already exhibit the same form
as for the existence of an. infinite-Iold rotation axis.. From v = n on, the point
groups discussedso far have more independent components than the cor-
responding Curie-limiting groups'" with infinite-fold rotations.

e) The Two IcosahedraL Point Groups
The icosahedron group 235 is located between the crystallographic cubic

point group 432 r= O) and the pure three dimensional rotation group 0+ (3),
Comparing the' forms of. the 'total symmetric irredueible tensors of these 3
point groups Iisted in Table XVIa and XVII or in'", respectively, provides
the following result:

(i) Comparison of 235 with 432

Up to rank v = 3 the tensor formes are identical. The 4th rank tensor
shows in the cubic point group 432 an additional independent component relative
to the icosahedron group 235. Comparing the two forms, one finds that they
are quite similar: only the linear interrelation dxyyx = dxxxx - dxxy)' - dxyxy is
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TABLE XIV

The lrreducible Tensor Forms of Rank 4 for the Point Groups 52, 5m, and 52m

TABLEXJVa

52m

lo)

• z"

k
• F • m •• ,

P
lt •

p
. ~ .
• • 1;;'

~
• p .

. ~'

lt
P • •

S'
o'

{3' {3'17-2

D=d+e+f
F=k+l+m
H=q+r+s

P=š+lt+p
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TABLEXlVa

52m

1":1(.,.,1)-------,1 (2)

c

h -g
i . -E

-z'

O -v
A. I ,-IL

E'

IL -lA.
v -O

-E'

17-2
-1'

_al.(X'

C=a+b+c
E=g+h+i
G=n+o+p ,
O=A.+IL+v

-p

'"'I ('""1)-----,' (2)

H

-n

D

k 1
F . m. z"

p P
lt ~. ~'
~ lt

P . P . .. . ~'
li'

~' • 17,2

D=đ+c+f
F=k+l+m
H=q+r+s
P=/i+lt+p

28.-9

q

z"

r



290 J. BRANDMOLLER AND R. CLAUS

TABLEXTVb

S2m

1(1) 1(2) J(1) 1(2) J(n 1(2)

-E U~7) [ -k -E U~8) I K U~9) A -k
u B

\ji -'JI
-'I' >', -'I'

, 14-2

I' ,
. 1 ~ I(U+ P-YHl,

I . '
. J >= I(a- P+Y+E)

I
K,~I~-Q+P+YH)

I
, L=I(-a-p-Y+E)

'"
'", -'I'

~'I'
\4·2 '.

'"
14-2

, I
t : I(U+P-YH)

I
J =I(a,-p+YH)

I
K~I(-Q+P+YH)

I .
L ='2(-<x-Jl-'YH)

I
A = '2(~+TJ+,,+ K)

I
B = I(-~+TJ+~-")

I
C = I(~- TJ+ ~ - K)

I
D =I(-<-TJ+~+K)

lost in the cubic point group 432, We have abbreviated it in Table XVIIa
14Aby dxyyx = a - b -C. This difference might be of importance for an expe-
rimental check of Pauling's'" opinicn which refers to a cubic fundamental
structure with regard to the 'so-called quasicrystals'. Measuring the elastic
constants should provide 3 independent components for a cubic structure, but
2 for an icosahedral structure. These constants are described by a 4th rank
tensor with the intrinsic symmetry

pa 'rU
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TABLE XV

Survey of the Icosahedron Point Groups 235 and (2jm) 35.

system quasi- point group genera- reps tensor of tensor of
Laue ting even rank odd rank
cJass Hermann- Schon- abstract elements

Mauguin flies polar axial polar axiaJ
g u u g

icosahedraJ 235 As Csz+' C2 A I A I A lA lAm m n n

Fl ImF, fmF, InFI InFI

F2 JmF2 Jnt2 .J
n
F2 InF2

G ImG I G InG InGm

H lml-l ImI{ IH InHn

~3š Ib CSz+, C2. I Ag ImA JnA

=235(3) [ Au • A JA-m n

FIg JmF, fnF!

Flu fmF1 fnFl

F2g fmF2 InF2

F2u fmF2 Il2

TABLE XVI

The Irreducible Tensor Forms of Rank O to 3 for the Point Groups 235 and (2/m) 35

TABLEXVla

,--
-"-3 5m

Im 1(2) Il3) Im 1(2) 1(3)
16' (.), 00 I~I O O 00 I~2 O OI~n n, I~~ J) :U U: . I~2 (-) :u
I~(~J ( .) I~I ( : ~b) (. b) ( 1 I~2.(. ) {,J.. -b -I>" ,

• b . 1-3 b; .
l~ {I -n+b+c -a+b+c -d I~' -d d -<I3'

-c d d -d
-c ,,' (I • d ,-<I

-b d d -d
a-b-c -a -e+b+c d -d -<I

-b '-c -<I -<t
::.....

