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»The structure of a molecule is completely defined
by the number and kind of atoms and the linkages
between them«.

Ernest L. Eliel (1962)!

The definitions and methods of computing the Wiener index are re-
viewed. It is pointed out that the Wiener index is a useful topological index
in the structure-property relationship because it is a measure of the com-
pactness of a molecule in terms of its structural chracteristics, such as
branching and cyclicity. A comparative study between the Wiener index and
several of the commonly used topological indices in the structure-boiling
point relationship revealed that the Wiener index is, in this case, rather
inferior to most indices, a result that has been observed by other authors
as well. New developments, such as an extension of the Wiener index to
its three-dimensional version are also mentioned.

INTRODUCTION

The Wiener index (often also called the Wiener number) W is the first topological
(graph-theoretical) index to be used in chemistry.>* It was introduced in 1947 by
Harold Wiener* as the path number.? The path number was introduced for alkanes

* Reported in part at MATHC/CHEM/COMP 1994, an International Course and Conference on the Interfaces
between Mathematics, Chemistry and Computer Science, Dubrovnik, Croatia: June 27 — July 1, 1994.
## Author to whom inquiries should be addressed.
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and is equal to the number of the carbon-carbon bonds between all pairs of carbon
atoms in an alkane. Wiener also introduced the second index, which he called the
polarity number and which was denoted by the letter p. This number is equal to the
count of carbon-atom pairs separated by three bonds. Although p is called the po-
larity number, it is really related to steric characteristics of an alkane.®

By using the structure-property relationship of the type shown below:®
bp=aW+bp+c (D

one obtains a reasonable prediction of boiling points (bp's) of alkanes. If one consid-
ers all alkanes from n-butane to decanes (methane, ethane and propane are not
taken into account since for them p=0), then the statistical characteristics of Eq. (1)
are: a = 0.6863 (+ 0.0237), b = 4.766 (+ 0.273), ¢ = 24.94 (+ 2.24), R = 0.975, s = 8.06
and F = 1367. A plot of the boiling point calculated by Eq. (1) against experimental
boiling points of the alkanes considered is given in Figure 1.
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Figure 1. A plot of boiling points calculated by Eq. (1) against experimental boiling points of
the lowest 147 alkanes. Methane, ethane and propane are not considered because in their case
the polarity number is equal to zero.

* At that time Wiener was a chemistry student at Brooklyn College. After getting a degree in chemistry,
he went on to medical school and left chemistry for good.
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One can improve the above relationship by using:”
bp=a W, +bp+c (2)
where
W, = W/N? . (3)

In the above equation N is the number of carbon atoms in an alkane. The sta-
tistical characteristics of Eq. (2) for the lowest 147 alkanes are: @ = 117.51 (+ 1.77),
b =7.061 (+ 0.108), ¢ = —64.62 (+ 2.01), R = 0.995, s = 3.74 and F = 6606. A plot of
the boiling points calculated by Eq. (2) against experimental boiling points of the
alkanes considered is given in Figure 2.
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Figure 2. A plot of boiling points calculated by Eq. (2) against experimental boiling points of -
the lowest 147 alkanes. Methane, ethane and propane are not considered because in their case
the polarity number is equal to zero.

In fact, in his initial work Wiener used the differences Abp, AW,, and Ap, respec-
tively, between the boiling points, the path numbers and polarity numbers of linear
alkanes and their branched isomers, that is, Abp = (bp); — (bp),, AW, = (W), — (W),
and Ap = p; — p,,, Where 1 denotes the linear and b the branched isomer. In this case,
Eq. (2) becomes:
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Abp = aAW, + bAp . (4)

The statistical characteristics of this relationship are: a = 86.87 (+ 2.66), b = 5.420
(£ 0.167), ¢ = —=1.799 (+ 0.506), R = 0.943, s = 2.30 and F' = 573. A plot of boiling
points calculated by Eq. (4) against experimental boiling points of the alkanes con-
sidered is given in Figure 3. We note here that Eq. (4) gives the smallest value for
the standard deviation although its correlation coefficient is the poorest of the three
models tested.
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Figure 3. A plot of boiling points calculated by Eq. (4) against experimental boiling points of
the lowest 147 alkanes. Methane, ethane and propane are not considered because in their case
the polarity number is equal to zero.

