ISPITIVANJE UTICAJA ŠUBRENJA NA RODNOST I KVALITET PLODOVA JABUKA SORTE JONATA

UVOD

Naša se zemlja sada nalazi u periodu intenzivne modernizacije poljoprivredne proizvodnje. Osnovni ciljevi prelaska na savremeniji način proizvodnje ogledaju se u povećanju produktivnosti i poboljšanju kvaliteta proizvoda. S tim u vezi želili smo da ispitamo pre svega mogućnost povećanja produktivnosti u jabučarstvu, jednoj od najznačajnijih grana voćarske privrede, primenom savremene agrotehnike s posebnim osvrtom na dubrenje.

Glavna svrha ovog rada bila je da se ispitat uticaj primene različitih doza i kombinacija dubriva, a osobito mogućnost zamene deficitarnog stajnjaka mineralnim dubrivima, na rodnost i kvalitet plodova jabuke sorte Jonatan, kao visokokvalitetne i jedne od vodećih u našem jabučarstvu.

Želimo da napomenemo da se rezultati izloženi u ovom radu naslanjaju na "prethodne rezultate uticaja dubrenja na rodnost i kvalitet plodova jabuke sorte Jonatan" Đurevića, Ivovića i Mišića (3) i da predstavljaju nastavak i sintezu rezultata za duže razdoblje.

Sistematskoj obradi problema šubrenja u jabučarstvu naše zemlje nije do-sad posvećivana odgovarajuća pažnja, te ovaj rad predstavlja jedan od prvih priloga u tom pravcu.

OBJEKAT, MATERIJAL I METODIKA RADA

Ispitivanja su sprovedena na sorti jabuke Jonatan na ekonomiji "Voćnjak" Zavoda za voćarstvo u Peću, u periodu od 1955. do 1961. g. Jabuke na podlozi divlje jabuke zasađene su 1934. g. na rastojanju 9×9 m u kvadrat. Ispitivanje uticaja šubrenja sprovedeno je u dve serije, prvoj s navodnjavanjem i drugoj bez navodnja-vanj.

I. SERIJA OGLEDA S NAVODNJA-VANJEM

obuhvata sledeće kombinacije:

<table>
<thead>
<tr>
<th>Red broj kombinacije</th>
<th>Način održavanja zemljišta</th>
<th>Kombinacija</th>
<th>Količine dubriva (u kg/stablu)</th>
<th>Količine čistih hraniva (u kg/stablu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nitromon kal (20.5% N)</td>
<td>Superfosfat (46% P<sub>2</sub>O<sub>5</sub>)</td>
<td>Stajnjak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>K<sub>2</sub>O</td>
<td>P<sub>2</sub>O<sub>5</sub></td>
</tr>
<tr>
<td>1</td>
<td>Crni ugar</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Crni ugar N+K</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Crni ugar N+P</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Crni ugar P+K</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Crni ugar N+P+K</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Crni ugar 1/3N+1/3K+P</td>
<td>1</td>
<td>1,33</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Crni ugar 2/3N+2/3K+P</td>
<td>2</td>
<td>2,66</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Crni ugar 1/2N+K+P</td>
<td>1,5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Crni ugar 1/2(N+K+P)+</td>
<td>1/2 stajnjak</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Crni ugar stajnjak</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Ledina</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Dubrenje u kombinacijama pod rednim brojevima od 2 do 10 obavljeno je ručno na površini koja za 1 m nadmašuje obim krune jabuka, pri čemu je zaštitna zona između trećinjnih površina iznosila najmanje 1 m. Kalijumovo i fosforno dubrivo, kao i stajnjak zaoravan je na 20 cm, a zatim je površinski rasturano azotno dubrivo.

Svaka kombinacija sastojala se od pet slučajno raspoređenih stabala.

II. SERIJA OGLEDA BEZ NAVODNJAVANJA

obuhvaća sledeće kombinacije:

1. Ledina + seno. Trava je košena i ostavljena ispod jabuka. Senom je obavljeno dopunsko mulčiranje u visini od 15 cm.

2. Ledina + slama. Isto kao u prethodnoj kombinaciji, ali je umesto sena korišćena slama.

3. Ledina + 1/2 sena + 1/2 slame. Isto kao u prethodnim kombinacijama, ali je za mulčiranje korišćeno seno i slama u odnosu 1:1.

4. Ledina + slama + 1/2 (N+K+P). Isto kao u kombinacijama pod rednim brojem 2, ali uz dubrenje sa 1,5 kg nitromonkala (0,308 kg/st. N), 2 kg K — soli (0,8 kg/st. K₂O) i 2,5 kg superfosfata (0,425 kg/st. P₂O₅).