-b' '-d. -C) -b -<I -<I
. /1 va-b-c 3-3 -a+b+c . -. I" 2d

Table XVI to be continued

n
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Table XVI contlnued .

(1
( .. 'J...
. . . o

. 3e

-4e
-4e . 1'4

s. BRANDMULLER ·AND n. CLAUS

1(1)

(-)0

1(2) 1(3)
o l~ ()

U 17 (I
U

( J
lG

( . J
2.

1(4)

(.)

()
( 'JlO ..

G
13 (-3e

1- ~:I ",0 3e -::e
I oe
-ze

3e 2e

r

3e . .
. e .
. '-4e

I
~-:-~
e . .

3e
2e

3e
-3e -2e

. -2e-4e

2e -2e -4e
-ze -ze

-4e

I(J) 1(2) 1(3) 1(4) 1(5)

(-)0 o ]~ o () (-)

(1 U l~ (J (J Ur o .) (: :. ~~cJ
l~ [ ._ -~3c oJ (-~3e ~ 'J ( :_ : -~3C)• e • -~3e • • o ~3e'

o . -2e 1.5 ~e o o . o o -~3e' •

Zg-f l~ 2g-f
-r 2f-g f-2g -f-g

-g 2f-g g-2f f+g

---
I -f-g 1 1 f-2g

1
2f-g

~X ~3x f-2g ~3X ~3X 2g-f
g f+g g-2f g-Zf

f-g • -f-g f+g g-2f
g-f g-2f f+g f+g

2-5 f-2g f-2g
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TABLE XVII

The lrreducibLe Tensor Forms of Rank 4 for the Point Groups 235 and (2/m) 35
TA8LEXYIIa

2 --ro3S
I:

b
b

c,
a-IH:

c

a-IH:

a-IH:

b

a-b-c

a-IH:
c

b
b

b

1(1)

-a

-b

C.' .

A .
o .

f

-A .
. -f,'

. -D

.:.e
-d • 6,3

b

1(2) 1(3)

I~' d -d
-<:

-e "
"

- - - - -
"
" -o

B -r
C -A

- - - - - -
o

A -C
f -8

- - - - - -

b D i

C A
I

- - - - - -
a

d
-a

- - - - - -
-«: C

-b
B

- - - - - -
-r

-A +c

-o -b

- - - - - -
-c

-B
b

- - - - - -
-e -a

-d

a-IH: . -8
-C .

A=b+c-d-e+f

B=-a-b+d

C='a-c+e

D='-d-e+f"

8

d

Table XVIIa to be continued

where square brackets indicate the exchangeability of indices. A possible
influence of the twin-structure, however, has to be considered.

(ii) Comparision of 235 with 0+ (3)

In this case we find, up to rank v = 5, for the total symmetric irreducible
tensors an equal number of independent components, namely 6, up to rank
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Table XVIIa continued
TABLEXVIIa

2 -- jm-35 1(2) 1(3)m ' I~2 -a -a a
-b a a-b b-a
b-a b a-b

c a. ate -a-c
A -B a -B
b-a b-:-a -b -D

-
-a-c -c ate

-a-c -a-c c C
-A A ~btc

-A a -B B
-c ate a ate
b-a b-a -b D

b a-,-b a a-b
,-a -a , -a

a-b -b b-a

-a-c -a-c c C
a+c 'c -a-c
A A b-c

B A -B
B ,B -A -b-c
c -c -2a-c

B B -A b+c
-B -A B
-c -c 2ate

-b b -2a+b
b b 2a-b

3'3

A=2a-b+c

B=a_b+<;
, -a ; b,",

C= 211-2b~;tc '.'>"

D=-2a +b-2c

I
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TABLEXVllb

2 --
m35 1(1) /(2) /(3) 1(4)

I~ a-2b 3b-2a -a -a
a-2c -E 3b-2a -E
3.e-2a 3e-2a -Z -~

r 3b-2a -y

-a (J 2a-3b 6
b-c+d 2a-3c 3e-Za -o

o. <p X -9
P -<p X -'1

-b-d \ji \ji

-
(J -6 3b-2a E-2b

+a r p 2a-3b -6
o 2a-3c 3e-2a ~-2c

-a e a-2c 2a-3b E
-a a-2b 2a-3b -a -b

2a-3c 2a-3c Z -c

'1 -<p X <p -p
-<p -<p -x -o.
\ji -\ji b+d

cl) cl) A -v
x -Cl) A cl) -~

1.. B B

~ -Cl) A cl) -)(

v -Cl) -Cl) -A -r-L

B -B -1..