In subsequent studies, Wiener has shown that Eq. (4) can also be used to predict
other physical parameters of alkanes, such as heats of formation, heats of vaporiza-
tion, molar volumes and molar refractions.®

Platt® was apparently the first to realize the significance of the Wiener approach
and he tried to rationalize its origin. This is because one of Platt's interest was also
the structure-property relationships for alkanes.!? He also pointed out:® »The Wiener
number (Platt was the first to use this term) is in fact a particular neighbor-sum
(J. Chem. Phys. 15 (1947) 766),° but with the property that the coefficients of suc-
cessive orders of neighbors, instead of approaching zero, increase linearly with in-
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creasing distance. This is another way of saying that it would correspond to long-
range forces if it were an internal property.« After these initial efforts by Wiener and
a little later by Platt, the Wiener index was hardly used or mentioned in the litera-
ture!® until the revival of the interest in chemical applications of graph theory in
the early seventies.!* The advent of chemical graph theory stimulated, among many
things, numerous studies on the Wiener index, its properties and the range of its
applicability. 2471547

We decided to prepare this report with the aim to review the important steps
in the development of the Wiener index and to mention a few key applications of
this index in the structure-property modelling. Let us also mention here that the
structure-property model usually means the relationship between structure and
property in a quantitative mathematical form suitable for further use.*® Since the
interest in the Wiener index and related topological indices is still very much pre-
sent in the literature,**% it has even been used to study the C,, fullerene isomers,”
this report also appears to be timely. A novice will find that there a lot of work has
been done on the formal theory and applications behind the simple term »the Wiener
index or the Wiener number«. The most natural field for applications of the Wiener
index is in the QSPR modelling. The acronym QSPR stands for the quantitative
structure-property relationships.?! Let us mention at this point that the Woodward
rules”™ for the estimation of UV spectra of a,B-unsaturated ketones are a splendid
example of an early structure-property scheme. There are also other fields of appli-
cation,** but the contributions there are not so numerous as in the case of the QSPR
research.

To simplify the presentation, we will use the graph-theoretical concepts and ter-
minology throughout the article.”> Molecules will be converted into hydrogen-de-
pleted molecular graphs in the usual way.244°

The article is structured as follows. In the next section, we give definitions of
the Wiener index. The various methods for computing the Wiener index are reviewed
in the third section. The fourth section contains a comparative study between the
Wiener index and several commonly used topological indices in the structure-boiling
point relationship. The selected new developments are briefly described in the fifth
section. We end the article with our concluding remarks.

DEFINITIONS OF THE WIENER INDEX

Original definition of Wiener

In his first paper,” Wiener defined the path number W (which we now call the
Wiener index or the Wiener number after him): »...as the sum of the distances be-
tween any two carbon atoms in the molecule, in terms of carbon-carbon bonds.«. Un-
der the term »molecule« he meant »alkane«, because this definition is not valid in
the case of (poly)cyclic systems. In the case of the latter molecules, one should use
the term »shortest distances« in the above sentence.

Definition of Hosoya

Hosoyal* was the first to define the Wiener index using the graph-theoretical ap-
proach. He pointed out that the Wiener index can be obtained from the distance ma-
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trix4073.7 of a molecular graph. The Wiener index W = W(G) of a (molecular) graph
G is defined as the half-sum of the elements of the distance matrix D:

N N
W=(1/2)Y, 2 D), (5)

i=1j=1

where (D),; represents off-diagonal elements of D.

The polarity number p = p(G) of a (molecular) graph G is then given by:

p =122 (py) (6)

where pj is the number of paths of length 3 or the number of off-diagonal elements
of D with distance 3.

Definition based on the adjacency matrix

The Wiener index W of a (molecular) graph G can also be obtained from the ad-
jacency matrix®’® of G. In this case, W is defined by means of the square of the ad-
jacency matrix A of G:™

N
W=(1/2) ). W, )
i=1
where
lmax
W= Z A); -1 . (8)

1=1
The matrix A, is defined as:

1 if the vertx (atom) v; is the /-th neighbour of the vertex v;
A), = { ©)

0 otherwise

Note, that /. in Eq. (8) is the length of the longest path in G.

Similarly, the polarity number p can also be defined in terms of the A; matrix:

N
p=(1/2)) (A3); . (10)

S |
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Definition based on the adjacency matrix, the distance matrix
and the degree row-matrix
In 1989, Schultz? introduced an index, named the molecular topological index

MTI, for characterizing alkanes by an integer. This index was subsequently named
the Schultz index.*’ The formal definition of the MTI was given by Miiller et al.:"”

N
MTI=) e (11)

i=1
where e; (i = 1,...N) are the elements of the row (1 x N) matrix:
e; =v(A + D) (12)

where v, A and D are, respectively, the degree row-matrix, the adjacency matrix and
the distance matrix of an alkane tree.

The Wiener index can be given in terms of the MTI index as follows:"%7

W = [MTI - 2p, + (N-1)(N-2] /4 (13)

where p, is the number of paths of length 2 and N the number of vertices (atoms)
in an alkane-tree. This formula is valid only for acyclic structures.

