CROATICA CHEMICA ACTA CCACAA 61 (2) 313-329 (1988)

CCA-1796

YU ISSN 0011-1643 UDC 543.42 Original Scientific Paper

Infrared and Raman Spectroscopy of the Dirhodium Tetraacetate Complexes Rh₂(O₂CCH₃)₄, Rh₂(¹⁸O₂CCH₃)₄, Rh₂(O₂CCD₃)₄ and Rh₂(O₂CCH₃)₄(H₂O)₂

Robin J. H. Clark and Andrew J. Hempleman

Christopher Ingold Laboratories University College London 20 Gordon Street London WC1H 0AJ, U.K.

Received December 18, 1987

The infrared (3500—50 cm⁻¹), and Raman (3550—30 cm⁻¹) spectra of the dirhodium tetraacetate species $Rh_2(O_2CCH_3)_4$, $Rh_2(^{18}O_2CCH_3)_4$, $Rh_2(O_2CCD_3)_4$, and $Rh_2(O_2CCH_3)_4(H_2O)_2$ have been recorded and the key bands assigned. The oxygen-18 and deuteration studies, in particular, assisted with making the important band assignments for the anhydrous complex, for which ν (RhRh) occurs at 355—351 cm⁻¹, and ν (RhO) at 389—319 cm⁻¹ (Raman) and 398—341 cm⁻¹ (infrared). The band attributed to ν (RhRh) is typically intense, sharp, and relatively insensitive to either ¹⁸O- or CD₃-substitution. Thus ν (RhRh) shifts only 4 cm⁻¹ on either ¹⁸O or CD₃ substitution whereas ν (RhO) shifts 4—6 cm⁻¹ in the Raman and 3—7 cm⁻¹ in the infrared spectra on ¹⁸O substitution but 12 cm⁻¹ in the Raman and 11—18 cm⁻¹ in the infrared spectra on CD₃ substitution. Some preliminary isotopic work for the complex Rh₂(O₂CCH₃)₄(H₂O)₂ is also presented.

INTRODUCTION

Recent electronic, infrared, Raman, resonance Raman and X-ray crystallographic studies have been aimed at resolving the long standing controversy regarding the assignment of the rhodium-rhodium stretching vibration, ν (RhRh), in dirhodium tetraacetate complexes of the sort Rh₂(O₂CCH₃)₄ · · (MPh₃)₂, M = P, As or Sb, *viz*. the controversy as to whether ν (RhRh) occurs near 170 or near 300 cm⁻¹, in favour of the latter assignment.¹⁻³ The present investigation is focussed upon anhydrous dirhodium tetraacetate, Rh₂(O₂CCH₃)₄ together with preliminary measurements on the di-axially substituted derivative Rh₂(O₂CCH₃)₄(H₂O)₂. In order to be able to assign the key modes of vibration of Rh₂(O₂CCH₃)₄, it proved to be essential, not only to study the oxygen-18 derivative, but also the deuterate Rh₂(O₂CCD₃)₄.

EXPERIMENTAL

Dirhodium tetraacetate was prepared as an emerald green powder by the method of Wilkinson *et al.*⁴ Anal. Calcd. for $C_8H_{12}O_8Rh_2$ ($M_r = 442.00$): C 21.74, H 2.74%; found: C 21.7, H 2.66%. Slow evaporation of a solution of dirhodium tetraacetate in water afforded deep green crystals of the bis aquo complex.

Anal. Calcd. for $C_8H_{16}O_{10}Rh_2$ ($M_r = 478.04$): C 20.10, H. 3.37; found: C 20.2, H 3.25%. Samples of ${}^{18}O$ - and CD₃-substituted dirhodium tetraacetate were prepared as described previously.² Acetic acid D (99.6%) was obtained from the Aldrich Chemical Co. Inc. Acetic acid 78.5 atom ${}^{0}/_{0}$ ${}^{18}O$ was obtained from Miles-Yeda Ltd.

Raman spectra of the complexes (as both pure solids and as KCl discs) were recorded using a Spex 14018 (R6) spectrometer in the double monochromator mode, in conjunction with Coherent CR 3000 K and CR 12 lasers. The Raman spectra with 514.5 nm excitation were also obtained in the triple monochromator mode for the region <400 cm⁻¹. Raman samples were held as pressed KCl discs at ca. 80 K using a liquid-nitrogen-cooled cell. The infrared spectra were recorded as KCl discs at ca. 80 K for the region above 700 cm⁻¹ but as pressed wax discs at ca. 20 K for the region below 700 cm⁻¹. (Spectral resolution 1 cm⁻¹). The 700—500 cm⁻¹ region was recorded with the samples in both forms. All infrared spectra were recorded using a Bruker 113V interferometer; for the region below 700 cm⁻¹, the samples were mounted inside a liquid-helium-cooled germanium bolometer with KRS5 (700-200 cm⁻¹) or TPX (400-50 cm⁻¹) windows. This detector was kindly lent by Dr. G. Gledhill (Royal Holloway and Bedford New College).

The electronic spectrum of $Rh_2(O_2CCH_3)_4$ was obtained as a KCl disc at ca. 20 K using an Air Products Displex system in conjunction with a Cary 14 spectrometer. Band maxima (in nm) were detected at 229 s, 246 sh, 268 s, 435 w, sh and 605 w.

RESULTS AND DISCUSSION

Rh₂(O₂CCH₃)₄, Rh₂(¹⁸O₂CCH₃)₄ and Rh₂(O₂CCD₃)₄: Skeletal Modes

Despite the large amount of synthetic work which has been done on axially substituted complexes of dirhodium tetraacetate, no thorough vibrational or X-ray crystallographic study of the anhydrous complex has yet been carried out. However, it is imperative to do this in order to render the assignment of ν (RhRh) firm. Previous studies of axially substituted complexes $Rh_2(O_2CCH_3)_4 \cdot L_2$ have relied upon Raman studies² at resonance with the $\sigma \rightarrow \sigma^*$ transition in the near UV region, studies which have led to the assignment of ν (RhRh) to a band near 300 cm⁻¹; this band (and its overtones) are substantially enhanced near resonance via the so-called A-term mechanism of resonance Raman scattering.⁵ However, for dirhodium tetraacetate itself the $\sigma \rightarrow \sigma^*$ transition (≤ 268 nm) is not accessible with available c. w: laser lines, and hence the assignment of ν (RhRh) via these means is not feasible.

,	del.	$Rh_{c}(O_{2}C)$			0			TABLE	I
---	------	------------------	--	--	---	--	--	-------	---

(Comparison Between the Raman Spectra of $Rh_2(O_2CCH_3)_4$, $Mo_2(O_2CCH_3)_4$ and ${}^{g_2}Mo_2(O_2CCH_3)_4$ in the Low Wavenumber Region

i arti malazz	or to be able to		DOUGHT OVICEN
vino fon di	4 10 0	186m	186m
	188m	200m	200m
	331m	298m	299m
	338m	311m,sh	314m
		321m	322m
	355vs	404vs	413vs
vd volociód	ka emerald kheen		

^a Recorded at *ca.* 80 K.