4(c-a) b+c-a Z+2a
b+c-a -Z-2a 4a-4c

4(b-a) ... 4a-4b

Table XVIIb to be continued

5 an icosahedral quasicrystal thus behaves as completely isotropic. Ripa-
monti'" supposed this to be only up to rank 5. Group the ory allows calculation
of the number of independent components for finite as well as for continuous
point groups in a fairly easy manner. A 6th rank tensor shows 16 independent
components in the icosahedron group whereas there are only 15 in the pure
rotation group. From the 6th rank tensor on, an icosahedral quasicrystal thus
does not behave as isotropic any longer. Ripamonti'" points out that phonon-
-phason-coupling is described by a 6th rank tensor and the phason-phason-
coupling by a tensor of rank 8.50,54,66
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Table XVIIb continued

1ex= "4(8a-3b-4c+d)
1p = "4(-8a+7b+4c+3d)

Y= -4a+2b+4c-d

0= -4a+3b+3c-d

10= 4a-b-4c

,~= 4a-4b-c
1,,= "4(8a+3b-12c-d)
1e = "4(8a-13b+4c-d)
1

t = "4(4a-b-d)

l( = ~(-20a+ 13b+16c"':3d)

A. = 4a-3b-4c+d
1

Il= "4(12a+b-16c+d)
1v =: "4(12a-15b+d)
1

p = I(-6a+3b+4c-d)
1

cr= I(-2a+b+d)

't = 2(2a-b-c)
1

<p= "4(16a-9b-12c+3d)
1

X = I(-b+4c-d)
1'1'=I(3b-d)
1

(()= "4(4a-3b-3d)

1
A =: I(4a-3b+d)

1( .. )B = I 4a+b-4c+d
1r = I(2a+b-4c+d)

1!1 =: I(2a- 3b+d)

E =: 3a-2b-2c

Z = -4a+2b+2c

f) The Non-Total Symmetric Irretiuciole Representations
There are remarkably larger differences of the tensor forms of non-total

symmetric irreducible representations for the classical, and pentagonal and
icosahedral point groups, respectively. This originates in particular from the
very much differentiated degeneracies. There are 4- and 5-fold degenerated
representations in the icosahedron point group s e. g. which do not occur in
classical point groups. This has also asevere influence on the number of



independent tensor components. All physical effects originating from non-total
symmetric irreducible representations should, therefore, show characteristic
differences in the pentagonal and icosahedral point groups. Phonon induced
properties might play a role here. Phonons -when not totally symmetric -
cause a breakdown of symmetry so that properties may become allowed
which do not exist in the 'static' crystal. New developments can be expected
with vibrational spectroscopy in this context. The tables presented can be
used a basis for further discussion.
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Tab1e XVIIc continued

\(4) 1(5)

3-112 3-112 -E

I~
X o)

A -E E -)..
-E -2a+4d -)..

B -E E -1(

g-f E

-E -2e-g

-E -2b-e -K a=a+b+c
-E -2e-g

~ = -b + e - e + f + g
-2e-f

Y= -a +e+ 4d + f + g

f-g -E -2e-f 8 = -2(a + b+ 2e + f + g)

-B E E = -c -f-g
-E -2b-e 1; = a + b + 40 + 4d -e + 3f + 2g

-A E
11= a + 2b + 3e + 4d + e + f + 2g

-O) E -E -~ 1~= 2a + b + 3e -4d -e + f + 2g

2a-4d -11 t = 2a + 2b -4d ~ -f - 2g

1(=b+e-e+f+g
-E -2a+4d ),=a+e+4d+f+g

E 2~ -il
2e+f -1 ~ = 2a + 2b + 2e -4d + e + f

v=2a+b+e-4d-e-f

-E -2e-g -2e-f p = a + 2b + e + 4d + e - f
-E -2b-e (1= a+ b+ 2e+4d -e+f
-K

t ='- a - b - 3e - 4d + e - 2f - g

-E -2a+4d <p= - a - 2b - 2e - 4d - e - g

2e+g -~ X= - 2a - b - 2e + 4d + e - g
K -v \ji = - 2a - 2b - e + 4d - e + g

O)= - 3a - 3b - 4e - f - g
-)..

A=-a+e+8d+f+gx -p
-(1 B=-b+e-2e+f+g
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SAŽETAK

Ireducibilni tenzori točkinih grupa s peterokratnim rotacijskim osima

J. Brandmuller i R. Claus
') .. (

.U' 'svrhu interpretacije vibracijskih spektara kristala (IR-apsorpcija, IR-reflek-
sija, Ramanovo i. hiper-Ramanovo raspršenje, stimulirano Ramanovo raspršenje i
CA~S). potrebni su ireducibilni tenzori ranga 1 do 3 za 32 klasične krtstalografske
tdč'klnegrup'e: Otkriće kvazi-kristala navelo je na potrebu proračuna ovakvih
Ireducibilnih tenzora i zatočkine grupe s peterokratnim rotaeijskim osima. Oblik
ireducibilnlh tenzora ranga 1 do 4 bez intrinzičnih simetrija prikazan_ je J;abllčno
za sVedreducibilne reprezentacije pentagonskih točkinih grupa: 5, 5, 10, 10m2,
52 5m,B2m,~t~ za' dvije ikoza'edarske točkine grupe: 235 i (2/m)35.

r