The Wiener index can also be expressed in terms of the MTI for [N]cycles de-
picting carbon skeletons of cycloalkanes or [N]annulenes. In this case, the formula
connecting the Wiener index and the MTI index is rather simple:

W= (MTL/4) - N . (14)

Attempts to generalize the above formulae to include polycyclic structures and
(poly)cyclic structures with branches have been unsuccessful so far.8® However, it is
worth noting that there is a strong correlation (r = 0.996) between the Wiener num-
ber and the MTI for 102 randomly selected (poly)cyclic graphs with branches. This
indicates that a relationship between the Wiener number and the Schultz number
may also exist for other classes of molecules, but perhaps not for an arbitrary case.

Definition based on the Laplacian eigenvalues

The Laplacian matrix L = L(G) of a graph G is defined8!82 as follows:
L=V-A (15)

where A is the adjacency matrix and V is the degree matrix, which is a diagonal -
matrix with entries:

W);;=D@) (16)
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The Laplacian matrix L is a real symmetric matrix. The diagonalization of
the Laplacian matrix produces N real eigenvalues (called Laplacian eigenvalues):
0 = x; €xy < ... <xp. The smallest Laplacian eigenvalue is always zero. This is the
result of the special structure of the Laplacian matrix.

The Wiener index of a tree T can be defined in terms of its Laplacian eigen-
values:81.83

N
W=NY (1/x). (17)

i=1
METHODS FOR COMPUTING THE WIENER INDEX

Original method of Wiener

Wiener instructed the reader how to compute, in a simple way, the path number
with the following words® »Multiply the number of carbon bonds on one side of any
bond by those on the other side; W is the sum of these values for all bonds«. These
words may be formalized as shown below. Let T be a tree (an alkane) with N vertices
(atoms) and e one of its edges (bonds). Let also N (e) and Ny(e) = N — N,(e) be the
numbers of vertices of the two parts of T — e. Then:

W =D Nye) Nye) (18)

e

where the summation is over all N — 1 edges of T. The use of formula (18) is illus-
trated in Figure 4.

Method based on the concept of branching vertices

This method is an extension of Wiener's method.** It is based on the concept of
branching vertices in a tree. A branching vertex v, is any vertex of a tree with the
degree higher than two. If the numbers of vertices in the branches attached to v,
are denoted by N, N2,....Np, then:

W=(N; 1]~Z 2.N,N,N,. (19)
v, ijk

The first summation in Eq. (19) goes over all branched vertices v, of a tree. This

method is illustrated in Figure 5 also for a tree T representing 5-ethyl-6-isopropyl-

2-methyloctane.

Method based on the distance matrix
This method was introduced by Hosoya!* and it is illustrated in Figure 6 for the
same tree that is used in Figures 4 and 5.

Unlike most of the others, this method is also applicable to polycyclic systems.
In Figure 7, we also illustrate the use of the Hosoya method for a polycyclic case.
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Ny(e()Na(e,) 1x13 13
Ny (ep)Na(e5) 1x13 13
Ny (ez)Na(e5) 3x11 33
N, (e4)Na(ey) 4x10 40
Ny (e5)Na(eg) 5x9 45
N, (eg)Na(eg) 2x12 24
N, (e7)Na(e7) 1x13 13
N (eg)Na(eg) 8x6 48
N;(eg)Na(eq) 3x 11 33
Ny(e40)N2(e1o) 1x13 13
Ny(ey1)Na(eqq) 1x13 13
Ny(e12)Na(ey) 2x12 24
Ny(e4g)N2(e43) 1x13 13
W =325

Figure 4. Computation of the Wiener index for a tree T representing the carbon skeleton of
5-ethyl-6-isopropyl-2-methyloctane using Wiener's original method.

Method based on the adjacency matrix

Unlike the one described above, this method is applicable to all kinds of acyclic
and cyclic molecules. We will illustrate the method for a tree T representing the
carbon skeleton of 2-methylbutane (see Figure 8).

Method based on the combination of the adjacency matrix, the distance
matrix and the degree row-matrix

This is not as general a method as methods based on the distance matrix and
the adjacency matrix, but is more general than the first two methods reported. It
will be illustrated in Figure 9 and Figure 10, respectively, on the same tree as the
methods shown in Figures 4-6 on a monocyclic graph with 11 vertices.

Method based on the Laplacian eigenvalues

This method is applicable only to acyclic structures. It will be illustrated in Fig-
ure 11 on the same branched tree as all the methods from above.
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w = (N;‘) - INNN,
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(iv) )\/\E/
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(vi)
W = 455-(11+60 +48 + 11) =325

Figure 5. Computation of the Wiener index for the tree T from Figure 4 using the method based
on excising the branching vertices from T.
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Figure 6. Computation of the Wiener index for the tree T from Figure 4 using the method based
on the distance matrix.
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Figure 7. Computation of the Wiener index for a polycyclic graph G with branches using the
method based on the distance matrix.
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Figure 8. Computation of the Wiener index for a tree T depicting the carbon skeleton of 2-me-
thylbutane using the method based on the adjacency matrix.

v=[13223321121311]