^b Data taken from reference 6, recorded at room temperature.

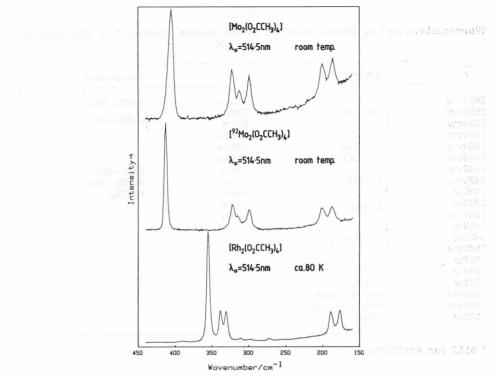


Figure 1. Comparison of the Raman spectrum $(440-160 \text{ cm}^{-1})$ of $\text{Rh}_2(O_2\text{CCH}_3)_4$ at ca. 80 K with the room temperature Raman spectra of $Mo_2(O_2\text{CCH}_3)_4$ and ${}^{92}Mo_2(O_2\text{CCH}_3)_4$, as reproduced from reference 6. 514.5 nm excitation.

Our conviction that ν (RhRh) for Rh₂(O₂CCH₃)₄ is at 355 cm⁻¹ lay with the close comparison (Table I, Figure 1) between the Raman spectra of $Rh_2(O_2CCH_3)_4$ and those⁶ of $Mo_2(O_2CCH_3)_4$ and ${}^{92}Mo_2(O_2CCH_3)_4$. It appears that ν (MM) simply moves ca. 50 cm⁻¹ to lower wavenumber on replacing molybdenum by rhodium (404 to 355 cm^{-1} — a consequence of the drop in metal-metal bond order from four to one), while all the ν (MO) bands remain relatively constant in the region 318 ± 18 cm⁻¹ and the δ (OMO)/ δ (MMO) bands likewise remain relatively constant in the region 188 ± 12 cm⁻¹. These conclusions are substantiated by the present detailed Raman studies (Table II), which include a study of the low wavenumber region using a triple monochromator (Figure 2). Subsequent, and much more detailed investigations⁷ of the vibrational spectra of Mo₂(O₂CCH₃)₄ and Mo₂(O₂CCD₃)₄ have revealed an important difference between these and the spectra of $Rh_2(O_2CCH_3)_4$. In the Raman spectrum of $Rh_2(O_2CCH_3)_4$ there are no strong bands above 400 cm⁻¹ while for $Mo_2(O_2$ CCH_{3} many bands above 400 cm⁻¹, such as those arising from the acetate vibrations δ (OCO), ν (CC) and δ (CH₃) are intense. These differences do not appear to be related to resonance effects⁵ since the Raman spectra of both $Mo_2(O_2CCH_3)_4$ and $Rh_2(O_2CCH_3)_4$ were obtained with 514.5 nm excitation; this wavelength is well removed from that of any electronic band of $Mo_2(O_2CCH_3)_4$, and falls between those of the two weak electronic bands responsible for the green colour of $Rh_2(O_2CCH_3)_4$.

315

TABLE	II
-------	----

Wavenumbers/cm⁻¹ of Bands Observed in the Raman Spectrum^a of [Rh₂(O₂CCH₃)₄] at ca. 80 K

$\overline{\nu}$	Assignment	$\overline{\nu}$	Assignment
3012vw		355vs	v (Rh—Rh)
2983vw 2938vw	ν (C—H)	338m 331m	ν (Rh—O)
1500vw		311vw)
1460 vw	$\delta_{ m as}$ (CH ₃)	298vw	
1445vw	$\nu_{\rm s}$ (COO)	273vw	
1436vw		188m	δ (O—Rh—O) or
1425vw	$\delta_{ m as}$ (CH ₃)	176m 144w	δ (Rh—Rh—O)
1400w 1368w 1357vw	$\delta_{\rm s}~({ m CH_3})$	84w 59w	au (CH ₃)
058w 1050w 1040vw	$\left. \right\} \varrho$ (CH ₃)		
962w	ν (C—C)		
954w 734w 629vw	$\int_{\delta} (OCO)$ out-of-plane $\rho_{\rm w}$ (CO		
591vw 389w	in-plane ρ_r (COO) ν (Rh—O)	50)	

^a 514.5 nm excitation

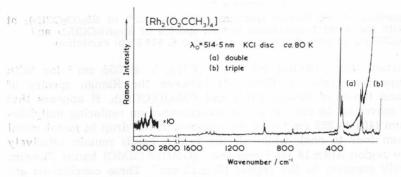


Figure 2. Raman spectrum (3100-2750 and 1650-20 cm⁻¹) of Rh₂(O₂CCH₃)₄ as a KCl disc at *ca.* 80 K with 514.5 nm excitation. Resolution *ca.* 3 cm⁻¹. The spectrometer was used in the (a) double and (b) triple mode.

In order to be able to assign ν (RhRh) for Rh₂(O₂CCH₃)₄, in a similar manner to that for Rh₂(O₂CCH₃)₄(PPh₃)₂, ¹⁸O and CD₃ samples were synthesised. The Raman spectra obtained for Rh₂(O₂CCH₃)₄ and its ¹⁸O and CD₃ isotopomers (Tables II—IV) in the range 450—160 cm⁻¹ are shown in Figure 3. All bands in the 400—300 cm⁻¹ region show some sensitivity to both ¹⁸O and CD₃ substitution. The strong band occurring at 355 cm⁻¹ for Rh₂(O₂CCH₃)₄ is assigned to ν (RhRh) for the following reasons. First, the close similarity between the Raman spectra of Rh₂(O₂CCH₃)₄ and Mo₂(O₂CCH₃)₄ in the low wavenumber region, *vide supra*. Second, the 355 cm⁻¹ band is the strongest in the Raman

spectrum, this observation being consistent with those made using 514.5 nm excitation for the complexes Rh₂(O₂CCH₃)₄L₂, where L = PPh₃, AsPh₃, SbPh₃ or S(CH₂Ph)₂.^{1,3} Third, the shifts of this band upon either ¹⁸O or CD₃ substitution are the same as each other, *viz.* 4 cm⁻¹. This is in contrast to the behaviour of the two bands of medium intensity at 338 and 331 cm⁻¹ for Rh₂(O₂CCH₃)₄ which shift by 5 and 4 cm⁻¹, respectively, upon ¹⁸O substitution but by 12 cm⁻¹ upon CD₃ substitution. These last two bands are assigned to ν (RhO) vibrations because their shifts upon ¹⁸O and CD₃ substitution are similar to those observed for the Raman-active ν (RhO) bands of Rh₂(O₂CCH₃)₄ (PPh₃)₂, namely 6 and 13 cm⁻¹, respectively.² In addition the Raman band observed at 389 cm⁻¹ for Rh₂(O₂CCH₃)₄ which shifts upon ¹⁸O and CD₃ substitution to 385 and 377 cm⁻¹, respectively, is tentatively also assigned to ν (RhO).

TABLE III Wavenumbers/cm⁻¹ of Bands Observed in the Raman Spectrum^a of [Rh₂(¹⁸O₂CCH₃)₄] at ca, 80 K

$\overline{\nu}$	Assignment	\overline{v}	Assignment
2939vw 1533vw 1497vw 1483vw 1451vw 1433vw 1413vw	v (C—H) δ_{as} (CH ₃) v_s (COO)	708vw,br 623vw 569vw 385w 351vs 333m 325m	$ \begin{cases} \delta \text{ (OCO)} \\ \varrho_{w} \text{ (COO)} \\ \varrho_{r} \text{ (COO)} \\ \nu \text{ (Rh-O)} \\ r \text{ (Rh-Rh)} \\ r \text{ (Rh-C)} \end{cases} $
1396vw 1358vw 1047vw,br 936vw 922vw	$\delta_{\mathrm{as}} (\mathrm{CH}_3)$ $\delta_{\mathrm{s}} (\mathrm{CH}_3)$ $\varrho (\mathrm{CH}_3)$ $ angle v (\mathrm{CC})$	307vw 297vw 263vw,br 180m 172m	$\delta (O-Rh-O)$ or $\delta (Rh-Rh-O)$

^a 514.5 nm excitation

TABLE IV

Wavenumbers/cm⁻¹ of Bands Observed in the Raman Spectrum^a of $[Rh_2(O_2CCD_3)_4]$ at ca. 80 K

\overline{v}	Assignment	\overline{v}	Assignment
2259vw 2234vw 2203vw 2114vw 1498vw	}v (C—D)	920w 913vw 909w 897vw 855vw	$\begin{cases} \nu \ (C-C) & \& \\ \varrho \ (CD_3) \\ \end{cases}$
1485vw 1466vw 1434vw 1419vw 1403vw 1099vw 1045vw 1037vw	$\begin{array}{c} 913 + 550 \\ r_{s} ({\rm COO}) \\ 1099 + 319 \\ 2 \times 703 \\ \delta_{s} ({\rm CD}_{3}) \\ \end{array}$	703w 550vw 377w 351vs 326m 319m 295vw 284vw	$ \delta \text{ (OCO)} $ out-of-plane $\varrho_w \text{ (COO)} $ $\nu \text{ (Rh-O)} $ $\nu \text{ (Rh-Rh)} $ $\left. \right\} \nu \text{ (Rh-O)} $
	nion 4. Just an for his a triplit of Fouri- mains related in the col	264vw 185m 176m	δ (O—Rh—O) or δ (Rh—Rh—O)

^a 514.5 nm excitation

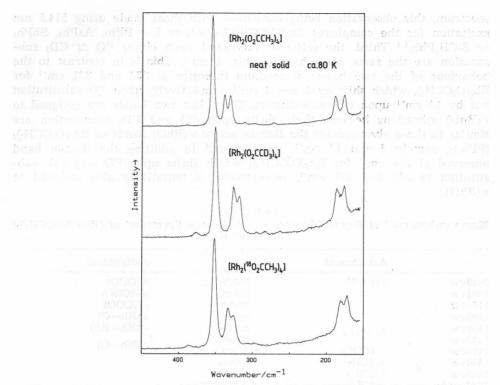


Figure 3. Raman spectra $(450-160 \text{ cm}^{-1})$ of $\text{Rh}_2(O_2\text{CCH}_3)_4$, $\text{Rh}_2(O_2\text{CCD}_3)_4$ and $\text{Rh}_2(^{18}\text{O}_2\text{CCH}_3)_4$ as pure solids at *ca*. 80 K with 514.5 nm excitation. Resolution *ca*. 3 cm⁻¹.

The slight sensitivity of ν (RhRh) to both ¹⁸O and CD₃ substitution is thought to arise from coupling between the ν (RhRh) and ν (RhO) symmetry coordinates. The reason for the dependence being more pronounced for Rh₂(O₂CCH₃)₄ than for Rh₂(O₂CCH₃)₄(PPh₃)₂ is thought to be due to the lesser wavenumber separation of these bands for the former case. Thus for Rh₂(O₂CCH₃)₄(PPh₃)₂ ν_2 , ν (RhO) is 49 cm⁻¹ higher than ν (RhRh) whereas it is only 43 cm⁻¹ higher for the ¹⁸O derivative, 38 cm⁻¹ higher for the CD₃-derivative, and 17 cm⁻¹ higher for Rh₂(O₂CCH₃)₄ itself.

The two bands at 188 and 176 cm⁻¹ in the Raman spectrum of $Rh_2(O_2CCH_3)_4$ show little sensitivity to deuteration; however they shift to lower wavenumber by 8 and 4 cm⁻¹, respectively, upon ¹⁸O substitution and are assigned to skeletal deformation modes of the type δ (ORhO) or δ (RhRhO). For $Mo_2(O_2CCH_3)_4$ two bands occurring at 204 and 190 cm⁻¹ also been assigned to similar vibrations. They show no sensitivity to ⁹²Mo substitution⁶ and shift by only 3 cm⁻¹ upon deuteration.⁷

The infrared spectra of $Rh_2(O_2CCH_3)_4$ in the range 660—200 cm⁻¹ and of its ¹⁸O and CD₃ isotopomers are shown in Figure 4. Just as for $Mo_2(O_2CCH_3)_4$,⁷ $Os_2(O_2CCH_3)_4Cl_2$,⁸ and $Rh_2(O_2CCH_3)_4(PPh_3)_2$,³ a triplet of bands of medium intensity is observed in the 400—300 cm⁻¹ region which, by comparison, is assigned to ν (RhO) vibrations. For $Rh_2(O_2CCH_3)_4$ they occur at 398, 383 and

318

359 cm⁻¹, shifting to 394, 380 and 352 cm⁻¹ and to 384, 372 and 341 cm⁻¹ upon ¹⁸O and CD₃ substitution, respectively. For the ¹⁸O and CD₃ complexes there is a fourth band occurring as a shoulder at 387 and 379 cm⁻¹, respectively, which is also assigned to ν (RhO).

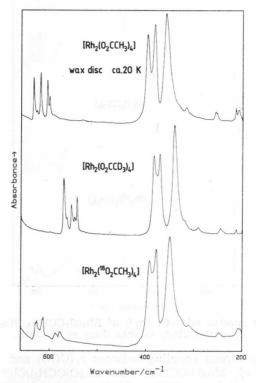


Figure 4. FTIR spectra (660–200 cm⁻¹) of $Rh_2(O_2CCH_3)_4$, $Rh_2(O_2CCD_3)_4$ and $Rh_2(^{18}O_2CCH_3)_4$ as wax discs at *ca*. 20 K.

The infrared spectra of $Rh_2(O_2CCH_3)_4$ and of its ¹⁸O and CD_3 isotopomers in the range 450—60 cm⁻¹, with the bands in the 400—300 cm⁻¹ region truncated, are shown in Figure 5. These spectra serve to illustrate several important points. First, the large number of bands in the low wavenumber region. Second, the high sensitivity of the spectrometers used in the study. Third, the strong dependence of many bands on CD_3 substitution. The only band which shows no sensitivity to deuteration is that at 214 cm⁻¹; this is assigned to the infrared counterpart of the Raman-active δ (ORhO) or δ (RhRhO) vibrations, shifting by 6 cm⁻¹ to 208 cm⁻¹ upon ¹⁸O substitution.

Acetate Modes

The in-plane, ρ_r (COO), and out of plane, ρ_{ω} (COO), bands of Rh₂(O₂CCH₃)₄ are easily assigned from the infrared spectrum. The wavenumber of ρ_{ω} (COO) is virtually identical with that observed for Rh₂(O₂CCH₃)₄(PPh₃)₂;³ however ρ_r (COO) is 15 cm⁻¹ higher for the former. In view of the fact that ν (RhO) is higher for Rh₂(O₂CCH₃)₄ than Rh₂(O₂CCH₃)₄(PPh₃)₂ this result is further

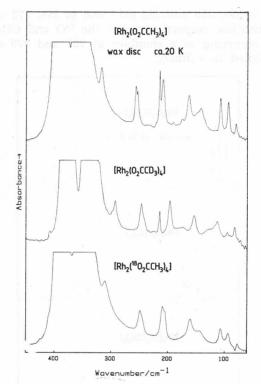


Figure 5. FTIR spectra (450–60 cm⁻¹) of $Rh_2(O_2CCH_3)_4$, $Rh_2(O_2CCD_3)_4$ and $Rh_2(^{18}O_2CCH_3)_4$ as wax discs at *ca*. 20 K.

confirmation of the strong coupling between ρ_r (COO) and ν (MO) for dimeric tetracarboxylates, *cf.* Mo₂(O₂CCH₃)₄⁷ and Os₂(O₂CCH₃)₄Cl₂.⁸ The shifts upon deuteration of 80 cm⁻¹ for ρ_{ω} (COO), and 30 cm⁻¹ for ρ_r (COO) are comparable with those observed for M₂(O₂CCH₃)₄⁷ and Os₂(O₂CCH₃)₄Cl₂.⁸

Figure 6 shows the infrared spectra in the range 1600—600 cm⁻¹ of Rh₂(O₂CCH₃)₄ and its ¹⁸O and CD₃ isotopomers. The assignment of ν_{as} (COO) to the strong band at 1586 cm⁻¹ which shifts upon ¹⁸O and CD₃ substitution to 1571 and 1577 cm⁻¹, respectively, is relatively straightforward; however this is not the case for ν_s (COO) as there are a number of strong bands in the 1500—1400 cm⁻¹ region. For Rh₂(O₂CCD₃)₄ the spectrum is much simpler in this region and ν_{as} (COO) is clearly assigned to the strong band at 1425 cm⁻¹ which means that, for Rh₂(O₂CCH₃)₄, ν_s (COO) must lie above this; consequently it is assigned to a shoulder, at 1438 cm⁻¹, on the strong band at 1446 cm⁻¹. On the basis that ν_{as} (COO) for Rh₂(¹⁸O₂CCH₃)₄ is assigned to a band at 1410 cm⁻¹, although the shift upon ¹⁸O substitution (28 cm⁻¹) is much larger than that observed (15 cm⁻¹) for ν_{as} (COO). Unfortunately, no ¹⁸O substitution data are available for NaO₂CCH₃ or for any dimeric tetracarbo-xylates with which to enable proper comparisons to be made.

It is noteworthy that, in the infrared spectrum of $Rh_2(O_2CCD_3)_4$, the band assigned to ν_s (COO) is stronger than that assigned to ν_{as} (COO), a situation which is the reverse of that for $Rh_2(O_2CCH_3)_4$.

\overline{v}	Assignment	\overline{v}	Assignment	
3014vw)	1260vw		
2979vw,br	ν (C—H)	1252vw		
2930vw,br)	1051w		
2714vw	2 imes 1357	1046w,sh	ℓ (CH ₃)	
2708vw	1357 + 1352	1037w)	
2479vw,br	1429 + 1051	945vw	ν (C—C)	
2462vw,br	1415 + 1046	941vw	/ (C=C)	
2441vw,br	1405 + 1037	722w		
2409vw,br	1357 + 1051	709m	δ (OCO)	
2394vw,br	1357 + 1037	704m	0 (000)	
2364vw,br	1423 + 941	700m		
2081vw	1446 + 635	635w	out-of-plane	
2067vw	1446 + 621	628vw	(Qw (COO)	
2056vw	1429 + 628	621w)	
2051vw	1429 + 621	606w	(in-plane	
1586vs	$v_{\rm as}$ (COO)	602w	(Qr (COO)	· ·
1555w	2979 - 1423?	398m		
1547w	2979 - 1429?	383m	ν (Rh—O)	
1534w	2979 - 1446?	359m)	
1527w	2930 - 1405?	333vw,sh		
1503w,br	2930-1429?	318vw		
1446s	$\delta_{ m as}~(m CH_3)$	257vw		
1438m,sh	$v_{\rm s}$ (COO)	254VV		
1429m,sh	$\delta_{ m as}~({ m CH_3})$	214vw	δ (O—Rh—O)/ δ (F	lh—Rh—O)
1423s,sh		209vw	τ (CH ₃)	
1415s	$\delta_{\rm as}$ (CH ₃)	163 vw		
1405m,sh	J ^{Jas} (C113)	142vw		
1372vw		106vw		
1357m	$\delta_{\rm s}$ (CH ₃)	93 vw		
1352w,sh	J ⁰ s (C113)			

TABLE V

Wavenumbers/cm⁻¹ of Bands Observed in the Infrared Spectrum of $[Rh_2(O_2CCH_3)_4]$ at ca. 80 K^a

^a Bands below 700 cm⁻¹ recorded at ca. 20 K

Upon deuteration these bands shift to lower wavenumber and appear as much weaker features; this in turn simplifies the 1600—1400 cm⁻¹ region. The spectrum in this region is much simpler for Rh₂(O₂CCH₃)₄ than for Mo₂(O₂CCH₃)₄ due to the much higher wavenumber of $\nu_{\rm as}$ (COO), 1586 cm⁻¹, for Rh₂(O₂CCH₃)₄, compared to that, 1500 cm⁻¹, for Mo₂(O₂CCH₃)₄,⁷ which places $\nu_{\rm as}$ (COO) higher than bands arising from $\delta_{\rm as}$ (CH₃) and from combination tones.