Zastranje oglednih stabala obavljeno je u toku meseca maja na površini većoj od obima krunje za 1 m. I tu je zaštitna zona između voćaka iznosila najmanje 1 metar.

Primijenjena agrotehnik u serijskim ogledima bez navodnjavanja bila je ista kao u kombinaciji br. 11 (ledina) u serijskim ogleda s navodnjavanjem, izuzev primene samog navodnjavanja.

Dubrenje u obe serijskim ogledima izvođeno je svake godine u toku meseca marta. Plodovi su brani u oktobru, najčešće u II dekadi tog meseca.

Uzorci zemljišta uzeti su pre početka ogleda (u jesen 1954. g.), a fizičko — hemijske analize obavljene su standardnim pedološko-agrohemijskim metodama u laboratoriji Zavoda u Peči.

Prosečna težina plodova Jonatana (na bazi težine 20 kg plodova) određivana je u periodu od 1957. do 1961. godine.

Hemijske analize plodova (prosečan uzorak 1,5 kg svežih plodova) obavljene su 1957. godine. Svrha materija određivana je Abbeovim refraktometrom, šećer kao invertan po Felingu, pH elektrometrijski na phametru, ukupna kiselina titracijom s n/10 NaOH, ukupan N po mikrokJedalu, mineralne materije (pepeo) žarem na 500°C P₂O₅ iz pepela preko amon-mobildata na Langeovom kolorimetru, K₂O i CaO iz pepela na Langeovom flamen — fotometru, a vitamin C metodom vizuelne titracije s 2,6-dihlorfenolindolfenolom (Đurđević, Ivović i Mišić, 3).

USLOVI SREDINE

Meteorološki činici i fizičko — hemijske karakteristike zemljišta predstavljali su osnovne prirodne uslove sredine, koji su zajedno s primjenjom agrotehnikom odigrali odlučujući uticaj na produktivnost i kvalitet plodova Jonatana.

Meteorološki činici u toku izvođenja ogleda (1953. — 1961. g.) prikazani su u tabeli 1.
Tab. 1. Meteorološki podaci za period od 1955. do 1961. g. za Peć

<table>
<thead>
<tr>
<th>Godina</th>
<th>Srednja god. temperatura u °C</th>
<th>God. god. padavina u mm</th>
<th>God. god. Total rainfall in mm</th>
<th>Sred. temp. u °C</th>
<th>Mjes. pros. padavina u mm</th>
<th>Mjes. pros. Average rainfall</th>
<th>Hydrotermički koeficijent</th>
<th>Hydrotermal coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955.</td>
<td>11,5</td>
<td>1033,2</td>
<td>17,1</td>
<td>91,2</td>
<td>1,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956.</td>
<td>10,2</td>
<td>833,0</td>
<td>18,1</td>
<td>38,8</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957.</td>
<td>10,5</td>
<td>823,4</td>
<td>17,5</td>
<td>69,9</td>
<td>0,51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958.</td>
<td>11,8</td>
<td>891,6</td>
<td>18,5</td>
<td>43,8</td>
<td>0,37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959.</td>
<td>10,8</td>
<td>1058,4</td>
<td>16,3</td>
<td>83,5</td>
<td>1,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960.</td>
<td>11,5</td>
<td>1030,6</td>
<td>17,6</td>
<td>53,7</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosek-Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIZICKO—HEMIJSKE OSOBINE ZEMLJIŠTA

Zemljište na kome se nalazi ogledni jabučnjak predstavlja recentni aluvijalni nanos, čije su osobine prikazane u tabelama 2 i 3.

Zemljište je slabo alkalne reakcije (pH=7,23–7,52) u vodenom, a slabo kisele (pH=5,97–6,35) u rastvoru KCl, nedovoljno je obezbeđeno u humusu (1,17–3,15%) i azotu (0,112–0,182%), siromašno u fiziološki aktivnom kalijumu (5,1–14,5 mg K2O/100 gr), a krajnje siromašno u fiziološki aktivnoj fosfornoj kiselinii (0,81–2,15 mg P2O5/100 gr).

Tab. 2. Fizička osobina zemljišta — Physical characteristics of soil

<table>
<thead>
<tr>
<th>Dubina</th>
<th>Veličina čestica u mm — Size of particles in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deepness</td>
<td>%</td>
</tr>
<tr>
<td>0–20 cm</td>
<td>18,72</td>
</tr>
<tr>
<td>20–40 cm</td>
<td>16,40</td>
</tr>
<tr>
<td>40–60 cm</td>
<td>17,52</td>
</tr>
</tbody>
</table>

Tab. 3. Hemjske osobine zemljišta — Chemical characteristics of soil

Dubina	CaCO3	pH u (in)	H2O	KCl	Humus %	N %	Fiziološki aktivan Physiological active
	%						P2O5 Kg/mgr/100 gr K2O Kg/mgr/100 gr
0–20 cm	0	7,30	6,35	3,15	0,182	2,15	14,5 1,86
20–40 cm	0	7,52	6,23	1,73	0,126	1,15	9,2 1,86
40–60 cm	0	7,23	5,97	1,17	0,112	0,81	5,1 2,05

Sadržaj ukupnog peska (45,36–48,68%) i ukupne gline (51,32–54,68%) dosta je ujednačen po slojevima. Veća količina količne frakcije u dubljim slojevima (19,92%) posljedica je ispiranja zbog preteranog navodnjavanja u prošlosti.