) N N
MTI = X X (v),[(A); + (D)] = 1176

j=1 i=1
2p,=2x16 = 32

W = [MTI-2p, + (N-1)(N-2)]/4 = 325

Figure 9. Computation of the Wiener index for the tree T from Figure 4 using the method based
on the combination of the adjacency matrix, the distance matrix and the degree row-matrix.
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v=[22222222222]

N N
MTI = 2 Z(v), [(A); + (D)) = 704
j=1 i=1

W =(MTI/4)- 11 =165

Figure 10. Computation of the Wiener index for a graph G representing the carbon skeleton
of [11]annulene using the method based on the combination of the adjacency matrix, the di-
stance matrix and the degree row-matrix. )
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2.146, 2.675, 3.100, 3.891, 4.231, 4.935 }

N
1
W=142(—) =325
=2 Xi

Figure 11. Computation of the Wiener index for the tree T from Figure 4 using the method
based on its Laplacian eigenvalues.
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Computer methods

Computer methods for obtaining the Wiener number are usually concerned with
the efficient ways of computing the distance matrix of a (molecular) graph. This is
so because the construction of the distance matrix for large (often complex) graphs
is a nontrivial task and, in order to be carried out, a computer must be used. Most
commonly, the distance matrix of a graph G has been generated using powers of the
corresponding adjacency matrix of G.%48¢ Here, we describe Hosoya's method for ob-
taining the distance matrix from the adjacency matrix.8%%7

Hosoya's method can be outlined in the following way. Let us first define the ad-
jacency matrix A; as:

1 if the shortest distance between iand j is [

(Al ij = { (20)

0 otherwise.

Let us also define the adjacency matrix B, as:

1 if the shortest distance between i and j is equalorless than [
(Bl)ijz{ (21)

0 otherwise.
Matrices A; and B, are related in the following way:
B,=B, -4, (>1). (22)

Note also that:
(A= B;_y); (All)ij . (23)

Then, the distance matrix D is given in terms of matrices B, as:
k-1
D-=-> B (24)
1=0

where % is the largest distance in a graph G. Hosoya's method may be schematized
as it is done in Figure 12. In a simple case, it is enough to use Eqgs. (21) and (24).
This is illustrated in Figure 13.

There are algorithms and computer programs available that are much faster
than the matrix power method.83% For example, Bersohn's method® is about thirty
times faster than the method based on powers of the adjacancy matrix when used
to construct the distance matrices for steroids on an IBM 3033 computer. The weak
point of the matrix power method is the number of matrix multiplications required
by the procedure, since computers multiply much more slowly than the store, fetch,
add and substract. Bersohn's method does not require any multiplications at all. The
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Ag=1 —— B,

A, ———— B, >
A? A, B, >
A} A, - B3
i o
| 7
| //
A'1 A, B, =0

Figure 12. A schmetic presentation of Hosoya's method for the construction of the distance matrix.

6
4 5
3 2
G 1
0.1 1111 01111
1011 11 00101
1ot 1l 100011
B, = B, =
L1101 % 110001
111101 101000
| S O O O O} 111100
000101 0-1. 273 2 3
000000 . 101212
000001 210123
B, - D-3B,-
100000 32101 2
=0
000000 212101
101000 323210

Figure 13. Computation of the distance matrix for a graph G using simplified Hosoya's method.
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method of Miiller et al. ? also appears to be a very fast computer method for setting
up the distance matrix for a graph of arbitrary size and complexity.?

Analytical formulae

For some classes of molecules, the Wiener index can be computed by analytical
formulae.415,24,29,38,40,44,59,97-101

1. Linear alkanes with N carbon atoms
W = (N® - N)/6 . (25)
2. The star molecules with N carbon atoms
W=®mO-12. (26)
3. Comb-like branched alkanes with N carbon atoms

W = (N° + 6N? — 10N)/12 . (27)

4. Cycloalkanes or annulenes with N carbon atoms

N3/8 N = even
W= { (28)
N(N?-1)/8 N=odd.
5. [N]radialenes
N3/2+2N?-N N =even
W= { (29)

N3/2+2N?-3N/2 N=odd.
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W = (16H® + 36H” + 26H + 3)/3 . (32)
9. Phenanthrenes and helicenes with H number of hexagons

W = (8H® + 72H? — 26H + 27)/3 . (33)

10. Polymeric chains of singly-connected hexagons with N carbon atoms

W = (2N® + 9N)/18 . (34)

11. Polymeric chains of doubly-connected naphthalene units with N carbon atoms

W = (2N° + 235N — 1080)/30 . (35)

A COMPARATIVE STUDY OF THE WIENER INDEX AND SEVERAL MOST
FREQUENTLY USED TOPOLOGICAL INDICES

The Wiener index is extensively used in the structure-property-activity studies.
The reason for this is that this topological index appears to be a good measure of
the compactness of a molecule.”15102103 The smaller the Wiener index, the larger the
compactness of a structure in terms of its structural features such as branching and
cyclicity. Therefore, it can be reliably used in the correlations with those physical
and chemical properties which depend largely on the ratio betweeen the volume and
the surface of a molecule. These are the properties of acyclic and cyclic, saturated,
unsaturated and aromatic hydrocarbons, such as the heats of formation, the heats
of atomization, the heats of isomerization, the heats of vaporization, densities, boil-
ing points, critical pressures, refractive indices, surface tensions, viscosities, chro-
matographic retention times, etc.

We also point out that the Wiener index is not a particularly discriminating
topological index. Already in the set of heptanes, two pairs of heptanes with the
same Wiener index appear.’® Bonchev et al.1%* defined the mean isomer degeneracy
S of the Wiener indices as:

S =nlt (36)

where n is the number of isomers considered and ¢ is the number of distinct values
that the Wiener index assumes for these isomers. Obviously, when each isomer is
associated with a distinct value of the Wiener index, then 6 = 1. In all other cases,
0 is greater than one and shows how many isomers on average possess an identical
value of W. Thus, 6 appears to be a valuable criterion for the discriminating power
of a topological index, because the larger the value of §, the smaller the isomer-dis-
criminating power of the index.

We decided to compare the Wiener index and the following topological indices

(TIs), which are most frequently used in structure-property studies: The connectivity
index y,'% the Harary index n,%-1%8 the Balaban index «/,'% the Hosoya index Z,4
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TABLE 1

The Wiener indices (W), the connectivity indices (), the Harary indices (), the Balaban in-
dices (J), the Hosoya indices (Z), the connectivity ID numbers, the WID numbers, the Merri-
field-Simmons indices (o) and boiling points (b.p.) in °C for octanes.

ALKANE w 4 n J Z ID WID o b.p./°C
2,2,3,3-tetramethylbutane 58  3.2500 16.0000 4.0204 17 14.0625 8.0230 80 106.5
2,2,3-trimethylpentane 63 3.4814 154167 3.6233 22 14.2751 8.0199 70 110

2,3,3-trimethylpentane 62 3.5040 15.5000 3.7083 23 14.2717 8.0205 68 114.7
2,2,4-trimethylpentane 66 3.4165 15.1667 3.3889 19 14.2791 8.0182 77 99.2
2,2-dimethylhexane 71 35607 14.7667 3.1118 23  14.4405 8.0163 69 106.8
3,3-dimethylhexane 67 3.6213 15.0333 3.3734 25 14.4311 8.0181 66 112

3-ethyl-3-methylpentane 64 3.6820 152500 3.5832 28 14.4301 8.0196 62 118.2
2,3,4-trimethylpentane 65 35534 15.1667 34642 24 14.3351 8.0186 66 113.4
2,3-dimethylhexane 70 3.6807 14.7333 3.1708 27 14.4960 8.0166 62 115.6
3-ethyl-2-methylpentane 67 3.7187 149167 3.3549 28 145011 8.0178 61 115.6
3,4-dimethylhexane 68 3.7187 14.8667 3.2925 29 14.4916 8.0174 60 117.7
2,4-dimethylhexane 71 3.6639 14.6500 3.0988 26 14.4966 8.0161 64 109.4
2,5-dimethylhexane 74  3.6259 14.4667 29278 25 145019 8.0150 65 109

2-methylheptane 79 37701 14.1000 2.7158 29 14.6660 8.0137 60 117.6
3-methylheptane 76 3.8081 14.2667 2.8621 31 14.6601 8.0146 58 118

4-methylheptane 75 3.8081 14.3167 29196 30 14.6585 8.0150 59 117.7
3-ethylhexane 72 3.8461 14.4833 3.0744 32 14.6659 8.0159 57 118.5
octane 84 39142 137429 25301 34 14.8311 8.0126 55 125.7

the connectivity ID number,!!® the WID number,!® and the Merrifield-Simmons in-
dex ¢.12 They will be compared in an attempt to derive the best TI-boiling point
relationships for octanes. K-parameter structure-property relationships will be de-
rived in order to see, for each value of K, which of the considered TIs produces the
best correlation. Octanes are used since they represent a sufficiently large and struc-
turally diverse group of alkanes for the preliminary testing of TIs.'® The above in-
dices for octanes are reported in Table I.

We systematically studied the structure-property relationships!' from one to
five parameters. The study was done in this way, as recently suggested by Randi¢,"
as a convenient strategy to search for the optimum topological index (or indices) and
the best regression equation for predicting a given property. The following results
have been obtained. Note, that we report in each case only the best K-parameter
structure-property relationship.

i. 1-parameter relationship

bp = (1.21 + 0.11) Z + (82.01 + 4.24)
n =18 r=0884,s =293 F = 57.1

The symbols have the following meaning: r = the correlation coefficient, s = the
standard deviation and F = F-test.

Close to the above relationship is the one based on the Merrifield-Simmons in-

dex o, as expected, because the Z-index and the o-index are closely related graph-

theoretical indices:116
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bp = (-0.8 + 0.11) ¢ + (165.46 + 7.08)
n=18r=0878 s =299, F = 54.11

This 1-parameter relationship with the Wiener index is rather inferior to those
above:

bp = (0.50 + 0.20) W + (78.90 + 13.90)
n=18r=0.533,s=53F=63

According to Randié¢'s classification (based on r and s quantities)!!® of structure-
property regressions, the former regressions are marginally fair, while the latter is
useless.!’?

ii. 3-parameter relationship

bp = (4.25 + 0.68) Z — (82.86 + 18.23) y + 304.24
n=18,r=0953,s=196,F =74.0

Following Randi¢'s!® the quality of this regression can be graded as very good.

iii. 2-parameter relationship

bp = (49.45 + 4.43) J + (2.58 £ 0.26) W — (1.013 + 0.05) ¢ — 160.68
n =18, r =0.990, s = 0.96, F = 220.6

The quality of this regression can be graded as outstanding according to Randié's
classification scheme.

iv. 4-parameter relationship

bp = (48.47 = 3.79) J + (2.85 + 0.24) W — (19.92 + 7.90) ID — (1.29 + 0.12) ¢ + 129.05
n=18,r =0.993, s = 0.82, F = 229.6

Similarly, the quality of this regression can also be graded as outstanding ac-
cording to Randié's proposal. It is gratifying that in both 3-parameter and 4-parame-
ter relationships the Wiener index appears. It should also be noted that, according
to Randié!'® the boiling points are »difficult« molecular properties, because they are
hard to represent successfully by a single-variable regression. Only the multivariate
regressions can be successful in this case. Just to mention, the other difficult mo-
lecular properties are critical temperatures, critical pressures, critical volumes, etc.
On the other hand, »easy« molecular properties (that is, it is easy to find a descriptor
that will give a fair or better regression) are, for example, Pitzer acentric factor, heat
of vaporization, octane number, etc.

We also point out that the topological indices employed in the above analysis are
not strongly intercorrelated indices, except for the pair y and W (r = 0.98).3* Strongly
intercorrelated pairs of indices are those with r > 0.98.34117

Gao and Hosoya!!® studied the size-dependency of the correlation of the Wiener
index (and several other topological indices) with 12 thermodynamic properties of
alkanes. They have found that the correlation coefficients for some properties, e.g.,
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entropy, do not change with the increase of molecular size, while for others they do.
For example, the correlation coefficient of structure-boiling point relationship does
not change with size up to decane, but above undecane is size-dependent. In this
paper, these authors also pointed out that the polarity number p is not a particularly
good parameter to reflect the steric characteristics of alkanes, contrary to the opin-
ion of Platt.

NEW DEVELOPMENTS

In spite of some opinions occasionally expressed that there is nothing new to ex-
pect in this area, the research on the Wiener index and the Wiener index-like indices
continues to thrive. Expecially exciting is the development of hyper-Wiener in-
dex,?1:%9 the Wiener matrix® and the search for the formula for computing the Wie-
ner index for dendritic molecules.** Here, we wish to review briefly the development
of the concept of the 3-dimensional Wiener index.

The 3-D Wiener number W is based on the 3D (geometric, topographic) distance
matrix, much the same as the 2-D Wiener index *W (discussed above) is based on
the 2D (graph-theoretical, topological) distance matrix. The ®D distance matrix of a
molecule is a real N x N matrix, whose elements (3D)ij represent the shortest
Cartesian distance betweeen atoms i and j in the molecule. The 3-D Wiener number
is then equal to the half-sum of the elements of 3D matrix:7411%.120

N N
W=(1/2) ), 2 ¢D),;. (37)

i=1 j=1

This was first proposed by Mekenyan et al.1?0 It appears that Dr. Ovanes Me-
kenyan from Burgas was the first person to suggest the 3-dimensional Wiener num-
ber in his D.Sc. Thesis in 1990.12!

The °D distance matrix can be constructed from the known geometry of a mole-
cule. But, this is not always possible because for many molecules their geometries
are unknown. One way to model the geometry of an unknown molecule is by the
molecular mechanics approach.!?? In Figure 14, we give the ®D distance matrices and
3W indices for four conformations of n-pentane.

The 3-D Wiener index possesses a different value for each different conformation
of a molecule. The most extended conformation has the largest value of the 3W index,
while the most compact conformation has the smallest 3W value. Evidently, the W
index decreases with increasing spheroidicity of a molecule. Thus, it appears that
the 3-D Wiener index is a good measure of the shape of the molecule. However, the
3-D Wiener number was only slightly more successful than the 2-D Wiener number
in the structure-boiling point relationships of 54 selected alkanes.?” It should be also
noted that, in the case of the 3W index, the calculation was carried out for the whole
molecule, i.e., the carbon-hydrogen bonds were also included in the 3D distance ma-
trix. For example, the following 3-parameter relationships with 2W and W indices,
respectively, were obtained:

bp = (108.6 + 6.4) (*W)°-228 £0-008 _ (1780 + 7.9)
n=>54,r=0.995 s =839, F =263
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1.534
3p=| 2.571
3.155 2574 1.537 0 5
4581 3929 2543 1535 0

1.534
3p=| 2.544 1537 0
3.914 2548 1537
5.087 3.914 2544 1534 0

SW = 26.694 3W = 25.497

N

0 0

1.533 1.534
3D =| 2.583 1.539 3p=| 2570 1.538 © ¢
3.174 2597 3.135 2.601 1.538 ©

3.442 3.486 2574 1535 0 3.757 3.135 2570 1.534 0

3W =23.912 3w = 24.001

Figure 14. The diagrams, the ®D distance matrices and 3-D Wiener numbers *W for four con-
formers of n-pentane.

bp = (395.0 + 68) (PW)0099 £ 0010 _ (689 0 + 79)
n=>54,r=0.998, s =584, F = 5402

This result is in a way disappointing, because it is much harder to compute the
3W index than the ?W index and the improvement obtained for the standard devia-
tion is still unsatisfactory. On the other hand, we should remember that the boiling
point is a difficult molecular property to predict.!!® Nevertheless, in spite of this in-
itial frustration, we continue our work on the W index with the aim of discerning
the conformation of molecules responsible for the bulk property of the compounds
under investigation. In this respect, the computer graphics modelling of molecules
in bulk might be of some help. However, it should be pointed out that a series of
structure-activity studies of the Burgas group, e.g.,'?? is rather encouraging: The 3-D
Wiener index and its information-theoretic analogue Iy strongly overperform the
2-D versions and are among the best molecular descriptors for correlating biological
activities, e.g., modelling the anticancer activity of a series of vitamin A analogs.

It is interesting to note that the 2W index, computed only for carbon skeletons
of alkanes, and the 3W index, computed for carbon-hydrogen skeletons of alkanes,
are closely intercorrelated indices. A linear relationship betweeen these two versions
of the Wiener index is given by:
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3W = (0.085 + 0.001) 2W — (13.005 + 0.941)
n =150, r = 0.997, s = 3.66, F = 22995

The significance on the above result is that both 2W and 3W indices contain, to
a great extent, similar structural information. Could it be that the topological fea-
tures make a gross part of the structural characteristics of the molecule, while spa-
tial features make only a minor part? It could be so, but then spatial characteristics
of molecules, irrespective of how minor is their part in the structure of the molecule,
are important for a number of molecular properties, especially biological ones. On
the other hand, perhaps the success of the W index in some applications can really
be attributed to this similarity between the 2-D and 3-D versions of the Wiener index.

CONCLUDING REMARKS

In this report, we reviewed the definitions and the algorithms for computing the
Wiener index, the oldest of graph-theoretical indices to be used in chemistry. We com-
pared the original Wiener structure-boiling point model for the 147 lowest alkanes
(methane, ethane and propane were not considered because the polarity number for
them is equal to zero) with two more modern ones. The result is that the Wiener ap-
proach gives the lowest value of the standard deviation, but also the lowest value of the
correlation coefficient. This is not surprising because Wiener devised his procedure with
the aim of reproducing as well as possible the experimental boiling points of alkanes.

The Wiener index is interpreted as a measure of the compactness of a molecule
in terms of its structural characteristics, such as branching and/or cyclicity. How-
ever, the Wiener index is not a very discriminating topological index. The meaning
of this statement is that non-isomorphic structures with identical values of the topo-
logical index could appear. In the case of the Wiener index, this happens already in
heptanes, where two pairs of heptane isomers with the same value of W appear.

A comparative study between the Wiener index and several topological indices
commonly used in the structure-property correlations (the connectivity index, the
Harary index, the Balaban index, the Hosoya index, the connectivity ID number, the
WID number and the Merrifield-Simmons index) revealed that the Wiener index in
the case of 1-parameter structure-boiling point relationships is inferior to almost all
the mentioned indices, but to the Balaban index and the WID number. The best re-
sults have been obtained for the 3-parameter and 4-parameter structure-boiling
point relationships, which in both cases included the Wiener index (other indices
used were, in the former case, the Balaban index and the Merrifield-Simmons index
and, in the latter case, besides these two indices, the ID number).

Finally, we mentioned recent developments related to the Wiener index, including
the Wiener matrix and indices derived from it, the hyper-Wiener index and its three-
dimensional version. The structure-property studies with 3W are still in the initial
stages and it is difficult to predict how useful they are going be in the QSPR and QSAR
studies (although some other people reported considerably greater improvements in us-
ing *W over the use of 2W) because, although they show some improvements over studies
which use W, the labor included in computing *W is much more involved. However,
work in this area is still in progress with the aim to discern the conformation of mole-
cules responsible for the bulk properties of compounds under study.

Acknowledgements. — This work was supported by the Ministry of Science and Technology
of the Republic of Croatia through Grants Nos. 1-07-159 and 1-07-85. We are grateful to the
referees for their constructive comments.



WIENER INDEX: DEVELOPMENT AND APPLICATIONS 127

26.

27.
28.

29.
30.

31.
. E. Hladka and L. Matyska, Chem. Listy 82 (1988) 1009.
33.
34.

35.
36.
317.

38.
39.
40.
41.

42.
43.

REFERENCES

. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, p.1.
. Rouvray, Sci. Amer. 254 (1986) 40.
. Hansen and P. C. Jurs, J. Chem. Educ. 65 (1988) 574.
. Polansky, in: MATH/CHEM/COMP 1988, A. Graovac (Ed.), Elsevier, Amsterdam, 1989,
7.

am“mr

Wene1 J. Amer. Chem. Soc. 69 (1947) 17.

. R. Platt, /. Phys. Chem. 56 (1952) 328.

. G. Seybold, M. May, and U. A. Bagal, J. Chem. Educ. 64 (1987) 575.
. Wiener, JJ. Amer. Chem. Soc. 69 (1947) 2636.

. Wiener, J. Chem. Phys. 15 (1947) 766.

H. Wiener, J. Phys. Chem. 52 (1948) 425.

mmYSme vdoH

. H. Wiener, ibid. 52 (19948) 1082.

J. R. Platt, J. Chem. Phys. 15 (1947) 419.
e.g., L. Stiel and G. Thodos, J. Amer. Inst. Chem. Eng. 8 (1962) 527.

. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971) 2332.

Bonchev and N. Trinajstié, J. Chem. Phys. 67 (1977) 4517.

Bonchev and N. Ttinajstié, Int. J. Quantum Chem.: Quantum Chem. Symp. 12 (1978) 293.
Boncheyv, J. V. Knop, and N. Trinajstié¢, Math. Chem. (Milheim /Ruhr) 6 (1979) 21.
Mekenyan, D. Bonchev, and N. Trinajstié, ibid. 6 (1979) 93.

Bonchev, O. Mekenyan, G. Protié, and N. Trinajstié, /. Chromatogr. 176 (1979) 149.
Bonchev, O. Mekenyan, and N. Trinajstié, Int. J. Quanium Chem. 17 (1980) 845.
Sablji¢ and N. Trinajstié, Acta Pharm. 31 (1981) 189.

Mekenyan, D. Bonchev, and N. Trinajstié¢, Math. Chem. (Miilheim /Ruhr) 11 (1981) 145.
Mekenyan, D. Bonchev, and N. Trinajstié, Croat. Chem. Acta 56 (1983) 237.

Trinajstié, Chemical Graph Theory, CRC Press, Boca Raton, FL. 1983, Vol. II, Chapter 4.
Bonchev, Information Theoretic Indices for Characterization of Chemical Structures, Re-
search Studies Press, Letchworth, Herts., 1983, p. 71.

D. H. Rouvray, in: Chemical Applications of Topology and Graph Theory, R. B. King (Ed.),
Elsevier, Amsterdam, 1983, p. 159.

A. T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan, Topics Curr. Chem. 114 (1983) 21.
D. H. Rouvray, in: Mathematics and Computational Concepts in Organic Chemistry, N. Tri-
najsti¢ (Ed.), Horwood, Chichester, 1986, p. 295.

I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Ver-
lag, Berlin, 1986, Chapter 11.

D. H. Rouvray, in: Graph Theory and Topology in Chemistry, R. B. King and D. H. Rouvray
(Eds.), Elsevier, Amsterdam, 1987, p. 177.

D. Bonchev, O. Mekenyan, and O. E. Polansky, in: ibid., Elsevier, Amsterdam, 1987, p. 209.

UZoopOUOUEY

M. 1. Stankevich, I. V. Stankevich, and N. S. Zefirov, Russ. Chem. Rev. 57 (1988) 191.

K. Kovadevié, D. Plavsié, N. Trinajsti¢, and D. Horvat, in: MATH/CHEM/COMP 1988, A.
Graovac (Ed.), Elsevier, Amsterdam, 1989, p. 213.

N. Adler, L. Kovac¢ié-Beck, and N. Trinajstié, ibid. p. 225.

A. K. Mukherjee and K. K. Datta, Indian J. Chem. 29A (1990) 613.

L. Benedetti, G. Battistuzzi Gavioli and C. Fontanesi, J. Chem. Soc. Faraday Trans. 86
(1990) 329.

N. Trinajsti¢, S. Nikolié, J. V. Knop, W. R. