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The aim of the present work is to compute the area generating function
(gfj for the column-convex polyominoes on the checkerboard lattice. It is in-
teresting that this area gf includes as two special cases the area gfs for
the rectangular and honeycomb lattices. The problem treated here is com-
plementary to the problem concerning the perimeter gfs, which was sug-
gested by Wu and solved by Tzeng and Lin.

1. PREPARATION

Besides its purely mathematical interest, the computation 'of the self-avoiding
polygon (SAP, Figure 1) perimeter and area generating functions would have a sig-
nificant bearing on the study of chemical problems such as configuration of polymer
molecules and gel formation. But despite strenuous efforts over the past 40 years,
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Figure 1. a) A self-avoiding polygon (SAP) on the rectangular lattice. b) A SAP on the honey-
comb lattice.
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only some restricted classes of the SAP's have been enumerated so faro Further, in
all those enumerations two SAP's are identified iff there is a translation that trans-
forms one into the other (reflections and rotations are not allowed).

An important restricted class of the SAP's arises if we impose convexity in the
direction of one of the lattice axes. When this axis is the one perpendicular to the
x-edges, the SAP's satisfying the just stated convexity condition are called column-
convex polyominoes (CCP's, Figure 2).

Figure 2. Column-convex polyominoes (CCP's) on the rectangular and honeycomb lattices.

Rectangular lattice. The area generating function for the column-convex
polyominoes on the rectangular lattice (RCCP's, for short) is known to be

qx(l- q)3
Fr(q,x) = ----------

(1 - q)4 _ qx(l _ q)2(1 + q) _ q3x2
(1)

The above formula was first found by Temperley' (1956) and then rederived by
different methods by Klarner'' (case x=l, 1965) and Delest3 (1988).

The number of RCCP's having the area f1 and k columns is the coefficient of
q11x"in Fr, which is denoted by (qllxk)Fr and is equal to

(2)

(Throughout this paper we adopt the convention: if a binomial coefficient has a
negative numerator or denominator, then the value of the coefficient is zero.)

The perimeter generating function for RCCP's is an algebraic function:

Gr(x,y) = (1- y) [1 - --::=-----r:==;;;2;:::::;:'Y2;:::::;:2 ;:::::;:;:::::;;:::::;:;:::::;;:::::;:;:::::;;:::::;:;:::::;;;;l
312 - -VI+x + "(1-x)2 -l6xy/(l- y)2

(3)
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Figure 3. Shifting the columns of a RCCP we obtain a RCCP with no weak upper contacts.

Figure 4. A weak upper contact.

Figure 5.

The number of RCCP's having k columns (i.e. 2k horizontal edges) and 2v ver-
tical edges appears as (xi' yU) Gr and is given by a certain threefold sum of binomial
coefficients. Formula (3) was obtained by Feretić and Svrtan? (1993). ef the results
of Delest'' (case x=y, 1988), Brak, Guttmann and Enting" (case z=y, 1990) and Lin6

(1990).
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The generating function for RCCP's in three variables q, X and y is also known.
It is a non-algebraic one (see Bousquet-Melou,? Feretić and Svrtan", Brak and
Guttmann," Lin and Tzeng"),

Honeycomb lattice. When we take a RCCP and shift each of its non-initial col-
umns by half an edge down with respect to the previous column, the resulting figure
is in substance a HCCP (column-convex polyomino on the honeycomb lattice). See
Figure 3. But it is a special HCCP, since it has no weak upper contacts (Figure 4).
To obtain an arbitrary HCCP, we sometimes have to glue together several of such
special HCCP's (Figure 5).