REZULTATI ISPITIVANJA S DISKUSIJOM

Rezultati ispitivanja utiču dubrenja na rodnost i kvalitet plodova, kao i iznete količine azota, fosfora, kalijuma i kalcijuma plodovima jabuke sorte Jonatan prikazani su u tabelama 4–6.
Kurindin i dr. (6) ističu pozitivan uticaj dubrenja na diferenciranje cvetnih pupoljaka, procent zametanja, rodnost i krupnoći plodova. Prva tri uticaja i kod nas su konstatovana. Krupnoća plodova visokokvalitetne sorte Jonatan, u svim kombinacijama ogleda i godinama, odgovarala je po JUS-u ekstra i I klasa.

Prema Gourley-u i Howlett-u (4) Jonatan spada u grupu sorti jabuka, koje radaju svake godine, i to: jedne dosta obilno, a naredne malo do umeren, s izraženom tendencijom k alternativnosti posle vrlo rodnih godina. U našim ogledima takve tendencije su znatno ublažene (tab. 4), a osobito u kombinaciji pod br. 7 (2/3 N+2/3K+P odnosno 0,410 kg/st. N+1,064 kg/st. K2O+0,850 kg/st. P2O5) u seriji s navodnjavanjem, kod koje je ujedno i postignut maksimalni prosečan šestogodišnji (1956—1961. g.) prinos od 201 kg po stablu ili 2,5 vagona na ha.

A sada nekoliko reči o habitusu stabala u ogledu: kruna osobljena u seriji s navodnjavanjem pokriva znatan deo hranjivog prostora od 9×9 m; prosečan godišnji prirast letorasta iznosi oko 40 cm; godišnji prirast obima debla (u 1957. g. npr.) je u granicama između 2,95 i 3,88 cm (serija s navodnjavanjem), 1,72 i 3,17 (serija bez navodnjavanja) i 1,50 cm kod nenavodnjavanog ledine (kontrola).

Pojedina stabla u kombinacijama N+K+P (0,615 kg/st. N+1,6 kg/st. K2O+0,850 kg/st. P2O5) i 1/2 (N+K+P) + 1/2 stajnjaka (0,308 kg/st. N+0,8 kg/st. K2O+0,425 kg/st. P2O5) 100 kg po stablu stajnjaka) odlikovala su se obilnim stvaranjem cvetnih pupoljaka na letorastima i vodopljama.

Pre detaljnijeg razmatranja postignutih rezultata uticaj asanacionih mera, osobito redovnog dubrenja, treba imati na umu da je vočni zasad pre početka ogleda (1954. g.) bio vrlo zapušten i takoreći pred krčenjem.

A. PRINOSI PLODOVA

I. SERIJA OGLEDA S NAVODNJAVANJEM

U seriji ogleda s navodnjavanjem maksimalni i približno jednaki šestogodišnji (1956—1961. g.) prosečni prinosi ostvareni su pri dubrenju sledećim kombinacijama: 2/3N+2/3K+P (0,410 kg/st. N+1,064 kg/st. K2O+0,850 kg/st. P2O5), stajnjak (200 kg/st.), N+K+P (0,615 kg/st. N+1,6 kg/st. K2O+0,850 kg/st. P2O5), i 1/2 (N+K+P) + 1/2 stajnjak (0,308 kg/st. N+0,8 kg/st. K2O+0,425 kg/st. P2O5), i 100 kg po stablu stajnjaka), krećući se između 23.000 i 25.000 kg/ha (tab. 4 i 6).

Maksimalni prinos stabla rekordera od 577 kg/st. ili 7,1 vagona/ha postignut je 1959. g. u seriji bez navodnjavanja. U kombinaciji ledina+seno (kao dopunski mulčirajući materijal).

Najmanje oscilacije prinosa po godinama konstatovane su u seriji ogleda s navodnjavanjem u kombinacijama: 1/3N+1/3K+P (0,205 kg/st. N+0,532 kg/st. K2O+0,850 kg/st. P2O5), i 2/3N+2/3K+P (0,410 kg/st. N+1,064 kg/st. K2O+0,850 kg/st. P2O5).