Many of the remaining infrared and Raman band assignments for $Rh_2(O_2CCH_3)_4$ and $Rh_2(O_2CCD_3)_4$ are made by comparison with the spectra of the corresponding molybdenum compounds.⁷ The sensitivity of many of the methyl group bands appears to be small.

Rh₂(O₂CCH₃)₄(H₂O)₂: Skeletal Modes

The Raman spectrum of $Rh_2(O_2CCH_3)_4(H_2O)_2$ at 80 K with 514.5 nm excitation (Figure 7) is similar to that of the anhydrous material in the sense that the strongest bands lie below 400 cm⁻¹. The band assignments are given in Table VIII. The spectrum is dominated by a band at 347 cm⁻¹ and its side

TABLE VI

Wavenumbers/cm⁻¹ of Bands Observed in the Infrared Spectrum of $[Rh_2(^{18}O_2CCH_3)_4]$ at ca. 80 $K^{\rm a}$

$\overline{\nu}$	Assignment	$\overline{\nu}$	Assignment	
3012vw 2977vw,br 2928vw,br 2701vw 2320vw 1571vs 1518w 1511w 1511w	$ \begin{cases} \nu \text{ (CH)} \\ 2 \times 1352 \\ \nu_{as} \text{ (COO)} \\ 2928\text{1410?} \end{cases} $	629w 626w 623w,sh 615w 613w 588vw 588vw 584vw 578vw 294m	$\begin{cases} \text{out-of-plane} \\ \varrho_w \text{(COO)} \\ \\ \text{in-plane} \\ \varrho_r \text{(COO)} \end{cases}$	3114 v.w. 2979 v.w. ho 2830 v.w. ho 2714 v.w. 2708 v.w. 2479 v.w. ho 2462 v.w. ho
1496vw 1444m,sh 1425m,sh 1410vs 1352m 1245vw 1050w 1034w 721w	$\begin{cases} \delta_{as} (CH_3) \\ \nu_s (COO) \\ \delta_s (CH_3) \end{cases}$	394m 387m,sh 380m 352m 327w,sh 311vw,br 248vw 244vw 208vw	$\int v (Rh - O)$	2010-041 (m. 1) 2014-54 (m. 1) 2004-54 (m. 2) 2004-54 (m. 2) 2004-54 (m. 2) 2004-54 (m. 2) 2004-54 (m. 2) 2005-54 (m. 2) 2005-
709w 692m,sh 680m 676m	}δ (OCO)	204vw 159vw 143vw,br 106vw 92vw	δ (O—Rh—O)/ δ (F	(h—Rh—O)

^a Bands below 700 cm⁻¹ recorded at ca. 20 K

TABLE VII

Wavenumbers/cm⁻¹ of Bands Observed in the Infrared Spectrum of $[Rh_2(O_2CCD_3)_4]$ at ca. 80 K^a

Assignment	\overline{v}	Assignment
2230 + 681	696w,sh	Bands below 700 min's recorded i
)	681m	δ (OCO)
ν (C—D)	674m)
abguintes provision	571w)in-plane
$v_{\rm as}$ (COO)	565vw	$\rho_{\rm r}$ (COO)
A COLOR Hand	556w)
	549vw	out-of-plane
898 ± 571	544w	$\int \varrho_{\rm w}$ (COO)
	384m	all the first state and carried
	379m.sh	(Dh O)
	372m	r (Rh—O)
2×681	341m	Tagegerea court to such a
1	322vw	RhefO.CON.L. and RhoTO.CODAR
$\partial_{s} (CD_{3})$	298vw	
	292vw	
$\delta_{\rm ex}$ (CD ₂)	246vw	N AIRECTO NOTED CONTRACTOR
) oas (02.3)	241vw	
<u>)</u>		δ (O—Rh—O)/ δ (Rh—Rh—O)
$\varrho (CD_3)$	196vw	τ (CD ₃)
	153vw	
ν (C—C)		The Ruman spectrum, vi
ρ (CD ₃)	94vw	refrance i (Pignare b) is stanfar
	$2230 + 681 \begin{array}{c} 2230 + 681 \\ \nu \text{ (CD)} \\ \nu_{as} \text{ (COO)} \\ 898 + 571 \\ 914 + 544 \\ \nu_{s} \text{ (COO)} \\ 2 \times 681 \\ \partial_{\delta_{s}} \text{ (CD}_{3}) \\ \partial_{\delta_{as}} \text{ (CD}_{3}) \\ \partial_{\delta_{as}} \text{ (CD}_{3}) \\ \partial_{\rho} \text{ (CD}_{3}) \\ \rho \text{ (CC)} \end{array}$	$ \begin{array}{c cccc} 2230 + 681 & 696 \text{w,sh} \\ & 681 \text{m} \\ & 681 \text{m} \\ & & 681 \text{m} \\ & & & & & & & & & & & & & & & & & & $

^a Bands below 700 cm⁻¹ recorded at ca. 20 K

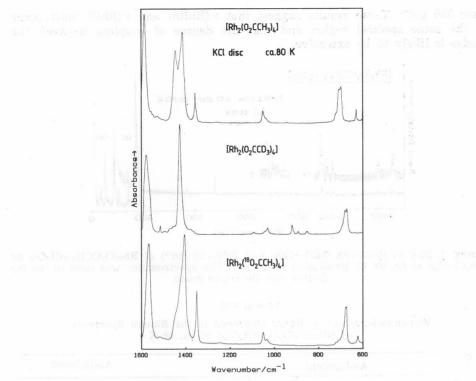


Figure 6. FTIR spectra (1600–600 cm⁻¹) of $Rh_2(O_2CCH_3)_4$, $Rh_2(O_2CCD_3)_4$ and $Rh_2(^{18}O_2CCH_3)_4$ as KCl discs at ca. 80 K.

bands at higher and lower wavenumbers; on intensity grounds the 347 cm⁻¹ band might have been expected to be attributable to ν (RhRh), and hence, in order to probe this question, some isotopic work was attempted. Upon CD₃ substitution, the 360, 347 and 322 cm^{-1} triplet of bands move down by 2, 13 and 12 cm, respectively. This preliminary result suggests that the 347 and 332 cm⁻¹ bands are correctly assigned to ν (RhO) modes, leaving the 360 cm⁻¹ band as the v(RhRh) mode. However, consideration of bond length/bond stretching frequency relationships suggests that such a value would be unacceptably high. Thus a ν (RhRh) value of 360 cm⁻¹ for Rh₂(O₂CCH₃)₄(H₂O)₂ would place it well above ν (RuRu) of [Ru₂(O₂CCH₃)₄(H₂O)₂]BF₄ (326 cm⁻¹).⁹ despite the fact that the RhRh bond length $(2.3855 \text{ Å})^{10}$ of the former is considerably longer than the RuRu bond length (2.248 Å)¹¹ of the latter. Thus, ν (RhRh) would be comparable with the ν (MoMo) value^{12,13} of 367 cm⁻¹ for $Mo_2(O_2CCF_3)_4(py)_2$, py = pyridine, for which the MoMo distance is only 2.129 Å.¹³ Moreover, it would be greater than that of anhydrous $Rh_2(O_2CCH_3)_4$, a result which would not be expected since axial coordination is understood to weaken the RhRh bond. For the very closely related complexes $Rh_2(O_2CCH_3)_4$ L_2 , $L = PPh_3$, AsPh₃ SbPh₃, S(CH₂Ph)₂, and H₂O, the RhRh bond lengths are 2.4505,¹⁴ 2.427, ¹ 2.421,¹ 2.406,¹ 2.3855 Å,¹⁰ respectively; on the basis of the known ν (RhRh) values for the first four complexes, 289, 297, 307 and 314 cm⁻¹, the corresponding value for the diaquo complex would be expected

near 330 cm⁻¹. These results suggest that ν (RhRh) and ν (RhO) must occur in the same spectral region and that the degree of coupling between the modes is likely to be extensive.

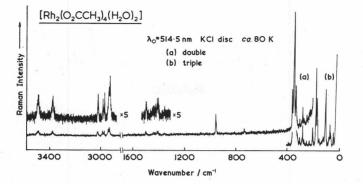


Figure 7. Raman spectrum $(3550-2850 \text{ and } 1650-20 \text{ cm}^{-1})$ of $\text{Rh}_2(O_2\text{CCH}_3)_4(\text{H}_2O)_2$ as a KCl disc at *ca*. 80 K. Resolution ca. 3 cm⁻¹. The spectrometer was used in the (a) double and (b) triple mode.

TABLE VIII

\overline{v}	Assignment	$\overline{\nu}$	Assignment
3490vw 3378vw 3024vw) v (O—H)	303w 286vw 280w	a († 1993) 1937 - Arendersk State 1997 - State
2986vw 2972vw 2940w,sh	ν (C—H)	269vw 247vw 228vw	
2931w 1503vw 1456vw 1447vw	$\delta_{\rm as}$ (CH ₃) $\nu_{\rm s}$ (COO)	201w 177s 168m 163m	$\delta (O-Rh-O) \text{ or } \delta (Rh-Rh-O)$
430vw 416vw 408vw	$\delta_{\rm as}$ (CH ₃)	151vw 119vw 102m	
l358vw 957w 953w,sh	$\begin{cases} \delta_{s} (CH_{3}) \\ \nu (C-C) \\ \delta_{s} (C-C) \end{cases}$	74w,sh 66w 60w	
735vw 360m 347vs	δ (OCO)	40w	rano the function fail and an successful and a second state of successful and successful and succes
332m 321m,sh	$\rangle \nu (Rh-O)$		

Wavenumbers/cm⁻¹ of Bands Observed in the Raman Spectrum^a of [Rh₂(O₂CCH₃)₄(H₂O)₂] at ca. 80 K

* 514.5 nm excitation

One other possible assignment for the 360 cm⁻¹ band is to ν (Rh—O_w), where O_w is an oxygen atom of the axial water molecules. Mathey *et al.*¹⁵ have tentatively assigned the band at 302 cm⁻¹ in the spectrum of Cu₂(O₂CCH₃)₄ (H₂O)₂ to ν (Cu—O_w); it is insensitive to ⁶⁵Cu substitution, and shifts 2 cm⁻¹ lower upon H₂¹⁸O substitution and 3 cm⁻¹ lower on CD₃ substitution; but its shift on D₂O substitution was not reported. On the assumption that this assignment is correct, the corresponding one for Rh₂(O₂CCH₃)₄(H₂O)₂ would be expected to lie at lower wavenumber, probably in the 200—250 cm⁻¹ region since the Rh—O distance (2.310 Å)¹⁰ is much larger than the Cu—O distance (2.156 Å) of Cu₂(O₂CCH₃)₄(H₂O)₂.¹⁶ Thus it seems improbable that the 360 cm⁻¹ band could be assigned to ν (RhO_w). Clearly it is not possible to make a firm assignment for the 360 cm⁻¹ band in the absence of not only CD₃ data but also ¹⁸O and D₂O data and (probably) force field calculations. Possibly also ν (RhRh) is very weak in the Raman spectrum of the diaquo species, and thus difficult to identify in the absence of laser lines which might induce resonance effects, *i. e.* $\lambda_0 \leq 270$ nm.

It should be noted that, in an earlier study of this species in aqueous solution, Miskowski *et al.*¹⁷ assigned a polarised band at 343 cm⁻¹ to ν (RhO) (a_{1g} species in the D_{4h} point group). However, some aspects of the discussion in this paper are invalid owing to their dependence on an incorrect argument to do with the depolarisation ratio of this Raman band.¹⁸

The far-infrared spectrum of $Rh_2(O_2CCH_3)_4(H_2O)_2$ in the range 660—200 cm⁻¹ is shown in Figure 8. The main difference between this spectrum and that of anhydrous $Rh_2(O_2CCH_3)_4$ lies in the 600—400 cm⁻¹ region where several broad bands are observed and are assigned to rotational or librational modes of the axial water molecules. The five bands at 392, 389, 377, 352, and 345 cm⁻¹ are assigned to ν (RhO) modes. Miskowski *et al.*¹⁷ observed only three bands at 386, 374 and 342 cm⁻¹ in the infrared spectrum of $Rh_2(O_2CCH_3)_4(H_2O)_2$ and, whilst they assigned them to ν (RhO) modes, they also suggested that the upper two bands arise from an e_u mode which is split by the crystal field. This may be the case as a similar band splitting, 8 cm⁻¹, is observed for the upper two ν (RhO) bands of $Rh_2(O_2CCH_3)_4(PPh_3)_2$ for which there is only one molecule per unit cell;¹⁴ however for $Rh_2(O_2CCH_3)_4(H_2O)_2$ there are four

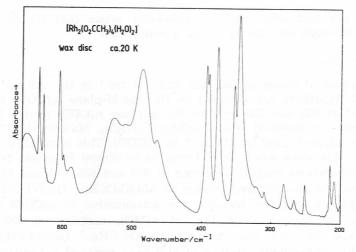


Figure 8. FTIR spectrum (660—200 cm⁻¹) of $Rh_2(O_2CCH_3)_4(H_2O)_2$ as a wax disc at ca. 20 K.

TABLE IX

eo.vladb. O	Assignment	\overline{v}	Assignment
3495m) esta anticontigant	718m	
3380m	ν (O—H)	710m	δ (OCO)
3266m) v no jon le seu	702m	and free will out the last agence
3024vw	A the factor of the	653w,br	ℓ (H ₂ O)
2984vw	controlles under her im	635w	(PARK) is never model to (the)
2974vw	ν (C—H)	629w	<i>ρ</i> _w (COO)
2942vw	te in printy i second i star	624vw	ser le fingapt pa america anu
2931vw)	605w	$\rho_{\rm r}$ (COO)
661vw	δ (O—H)	599vw	$\rho_{\rm r}(\rm COO)$
1644vw	0 (O—II)	588vw,br	or four Supply an preside of
587vs	$v_{\rm as}$ (COO)	527w,br	of a tion with showed at the second second
.556w	2974-1416?	510w	$\varrho (H_2O)$
548w	2984-1438?	486w,br	
528w	2942-1416?	465w,br	and the constrained of the constraint and the
513vw	2931 - 1416?	392w	a do with the depotentiaters to
l455m,sh	in the second second	389w	the second se
446s	$\delta_{ m as}~(m CH_3)$	377w	v (Rh—O)
438m	$v_{\rm s}$ (COO)	352w	entities condut up a moute strikes
431m	e altreactores the	345w	as of aphydroug Rhat-Olffer, J
416vs	$\delta_{\rm as}$ (CH ₃)	322vw	
.405m,sh		310vw	
357m	$\delta_{\rm as}$ (CH ₃)	281vw	n the Rollar Ivaries sponeounes. In th
355m	Joas (CII3)	266vw	are essimited in e (BAO) model. I
.055m	HOD-ON-HE IN THE	251vw	and all end \$32, her? FIT, 342, h
051m	a second s	215vw	δ (O—Rh—O)/ δ (Rh—Rh—O)
.046m	2 (CH ₃)	209vw	au (CH ₃)
.037w	eu la trida er t	197vw	
.030w		187vw	this pany ha thit cars a soli
941vw	ν (C—C)		

Wavenumbers/cm⁻¹ of Bands Observed in the Infrared Spectrum of [Rh₂(O₂CCH₃)₄(H₂O)₂] at ca. 80 K^a

^a Bands below 700 cm⁻¹ recorded at ca. 20 K

molecules per unit cell¹⁰ and the possibility arises that the further band splittings observed are due to factor group effects.

Acetate Modes

The triplet of bands at 635, 629 and 624 cm⁻¹ in the infrared spectrum of Rh₂(O₂CCH₃)₄(H₂O)₂ are assigned to the out-of-plane $\rho_{\omega}(\text{COO})$ modes and the doublet at 605 and 599 cm⁻¹ to the in-plane $\rho_r(\text{COO})$ modes. No Raman counterparts are observed. For Cu₂(O₂CCH₃)₄(H₂O)₂, Mathey *et al.*⁹ have assigned the infrared band at 625 cm⁻¹ to $\rho_{\omega}(\text{COO})$. This is consistent with the findings of this work where ρ_{ω} is found to be almost invariant over several dimeric tetraacetates studied, occurring at 636 and 628, 635 and 630, 635, 628 and 621 cm⁻¹ in the infrared spectra of Mo₂(O₂CCH₃)₄, Os₂(O₂CCH₃)₄Cl₂,⁸ and Rh₂(O₂CCH₃)₄, respectively; however the wavenumber of $\rho_r(\text{COO})$ varies and appears to be dependent on that of ν (MO), occuring at 583 and 575, 618 and 616, 606 and 602 cm⁻¹ for Mo₂(O₂CCH₃)₄,⁷ Os₂(O₂CCH₃)₄Cl₂,⁸ and Rh₂(O₂CCH₃)₄, respectively. Mathey *et al.*¹⁵ have assigned a band at 460 cm⁻¹ for Cu₂(O₂CCH₃)₄(H₂O)₂ to ρ_r (COO); this band wavenumber is identical to that observed for NaO₂CCH₃,¹⁹ although for Cu₂(O₂CCD₃)₄(H₂O)₂ it has risen by 18 cm⁻¹ to 478 cm⁻¹. This assignment must be incorrect as, for the molybdenum, osmium and rhodium tetraacetates, ρ_r (COO) typically shifts 30 cm⁻¹ lower upon CD₃ substitution. Alternatively a band at 560 cm⁻¹ in the spectrum of Cu₂(O₂CCH₃)₄(H₂O)₂ may be assigned to ρ_r (COO),¹⁵ although there is some difficulty in making the assignment due to the close proximity of librational modes of the axial water molecules.

The bands assigned to the O—H stretching modes of the axial water ligands are clearly observed, occurring at 3495, 3380 and 3266 cm⁻¹ in the infrared spectrum and a 3490 and 3378 cm⁻¹ in the Raman spectrum, whereas the HOH bend gives rise in the infrared spectrum to a doublet at 1661 and 1644 cm⁻¹. The remaining infrared and Raman band assignments are based upon those presented for $Rh_2(O_2CCH_3)_4$.

Clearly this complex requires further investigation along with both ¹⁸O and CD₃ isotopomers as well as $Rh_2(O_2CCH_3)_4(D_2O)_2$. This would be a project of some length as the Raman spectra of such complexes would be difficult to obtain owing to the weakness of the scattering.

CONCLUSION

 ν (RhRh) has been found to occur over the range 355–289 cm⁻¹ for all of the dirhodium complexes recently studied.^{1-3,20} Its high value for Rh₂(O₂CCH₃)₄ (355 cm⁻¹) implies that the RhRh bond length must be short for this complex, possibly of the order of 2.38 Å. Earlier difficulties over such assignments in dirhodium complexes have largely arisen through the expectation that, based upon a consideration of v (MM) values for other singly metal-metal bonded complexes, ν (RhRh) should lie below 200 cm⁻¹. Such a consideration ignores the substantial additional restoring force along the RhRh bond to be associated with the four acetate bridges. This has been further compounded by the inadequacy of earlier experimental data in the low wavenumber region. The high quality of the spectrometers used in this study has allowed accurate measurements to be made on bands of low wavenumber. Spectra have been collected several times for each complex in order to ensure consistency and infrared samples have been made at different concentrations to allow the observation of weak features. For the Raman spectra the use of holographic diffraction gratings excludes the possibility of grating ghosts, and the recording of spectra using several different excitation lines allows the identification of bands due to plasma radiation. Further studies using single crystal electronic, infrared and Raman spectroscopy are required in order to further the understanding of the nature of the absorption bands in the visible.

The identification of many other bands of the tetracarboxylate cage has also been carried out during the course of this study. Isotopically substituted molecules have been shown to be a necessity in order to make firm bands assignments. In particular the use of readily available, low cost and high purity (99 + 0/0 atom D) substituted acetic acid makes possible the identification of those bands attributable to ν (RhO).

The present results clearly indicate that the band at 184 cm⁻¹ in the Raman spectrum of Rh₂(mhp)₄, Hmhp = 6-methyl-2-hydroxypyridine, cannot be attributed to ν (RhRh) as indicated by Garner *et al.*²¹ the very short RhRh distance in this complex (2.359 Å)²² is suggestive of a ν (RhRh) of significantly

above 300 cm⁻¹. Likewise the recent molecular mechanics calculation²³ on $M_2(O_2CCH_3)_4L_2$ and related complexes, which favoured the *ca*. 170 cm⁻¹ region for ν (RhRh), must need reexamination.

Acknowledgement. — The authors thank the S.E.R.C., the U.L.I.R.S. and Birckbeck College for support.

REFERENCES.

- 1. R. J. H. Clark, A. J. Hempleman, H. M. Dawes, M. B. Hursthouse, and C. D. Flint, J. Chem. Soc. (Dalton) (1985) 1775.
- 2. R. J. H. Clark, A. J. Hempleman, and C. D. Flint, J. Amer. Chem. Soc. 108 (1986) 518.
- 3. R. J. H. Clark and A. J. Hempleman, Inorg. Chem., in press.
- P. Legzdins, R. W. Mitchell, G. L. Rempel, J. D. Ruddick, and G. Wilkinson, J. Chem. Soc. (A) (1970) 3322.
- 5. R. J. H. Clark and T. J. Dines, Angew. Chem., Internat. Ed. Engl. 25 (1986) 131.
- 6. B. Hutchinson, J. Morgan, C. B., Cooper, Y. Mathey, and D. F. Shriver, Inorg. Chem. 18 (1979) 2048.
- 7. R. J. H. Clark, A. J. Hempleman, and M. Kurmoo, J. Chem. Soc. (Dalton) (1988) 973.
- 8. R. J. H. Clark, A. J. Hempleman, and D. A. Tocher, J. Amer. Chem. Soc., in press.
- 9. R. J. H. Clark and L. T. H. Ferris, Inorg. Chem. 20 (1981) 2759.
- F. A. Cotton, B. G. deBoer, M.D. LaPrade, J. R. Pipal, and D. A. Ucko, Acta Cryst., Sect. B 27 (1971) 1664.
- 11. A. Bino, F. A. Cotton, and T. R. Felthouse, *Inorg. Chem.* 18 (1979) 2599.
- 12. J. San Filippo and H. J. Sniadoch, Inorg. Chem. 12 (1973) 2326.
- 13. F. A. Cotton and J. G. Norman, J. Amer. Chem. Soc. 94 (1972) 5697.
- 14. G. G. Christoph, J. Halpern, G. P. Khare, Y. B. Koh, and C Romanowski, Inorg. Chem. 20 (1981) 3029.
- 15. Y. Mathey, D. R. Greig, and D. F. Shriver, Inorg. Chem. 21 (1982) 3409.
- 16. P. Meester, S. R. Fletcher, and A. C. Skapski, J. Chem. Soc. (Dalton) (1973) 2575.
- 17. V. M. Miskowski, W. P. Schaefer, B. Sadeghi, B. D. Santarsiero, and H. B. Gray, *Inorg. Chem.* 23 (1984) 1154.
- 18. Depolarisation ratios (ϱ) of totally symmetric modes take limiting values of 1/3 or 1/8 in resonance Raman spectra, but only if the resonant electronic transition is either z or xy polarised; off resonance, the only stricture on ϱ is that $0 < \varrho < 3/4$. Moreover, the limiting ϱ -values provide information on the polarisation of the resonant electronic transition, not on the vibrational modes, as implied in ref. 17. Thus, since the spectra were taken off resonance, even with the weak ($\varepsilon_{max} < 250 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) bands in the visible, and since in no case were resonance effects observed, no special significance (*i. e.* to do with the polarisation of the »resonant« electronic transition) can be attached to the observed ϱ value (0.1) of the 343 cm⁻¹ band other than that it pertains to a totally symmetric mode.
- 19. K. Ito and H. J. Bernstein, Can. J. Chem. 34 (1956) 170.
- 20. R. J. H. Clark and A. J. Hempleman, to be published.
- M. Berry, C. D. Garner, I. H. Hillier, A. A. MacDowell, and W. Clegg, Inorg. Chim. Acta 53 (1981) L61.
- 22. M. Berry, C. D. Garner, I. H. Hillier, A. A. MacDowell, and W. Clegg, Chem. Commun. (1980) 494.
- 23. J. C. A. Boeyens, F. A. Cotton, and S. Han, *Inorg. Chem.* 24 (1985) 1750.

328

SAŽETAK

Infracrvena i Ramanova spektroskopija dirodij-tetraacetatnih kompleksa $Rh_2(O_2CCH_3)_4$, $Rh_2(^{18}O_2CCH_3)_4$ $Rh_2(O_2CCD_3)_4$ i $Rh_2(O_2CCH_3)_4(H_2O)_2$

Robin J. H. Clark i Andrew J. Hempleman

Snimljeni su infracrveni (3500—50 cm⁻¹) i Ramanovi (3550—30 cm⁻¹) spektri dirodij-tetraacetatnih spojeva Rh₂(O₂CCH₃)₄, Rh₂(¹⁸O₂CCH₃)₄, Rh₂(O₂CCD₃)₄ i Rh₂ (O₂CCH₃)₄(H₂O)₂, te asignirane ključne vrpce. Vrste s kisikom-18 i deuterijem osobito su pomogle u važnoj asignaciji vrpci za bezvodni kompleks, za koji se v (RhRh) nalazi na 355—351 cm⁻¹, a v (RhO) na 389—319 (Raman) i 398—341 cm⁻¹ (IR). Vrpca koja se pripisuje v (RhRh) tipično je intezivna, oštra i relativno neosjet-ljiva na ¹⁸O- i CD₃-supstituciju. Tako se v (RhRh) pomiče za samo 4 cm⁻¹ bilo ¹⁸O, bilo CD₃ supstitucijom, dok se v (RhO) pomiče za 4—6 cm⁻¹ u Ramanovim i 11—18 cm⁻¹ u infracrvenim spektrima s CD₃ supstitucijom. Prikazani su i prethodni rezultati za kompleks Rh₂(O₂CCH₃)₄·(H₂O)₂.