Thus the area gf for HCCP's is given by

qx(l- q)3
Fh(q,x)=Fr+F;+~+···= 4 2 32(1- q) - 2qx(1 - q) - q x

(4)

and the number of HCCP's with area J-l and k columns is

I' k _" k - 2i, -1 (k - il - 1] (J-l + k - il - 2J(q x) F h - L., 2 i 2k _ 2 .
il? o 1

(5)

The shifting of the columns procedure may affect the vertical perimeter of a
polyomino. For this reason, the perimeter gfs for RCCP's and HCCP's are not so
closely related as the area gfs. In fact, the perimeter gf for HCCP's is the function
Gh(x,y, z) given implicitly by

1\ [y(a - G )2 + (1+ y)2 aG] [z(a - G)2 + (1+z)2 aG]
G =x----------------------~I\~------------

(1 - yz)2 a(a - G )2
(6)

1\ 1\

where a = 1 - (y + z)G an~ G = G»/(l- yz). Notice that Eq, (6) can be rewritten as
a quadratic equation in aG/(a - G)2. This remark may be used to calculate Gh ex-
plicitly, but the final formula is rather unhandy. ef Lin and WulO (1990), Feretić
and Svrtan" (1993).

2. INTRODUCTION OF THE CHECKERBOARD LATTICE

On the checkerboard lattice, we have two types of cells and also two types of
horizont al edges, vertical edges and lattice points. See Figure 6.

We shalI partition the column-convex polyominoes on the checkerboard lattice
(CCCP's) according to the colour of the bottom cell of their first column: if the colour
is black (resp. white), then we speak of a b-polyomino (resp. w-polyomino). Further,
let k be a column of some CCCP. If k has a white cell at the top and a black cell at
the bottom, then we say that k is a w:b column. The b.b, w:w and b:w columns are
defined similarly. For example, the CCCP in Figure 7 is a b-polyomino. Its first col-
umn is w:b, the second is b:w, the third is b:b and the fourth is w:w.

Let Gb(u,x, y, z) and Gw(u,x, y, z) be the perimeter gfs for b- and w-polyominoes,
with the variables u, X, •.. marking the u-edges, x- edges, ... Obviously, Gb(x,x, y, y)
is the perimeter gf for RCCP's. Moreover, there is a perimeter preserving bijection
between the b- polyominoes with no u-edges and HCCP's (Figure 8). Hence Gb(O,x,
y, z) is the perimeter generating function for HCCP's.
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Figure 6. The checkerboard lattice. We say that the lattice points like P+ are positiue; those
like P_are negatiue.

Figure 7.

Figure 8.

Having these facts in view, F.Y.Wu suggested the problem of deriving function
Gb to Tzeng and Lin. However, putting this suggestion into practice revealed the un-
pleasant fact that Gb is, unfortunately, a formidably complicated function (see Tzeng
and Lin;'! 1991).

In this paper, we solve the complementary problem of deriving the (relatively
simple, as Theorem 1 will show) area gfs for the b- and w-polyominoes, Fb and Fw.
Functions r, and r; are in six variables qb' «: xb:b' xw:w' »i; and xw:b. The exponent
of qb represents the number of black cells, the exponent of xw:b represents the num-
ber of w:b columns, ete.
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3. AN INTERMEDIATE OBJECT: THE THIN POLYOMINOES

Let P be a CCCP.Next, let SW(P) and SE(P) be the lower left corner of the first
column ofP and the lower right corner of the last column ofP. The lattice path start-
ing from SW(P) with a horizontal step, going along the lower boundary ofP and end-
ing (again with a horizontal step) at SE(P) will be called the bottom path of P. See
Figure 9 for an example.

Figure 9. The bottom path of P is thickened.

n

Let c and n(P) be a cell and the bottom path of some CCCP P. We say that n(P)
touches c if c and n(P) have at least one point in common. In general, the bottom
path need not touch all the cells of a polyomino.In Figure 9, the cells touched by n(P)
are labelled y and the others are labelled n. If the bottom path touches every cell of a
CCCPP, we say that P is a thin polyomino.Note that a thin polyominois uniquely de-
termined by its bottom path. For instance, if the bottom path of a thin polyomino
P is the one in Figure 10a, then P is surely the polyomino shown in Figure 10b.

Figure 10. a) b)

In other words, the thin polyominoes are encoded by their bottom paths.
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3.1. A »relaxed/ coding for the bottom paths
The bottom paths of CCCP's are self-avoiding checkerboard lattice paths over

the step-set {(I, O), (O, 1), (0, -I)}, with the first and the last step being (1, O) steps.
Now let us describe our coding for bottom paths. The codes are words over the

alphabet {e+_,e_+,U~,U::,U~,U~,D~,D::,D~,D~,n., nj. The twelve letters serve to
keep a partial record of the horizontal edges and vertical segments that we come
upon in the course of traversing a bottom path from left to right "(a segment = a
maximal union of consecutive collinear edges)". Precisely, we write

e.; when we meet a horizontal edge starting at apositive point and ending at
anegative point;

U~when we meet an upward segment starting at apositive point and ending at
anegative point;

D~when we meet a downward segment starting at apositive point and ending
at anegative point;

D~when we meet a nonempty downward segment starting at apositive point
and ending at apositive point;

n+when we meet an empty vertical segment »starting- and »ending- at a posi-
tive point.

We omit to declare the roles of the remaining letters, but this will certainly
make no difficulties to the reader.

An example: the bottom path in Figure 10a is encoded by the word
e+_D::e..; D~e_+U~e+_U~e+_n; e_+"

Of course, our coding for bottom paths is not injective (Figure 11). Thus it does
not satisfy the requirements of the Dyck- Schutzenberger-Viennotlv P (DSV)meth-
odology.Anyway, this coding proves to be useful in the calculation of the area gf for
thin polyominoes.

Figure 11. Both of these bottom paths are encoded by the word e+_U::e.,+D~e.,+'

We shall say that a bottom path is positive (resp, negative) if it start s at a posi-
tive (resp. negative) point. Let 9J+ and 9J_ be the languages formed by the words en-
coding positive paths and negative paths, respectively. Examining how the positive
and negative paths may begin, we find that the languages 9J+ and 9J_ have the fol-
lowing grammar:
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(7)

(8)

In view of our next move, it is convenient to rearrange the right sides of Eqs.
(7) and (8) writing

and »developing- D: 9J+ and D~9J_ in a likewise manner.
Now we replace the syllables D: e+_U=, D=e_+U:, D: e+_U~, D=e_+U~,

D~e_+U:, D~e+_U=, D~e_+U~ and D~e+-U~ by !V=e+_, =V:e_+, :V~e+_, =V~e_+,
~V:e_+'~V=e+_,~V~e_+and ~V~e+_respectively.* Immediately afterwards, we let the
letters of the thus modified languages 9J+ and 9J_ commute (making the letters com-
mute is a part of the DSV-methodology).In this way, these two languages turn into
generating functions, which will be called B+ and B_.

In fact, the gfs B+ and B_ refer to a coding for bottom paths which is somewhat
different from the one described at the beginning of this section. This modified cod-
ing uses the D-Ietters only for those downward segments which are not immediately
followed by an upward segment. Similarly, it uses the U-letters only for those up-
ward segments which are not immediately preceded by a downward segment. To reg-
ister the event of a downward segment immediately followedby an upward segment,
an appropriate V-Ietter is used.

From the rearrangements of Eqs. (7) and (8) we can easily read off the following
linear equations for B+ and B_:

(9)

(10)

where

* The notation »V«is intended to suggest the word »valley«,
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Therefore (11)

and (12)

3.2. How to recover the area gf for thin polyominoes?
Now that we know the generating function for the codes of the bottom paths,

it is not too hard to obtain the area gf for the corresponding family of polyominoes,
i.e. for the thin polyominoes.In fact, all we have to do is make an appropriate change
of variables in functions B+ and B_.

Recall that the thin polyominoassociated to a given bottom path consists of all
cells above the path such that the cell and the path have at least one point in com-
mon. Now, a horizontal edge marked by e+_ is the lower side of a black cell and a
horizontal edge marked by e_+ is the lower side of a white cell. Thus, to begin chang-
ing the variables of B+ and B_, we substitute

a) b) c)

(13)

d)

Figure 12. The cells of P touched by the vertical segment ar the relevant valley are marked
by asterisks.

Let Tr be a bottom path, let P be the thin polyominoassociated to Tr and let s be
a vertical segment of n,

First, suppose that s is encoded by U!. As s starts and ends at positive points,
its length is an even number, say 2k. A glance at Figure 12a makes it dear that s
touches exactly 2k+2 cells ofP. But two of those cells lie immediately above the hori-
zontal edges of n, Therefore, they have already been taken into account by the sub-
stitutions Eq. (13). On the other hand, since s is encoded by U!, it does not come
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immediately after some downward segment. Hence for the remaining 2k touched
cells, the only part of Jr that touches them is s. In order to take into account these new
touched cells: of which k are black and k are white, we shall make the substitution

(14)

For similar reasons, we also let

(15)

Now suppose that the vertical segment s is encoded by U~.Then, the length of
s is an odd number, say 2k - 1 (k E N). s touches 2k + 1 cells of P (Figure 12b) and
our forthcoming substitution should take into account 2k-1 of them. Also note that by
Eq. (13) the column to the left of s is supposed to be a w:w one. However, the 2k - 1
new touched cells, of which k are black and k - 1 are white, turn that column into
a b:w one. These facts led us to make the substitution:

(16)

Similarly, we let

(17)

For the D- and n-variables, the substitutions to be made are

(18)-(23)

Next, let v be a »valley- of Jr encodedby ~V~.There are two cases to be considered:
i) the left »hill-side- of vis longer than the right »hill-side- (Figure 12c). Let the

length of the left hill-side be 2k. Then the length of the right hill-side is one among
the k values 1, 3,..., 2k - 1. Further, the column of P springing up from the valley
v consists of 2k + 1 cells. The lowermost cell has already been taken into account
by the substitutions Eq. (13)while the remaining 2k cells (k black and k white ones)
should be taken into account now.

ii) the left hill-side of u is shorter than the right hill-side (Figure 12d). Suppose
that the length of the right hill-side is 2k + 1. Then, there are k possibilities for the
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length of the left hill-side: 2, 4, ..., 2k. In the column of P springing up from the val-
ley v, there are 2k + 2 cells and 2k + 1 of them (k black and k + 1 white ones) have
not yet been taken into account. Further, the column in question is a w:b column,
whereas Eq. (13) anticipated that it would be a b:b one.

These considerations lead us to let

Likewise, we infer that for the remaining seven V-variables the substitutions to
be made are

(25)-(31)

The bottom paths of the (thin or not) b-polyominoes are positive and the bottom
paths of the w-polyominoesare negative. Thus, if we put Eqs. (13)-(31) into Eq. (11),
we obtain the area gf for thin b- polyominoes fb(qb' qw' Xb:b' xw:w' xb:w' xw:b). The for-
mula for fb is

(32)

where

and
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Once that the function fb is known, the area gf for the thin w-polyominoes t;
can be found immediately. The (say) downward translation by one lattice unit is a
bijection between the thin w- polyominoes counted by (q~ qiwxi:b .xlw:wxb:wx~:b) t; and
the thin b-polyominoes counted by (lli, q~ x),:bx~:w xL x;Z:b) fb· This relationship be-
tween the coefficients of t: and fb implies that

(33)

4. THE AREAgf FOR ALL CCCP's

Defining a general CCCP amounts to the same thing as choosing a thin
polyomino and deciding how many cells we wish to add at the top of each of the thin
polyomino's columns. See Figure 13. Note that ifwe have, for example, a b:b column
and we add an even number of cells at the top of it, we will obtain again a b:b col-
umno But, if we add an odd number of cells, we will obtain a w:b column.

---+

Figure 13. To obtain the polyominoPi\; we start with the thin polyomino PJ and add 2, 3, 4,
O cells at the top of its Ist, 2nd, 3rd, 4t columns, respectively.

From these remarks we infer that there is a change of variables by which the
area grs for thin polyominoes fb and fw can be transformed into Fb and F un the area
grs for general CCCP's. Actually, the substitutions that we have to make are

(34)-(37)
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Putting Eqs. (34)-(37) into Eq. (32), after a good deal of rear-ranging we obtain
our main result:

Theorem 1. We have

where

Of course,

Let P be an arbitrary CCCP and let k be a column of P. Further, let Iklb and
Iklw be the numbers of black cells and white cells contained in k. If k is respectively
a btb, W:W, b:w, w:b column, then Iklw = Iklb - 1, Iklw = Iklb + 1, Iklw = Iklb, Iklw = Iklb. Renee
the polyomino P satisfies

(40)

Here, iPlw denotes the number of white cells of P, iPlb:b denotes the number of b:b
columns of P and so on.

Thus, the coefficient (qXbq~" x%~bx~",;; xg",;; x~bb>Fb +Fw may be different from zen>
only in the case flw = flb - bb + ww. In that case, the coefficient in question is given
by the sevenfold sum
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Some of the binomial coefficients(bc's) appearing in Eq. (41) are indicated by an +-
arrow. Those bc's are much the same as the usual bc's, the only difference being

the agreement [=~] ....= 1.

Let (spI) and (sp2) be the following two symmetry properties:

Now, none of the functions flY fUl' Fb and Fw has either of the above properties.
Function t,+ t: possesses only the property (sp2), while Fb + F w possesses both (spI)
and (sp2). Basically, to give a combinatorial proof that Fb + F w possesses (spl),we
just have to ref1ect the CCCP's in a horizontalline crossing the verticallattice edges
at their midpoints. This proof does notapply to t, + t; because the ref1ection in a
horizontal line transforms some of the thin polyominoesinto non-thin polyominoes.

5. TWO SPECIAL CASES

Rectangular lattice. Our first check of the fdrmula (38) will be to see if the ap-
propriate change of variables does really transform Fb into Fr, the area gf for CCP's
on the rectangular lattice. Thus, we put

qb=q, qw=q, xb:b=x, xw:w=x, xb:w=x, xw:b=x. (42)

This turns the numerator of Fb into

qx(l- q)3 (1+ q)4 (1- q2 + qx) (1- q2 _ q2 x) (43)

and the denominator of Fb into

When Eq. (43) is divided by Eq. (44), the common factors cancel, and what re-
sults is the known formula (1) for Fl".

Honeycomb lattice. In section 2, we said that there is a perimeter preservingIvl
correspondence between the b-polyominoeswith no u-edges and the honeycomb lat-
tice CCP's. Now, note that a b-polyominohas no u-edges if all of its columns are w:b
columns. In fact, the correspondence of section 2 maps the b-polyominoes with only
w:b columns having Il black cells, Il white cells and k columns bijectively onto the
HCCP's having area Il and k columns. Renee the change of variables

(45)

should turn Fb into Fh, the area generating function for RCCP's.
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Indeed, the substitution Eq. (45) changes the numerator of Eq. (38) into

qx(l- q)5 (46)

and the denominator into

(47)

Evidently, the formula for Fh obtained by dividing Eq. (46) by Eq. (47) is exactly
the same one as that derived in section l.

Remark. So far our results Eqs. (38) and (39) have resisted to two checks. Nev-
ertheless, to be completely sure that Eqs. (38) and (39) are correct, we subjected
them to one more check. In addition to the coefficients of Fb + F w' which are given
by Eq, (41), we also calculated the coefficients of Fb alone. Evaluating the se coeffi-
cients we found how the 38997082 b-polyominoes and the twice as many CCCP's
having the area 20 and 6 columns are distributed according to six parameters: black
cells, white cells, b:b, W:W, b:w and w:b columns. Then, we rederived the se two six-
parameter distributions by a different method: the 'Iemperley! recurrences. To the
satisfaction, all the numerical values obtained by the two different methods fully
agreed.
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SAŽETAK

Prebrojavanje stupčano konveksnih poliominoe
na šahovskoj mreži prema njihovoj površini

Svjetlan Feretić

Izračunana je Fb, funkcija izvodnica za broj stupčano konveksnih poliominoe na šahovskoj
mreži koji imaju zadanu površinu. Zanimljivo je da se površinske funkcije izvodnice za
stupčano konveksne poliominoe na pravokutnoj i šesterokutnoj mreži mogu dobiti kao speci-
jalni slučajevi funkcije Fi: Tematski je ovaj rad srodan radu Tzenga i Lina, koji su, na Wuov
poticaj, stupčano konveksne poliominoena šahovskoj mreži prebrojili prema opsegu.