Ove činjenice su vrlo značajne, jer ukazuju sledećе:
1. da se deficitarni stajnjak može bez štetne po prinos zameniti mineralnim dubrivima; i
2. U kombinacijama 1/3N+1/3K+P (0,205 kg/st. N+0,532 kg/st. K2O+0,850 kg/st. P2O5) i 2/3N+2/3K+P (0,410 kg/st. N+1,064 kg/st. K2O+0,850 kg/st. P2O5) količine hranjiva za date uslove nalaže se u pogodnom odnosu kao: N:K2O:P2O5 = 1:2,6:2,1 —4,2

Razumljivo je da ove rezultate treba dalje razrađivati u određenim uslovima sredine.

II. SERIJA OGLEDA BEZ NAVODNJAVANJA

Nedostaci ledine kao načina održavanja zemljišta u jabučnjaku jako su pojačani pri suvom vočarenju, prven redu zbog konkurentskog odnosa između trave i voćaka u pogledu vode.

Kao najpogodniji način održavanja zemljišta u seriji bez navodnjavanja pokazala se ledina sa senom kao dopunskim materijalom za mulčiranje. Đurović i Đurović (5) ukazali su detaljnije na pozitivno dejstvo ove vrste mulča na vodni, toplotni i hranjivi režim zemljišta, pa stoga ovde nećemo detaljnije iznosit ove momente.
Tab. 4. Prinosi i veličina plodova Jonatanu u Peći (1956.—1961. g.)

<table>
<thead>
<tr>
<th>Red. broj</th>
<th>Kombinacija Combination</th>
<th>Prinosi plodova u kg/stablu Yields in kg per tree</th>
<th>Prosek Average</th>
<th>Prosećan broj plodova u kg Average member of fruits in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Crni ugar (Clean cultivation)</td>
<td>124 139 47 259 122 123 136 7,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>N+K</td>
<td>134 163 10 251 57 191 143 3,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>N+P</td>
<td>199 174 26 263 113 224 167 8,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>P+K</td>
<td>203 189 54 241 82 144 152 7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>N+P+K</td>
<td>239 202 31 306 129 251 193 8,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>P+1/3N+1/3K</td>
<td>150 137 124 219 164 133 155 8,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>P+2/3N+2/3K</td>
<td>204 197 118 300 182 202 201 9,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>P+1/2N+K</td>
<td>274 191 31 238 100 135 161 7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>(N+P+K) +1/2 (stajnjak)</td>
<td>238 211 21 303 94 251 186 8,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Stajnjak (stable manure)</td>
<td>207 241 25 335 79 309 199 7,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Ledina (sod)</td>
<td>154 133 34 334 59 246 157 7,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I. NAVODNJAVANJE (IRRIGATION):

II. BEZ NAVODNJAVANJA (NO IRRIGATION):

<table>
<thead>
<tr>
<th>Red. broj</th>
<th>Kombinacija Combination</th>
<th>Prinosi plodova u kg/stablu Yields in kg per tree</th>
<th>Prosek Average</th>
<th>Prosećan broj plodova u kg Average member of fruits in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ledina+seno (Hay mulch + add. hay mulch)</td>
<td>150 198 125 342 73 164 176 8,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Ledina+slama (Hay mulch + add. straw mulch)</td>
<td>140 118 88 278 133 63 137 9,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Ledina+1/2 (seno+slama) (Hay m. +1/2 (ad. hay+straw m.)</td>
<td>161 149 93 304 149 115 162 9,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Ledina+slama+1/2 (N+P+K) (Hay m. + add. straw m. +1/2 (N+P+K)</td>
<td>115 120 106 348 72 209 162 8,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Ledina (kontrola) - Sod (Chek)</td>
<td>65 31 42 178 — — 79 8,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slama se pokazala kao lošiji dopunski materijal za mulčiranje od sena, dok je mulčiranje mešavinom sena+slame u odnosu 1:1 činilo prelaz između dopunskog mulčiranja samo senom i samo slamom.

B. KVALITET PLODOVA

Najučljenijsi varijacije hemijskog sastava plodova, koj potiču iz različitih kombinacija ogleda (tab. 5), javljaju se u sadržaju suvih materija i šećera, a najmanje kod pH.

Plodovi sa stabala dubrenih kombinacijama azotnih dubriva pokazali su pri analizi veći sadržaj azota, i to po pravilu proporcionalno količini unetog dubriva. Sa druge strane, minimalan sadržaj azota u plodovima konstatovan je u kombinaciji P+K (0,850 kg/st. P₂O₅+1,600 kg/st. K₂O), tj. u kombinaciji bez azota.

Na slican način se kretao i sadržaj fosfora, u zavisnosti o unetim količinama fosfora u kombinaciji N+K (0,615 kg/st. N+1,6 kg/st. K₂O) osetilo se više u plodu, jer je zemljište pri postavljanju ogleda bilo krajnje siromašno u fiziološki aktivnoj fosfornoj kiselinji.

U pogledu ukupnočnosti (tab. 4) i rezultata hemijske analize plodova (tab. 5) u različitim kombinacijama ogleda nisu konstatovane neke osetnije razlike. Ipak treba napomenuti da su plodovi s navodnjavanih parcela bili nešto krunniji nego s ne- navodnjavanih. Najvećim prosećnom težinom (135 gr) odlikovali su se plodovi u
<table>
<thead>
<tr>
<th>Redni Broj Combination</th>
<th>Raštovljive suhe materije %</th>
<th>Soluble solids %</th>
<th>Seder kao invert</th>
<th>pH</th>
<th>Ukupna kiselost %</th>
<th>Total acids %</th>
<th>N %</th>
<th>Mineralne materije (pepo) %</th>
<th>F2O5 %</th>
<th>K2O %</th>
<th>CaO %</th>
<th>Vitamin C %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Navodnjavanje (Irrigation):</td>
<td></td>
</tr>
<tr>
<td>1. Crni ugar (Clean cultivation)</td>
<td>14,0</td>
<td>12,48</td>
<td>3,53</td>
<td>0,36</td>
<td>0,036</td>
<td>0,23</td>
<td>0,018</td>
<td>0,096</td>
<td>0,013</td>
<td>0,057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. N + K</td>
<td>15,8</td>
<td>15,28</td>
<td>3,77</td>
<td>0,33</td>
<td>0,038</td>
<td>0,23</td>
<td>0,011</td>
<td>0,094</td>
<td>0,014</td>
<td>0,047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. N + P</td>
<td>16,0</td>
<td>13,68</td>
<td>3,58</td>
<td>0,38</td>
<td>0,042</td>
<td>0,24</td>
<td>0,018</td>
<td>0,100</td>
<td>0,015</td>
<td>0,055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. P + K</td>
<td>14,8</td>
<td>12,20</td>
<td>3,44</td>
<td>0,38</td>
<td>0,027</td>
<td>0,22</td>
<td>0,015</td>
<td>0,103</td>
<td>0,014</td>
<td>0,051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. N + P + K</td>
<td>17,2</td>
<td>16,24</td>
<td>3,52</td>
<td>0,36</td>
<td>0,042</td>
<td>0,21</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. P + 1/3N + 1/3K</td>
<td>15,8</td>
<td>14,76</td>
<td>3,55</td>
<td>0,33</td>
<td>0,037</td>
<td>0,26</td>
<td>0,020</td>
<td>0,121</td>
<td>0,013</td>
<td>0,057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. P + 2/3N + 2/3K</td>
<td>15,2</td>
<td>13,28</td>
<td>3,61</td>
<td>0,34</td>
<td>—</td>
<td>0,26</td>
<td>0,018</td>
<td>0,100</td>
<td>0,014</td>
<td>0,054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. P + 1/2N + K</td>
<td>16,0</td>
<td>12,56</td>
<td>3,40</td>
<td>0,34</td>
<td>0,039</td>
<td>0,22</td>
<td>0,018</td>
<td>0,086</td>
<td>0,012</td>
<td>0,060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 1/2 (N + P + K) + 1/2 stajnjak (stable manure)</td>
<td>13,6</td>
<td>12,42</td>
<td>3,66</td>
<td>0,29</td>
<td>0,040</td>
<td>0,21</td>
<td>0,018</td>
<td>0,092</td>
<td>0,013</td>
<td>0,057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Stajnjak (stable manure)</td>
<td>13,7</td>
<td>12,20</td>
<td>3,66</td>
<td>0,36</td>
<td>0,031</td>
<td>0,24</td>
<td>0,018</td>
<td>0,100</td>
<td>0,015</td>
<td>0,054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Ledina (Sod)</td>
<td>17,3</td>
<td>15,84</td>
<td>3,57</td>
<td>0,39</td>
<td>0,030</td>
<td>0,30</td>
<td>0,022</td>
<td>0,130</td>
<td>0,015</td>
<td>0,055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Bez navodnjavanja (No irrigation):</td>
<td></td>
</tr>
<tr>
<td>1. Ledina + seno (Hay mulch + add. hay m.)</td>
<td>13,7</td>
<td>12,68</td>
<td>3,67</td>
<td>0,28</td>
<td>0,039</td>
<td>0,20</td>
<td>0,015</td>
<td>0,093</td>
<td>0,012</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ledina + slama (Hay mulch + ad. Hay m.)</td>
<td>17,0</td>
<td>14,12</td>
<td>3,66</td>
<td>0,42</td>
<td>0,038</td>
<td>0,30</td>
<td>0,015</td>
<td>0,132</td>
<td>0,010</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ledina + 1/2 (seno + slama) /Hay mulch + 1/2 (ad. hay and straw mulch)</td>
<td>15,3</td>
<td>13,22</td>
<td>3,68</td>
<td>0,34</td>
<td>0,034</td>
<td>0,21</td>
<td>0,014</td>
<td>0,097</td>
<td>0,011</td>
<td>0,057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ledina + slama + 1/2 (N + P + K) /Hay mulch + ad. straw m. + 1/2 (N + P + K)</td>
<td>14,6</td>
<td>12,48</td>
<td>3,73</td>
<td>0,29</td>
<td>0,036</td>
<td>0,26</td>
<td>0,017</td>
<td>0,116</td>
<td>0,010</td>
<td>0,047</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prosek — Average
15,32 | 13,53 | 3,60 | 0,38 | 0,034 | 0,24 | 0,017 | 0,105 | 0,014 | 0,054
<table>
<thead>
<tr>
<th>Red. broj</th>
<th>Kombinacija Combination</th>
<th>Prosečan prosinčki u kg/ha</th>
<th>Average yield in kg/h</th>
<th>Izneto količina ... u kg/ha</th>
<th>Quantities brought out ... in kg per ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crni ugar — Clean cultivation</td>
<td>16.800</td>
<td>6.12</td>
<td>3.05</td>
<td>16.20</td>
<td>2.08</td>
</tr>
<tr>
<td>2. N+K</td>
<td>17.700</td>
<td>6.67</td>
<td>2.04</td>
<td>16.70</td>
<td>2.56</td>
</tr>
<tr>
<td>3. N+P+K</td>
<td>20.600</td>
<td>8.65</td>
<td>3.78</td>
<td>20.70</td>
<td>2.37</td>
</tr>
<tr>
<td>4. P+K</td>
<td>18.800</td>
<td>5.11</td>
<td>2.82</td>
<td>19.35</td>
<td>2.73</td>
</tr>
<tr>
<td>5. N+P+K+K</td>
<td>23.800</td>
<td>10.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. P+1/3N+1/3K</td>
<td>19.100</td>
<td>6.98</td>
<td>3.85</td>
<td>23.15</td>
<td>2.58</td>
</tr>
<tr>
<td>7. P+2/3N+2/3K</td>
<td>25.000</td>
<td>—</td>
<td>4.43</td>
<td>25.00</td>
<td>3.50</td>
</tr>
<tr>
<td>8. P+1/2N+K</td>
<td>19.900</td>
<td>7.80</td>
<td>3.56</td>
<td>17.20</td>
<td>2.35</td>
</tr>
<tr>
<td>9. 1/2 (N+P+K) + 1/2 stajnjak (stable manure)</td>
<td>23.000</td>
<td>9.27</td>
<td>4.07</td>
<td>21.15</td>
<td>3.11</td>
</tr>
<tr>
<td>10. Stajnjak (stable manure)</td>
<td>24.600</td>
<td>7.56</td>
<td>4.52</td>
<td>24.600</td>
<td>3.91</td>
</tr>
<tr>
<td>11. Ledina (Sod)</td>
<td>19.400</td>
<td>5.76</td>
<td>4.36</td>
<td>25.30</td>
<td>2.91</td>
</tr>
</tbody>
</table>

I. NAVODNJAVANJE (IRRIGATION):

II. BEZ NAVODNJAVANJA (NO IRRIGATION):

Kombinacijama s navodnjavanjem: P+K (0,850 kg/st. P₂O₅+1,6 kg/st. K₂O), 1/2N+K+P (0,308 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅) i ledini. Drugim rečima, naj

Kombinacijama s navodnjavanjem: P+K (0,850 kg/st. P₂O₅+1,6 kg/st. K₂O), 1/2N+K+P (0,308 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅) i ledini. Drugim rečima, naj

**Kombinacijama s navodnjavanjem: P+K (0,850 kg/st. P₂O₅+1,6 kg/st. K₂O), 1/2N+K+P (0,308 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅) i ledini. Drugim rečima, naj

**Kombinacijama s navodnjavanjem: P+K (0,850 kg/st. P₂O₅+1,6 kg/st. K₂O), 1/2N+K+P (0,308 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅) i ledini. Drugim rečima, naj

**Kombinacijama s navodnjavanjem: P+K (0,850 kg/st. P₂O₅+1,6 kg/st. K₂O), 1/2N+K+P (0,308 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅) i ledini. Drugim rečima, naj

Plodovi s navodnjavanim parcela odlikovali su se prosečno većim sadržajem suve materije, šećera, ukupne kiseline, P₃O₅, CaO i vitamina C. U seriji s navod

Najboljom koloracijom pokožice karakterišu se plodovi s manjim sadržajem azota, u kombinacijama: ledina bez mulča i navodnjavanja, P+K (0,850 kg/st. P₂O₅+1,6 kg/st. K₂O) i 1/2N+K+P (0,308 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅), što se slaže s podacima Ch i l d e r s - a (1,2).

U seriji s navodnjavanjem, dubrenje stajnjakom kao jedinim dubrivom ili u kombinaciji s mineralnim dubrivima snizilo je sadržaj suve materije i šećera u plodovima u odnosu na ostale kombinacije iste serije.

Plodovi sa stabala pod ledinom u seriji s navodnjavanjem odlikovali su se najvećim sadržajem suve materije (17,3%), mineralnih materija (0,3%), fosfora, kalijuma i visokom ukupnom kiselosću (0,39%).

1088
Karakteristično je da je pri korišćenju pune doze N+P+K (0,615 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅) u seriji s navodnjavanjem ostvaren vrlo visok procent suve materije (17,2) i maksimalne količine šećera 16,24%, azota (0,042%) i vitamina C (0,0061%) u plodovima.

C. MINERALNE MATERIJE IZNETE PLODOVIMA

Prosečne količine N, P₂O₅, K₂O i CaO iznete plodovima u kg/ha (tab. 6) nalaze se u približnom odnosu 23:9:61:7, što odgovara relaciji Stępka (po S. Antkoviću, Butiloviću i Bebiću, 7). Raspolaživi podaci u literaturi o učešću pojedinih mineralnih materija u plodovima i čitavoj jabuci su nepotpuni i često kontradiktorni. Ovo je razumljivo imajući u vidu uslovljenost ovog učešća razlikama u plodnosti zemljišta i meteorološkim činilcima, podlozi i sorti, kondiciji i starosti voćke, primenjenom agrotehnici i prinosima.

S obzirom na veće učešće pojedinih mineralnih materija po plodu i najveće prosečne prinose plodova u kombinacijama: N+P+K (0,615 kg/st. N+1,600 kg/st K₂O+0,850 kg/st P₂O₅), 2/3N+2/3K+P (0,410 kg/st. N+1,064 kg/st. K₂O+0,850 kg/st. P₂O₅), 1/2 NPK+1/2 stajnjaka (0,308 kg/st. N+0,425 kg/st. P₂O₅+0,800 kg/st. K₂O+100 kg/st. stajnjaka) i stajnjaka (200 kg/st.), u seriji s navodnjavanjem, iznete su kod ovih kombinacija i najveće količine mineralnih materija plodovima.

ZAKLJUČAK

Na osnovu proučavanja uticaja dubrenja na rodnost i kvalitet plodova jabuke sorte Jonatan, u Peći, u periodu od 1955. do 1961. g., mogu se izvući sledeći zaključci:

1. U kompleksu normalne agrotehnike jasno se uočava pozitivan uticaj dubrenja na oblinu i redovnu rodnost, kao i habitus stabala Jonatana. Prosečan šestogodišnji (1956—1961. g.) prinos za čitav ogledni objekt iznosi 162 kg/st. odnosno 20.500 kg/ha.
2. Maksimalni i približno jednaki šestogodišnji prosečni prinosi jabuka od 186 do 201 kg/st. odnosno 23.000—25.000 kg/ha dobijeni su u seriji ogleda s navodnjavanjem, pri dubrenju sledećim kombinacijama:

 a. P+2/3N+2/3K (0,410 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅)
 b. stajnjak (200 kg/st.)
 c. N+P+K (0,615 kg/st. N+1,6 kg/st. K₂O+0,850 kg/st. P₂O₅), i
 d. 1/2 (N+P+K) + 1/2 stajnjak (0,308 kg/st. N+0,8 kg/st. K₂O+0,425 kg/st. P₂O₅+100 kg/st. stajnjak).

Ovi podaci ukazuju na izvanredno značajnu činjenicu da se deficitarni stajnjak može bez štete po prinose zameniti mineralnim dubrivima.
3. Najmanje oscilacije u visini prinosa po godinama konstatovane su u seriji s navodnjavanjem, u kombinacijama:

 a. 1/3N+1/3K+P (0,205 kg/st. N+0,532 kg/st. K₂O+0,850 kg/st. P₂O₅), i
 b. 2/3N+2/3K+P (0,410 kg/st. N+1,064 kg/st. K₂O+0,850 kg/st. P₂O₅).

4. Mulčiranje se pokazalo kao vrlo pogodan način održavanja zemljišta u uslovima gajenja voćaka bez navodnjavanja. Osnovno je bio dobar mali od sena, a zatim kombinovan od sena i slamne (1:1). Šestogodišnji prosečan prinos Jonatana pod mulčem od sena (176 kg/st. odnosno 21.600 kg/ha) u seriji bez navodnjavanja samo je neznatno zaostajao za prinosa najboljih kombinacija u seriji ogleda s navodnjavanjem.
5. Količine unetih dubriva (N, K₂O, P₂O₅) u ogledima pokazale su se kao ekonomski potpuno opravdane.
6. Sadržaj azota i fosfora u primjenjenim dubrivima u pozitivnoj je korelaciji sa sadržajem ovih elemenata u plodovima.
7. Plodovi s navodnjavanim parcela sadrže po jedinici sveže materije veće količine fosfora i kalijuma nego plodovi s nnavodnjavanim parcela.
8. Prosečna krupnoća plodova Jonatana u svim kombinacijama ogleda i godinama odgovarala je po JUS-u ekstra i I klasa.
9. Primjenjena agrotehnika (dubrenje, navodnjavanje, mulčiranje, zaštitna i dr.) uticala je na uspostavljanje tzv. fiziološke ravnoteže — garancije normalnog porasta, obilne i redovne rodnosti, kao i odgovarajućeg kvaliteta ploda Jonatan.

RESEARCH OF MANURE APPLICATION UPON YIELD AND QUALITY OF APPLE VARIETY JONATHAN

by

Ing. B. Đurđević, Fruit Research Institute, Peć
Dr. P. D. Mišić, Fruit Research Institute, Cačak

SUMMARY

Apple is, after plum, the most important deciduous fruit in Yugoslavia. Unfortunately, the present yield and quality of apple are dissatisfactory. The problem is more notable to-day, because of our big emphasis upon the rising of modern apple plantations.

In order to detect the most useful cultural technique, particularly the manure programme, in orchards, two series of trials has been done:

1. First with irrigation (clean cultivation, sod, stable manure, and 8 other types with different quantities of N, P and K manures), and
2. Second without irrigation (sod and four kinds of mulch).

The spray programme has been realised all over the trials.

From the results of applied cultural technique, specially manure treatments, upon yield and quality of Jonathan fruits, at Peć, during the period from 1955 to 1961, the following conclusions may be inferred:

1. As a part of standard orchard menagement, the manure application to Jonathan apple trees influence abundant and regular yields and strong vigour. The average sixennials yields for whole experimental orchard were 162 kg per tree, and 20,500 kg per ha respectively.

2. The maximum and approximate equivalent sixennial average yields of apple ranging from 186 to 201 kg per tree, and from 23,000 to 25,000 kg per ha respectively had been obtained, by using the following trials of manure in the irrigation serie:

 a. 2/3N+2/3K+P (0,410 kg per tree N+1,6 kg per tree K2O+0,850 kg per tree P2O5),
 b. stable manure (200 kg per tree),
 c. N+K+P (0,615 kg per tree N+1,6 kg per tree K2O+0,850 kg per tree P2O5),
 and
 d. 1/2 (N+K+P) +1/2 stable manure (0,308 kg per tree N+0,8 kg per tree K2O+0,425 kg per tree P2O5+100 kg per tree stable manure).

The data indicate the lack of stable manure may be substitute by minerale manures.

3. The smallest variableness in yields had been found, all the experimental period round, in the following trials, in the irrigation serie:

 a. 1/3N+1/3K+P (0,205 kg per tree N+0,532 kg per tree K2O+0,850 kg per tree P2O5), and
 b. 2/3N+2/3K+P (0,410 kg per tree N+1,064 kg per tree K2O+0,850 kg per tree P2O5).

4. Mulch was very useful method of soil menagement under no irrigation conditions. A hay mulch is the best one, followed by a hay ind straw mulch in relation 1:1. The sixennials average yield of Jonathan apple under a hay mulch and no irrigation was 176 kg per tree and 21,800 kg per ha respectively.

5. The used manure quantities (N, K2O, P2O5) in the experiment were worth the while from the economic point of view.

6. The contents of N and P in used manures had the positive correlation to the contents of corresponding elements in fruits:
7. The contents of P and K in fruits from irrigated trees were greater than from no irrigated ones.
8. The average fruit sizes of Jonathan in all trials and years correspond to Yugoslav extra and first-class standards.
9. The applied cultural technique (manure, irrigation, mulch, spraying etc.) influenced the establishment of the so called physiological balance of fruit tree, which is responsible for a strong vigour, abundant and regular yield and excellent quality of Jonathan fruits.

LITERATURA

Na ovom mestu želimo toplo da se zahvalimo dr M. Antiću, prof. Šumarskog fakulteta u Beogradu na pomoći pri razradi metodike i Sekretarijatu za poljoprivredu i šumarstvo IV — AKMO na finansijskim sredstvima za izvođenje pomenutih ispitivanja.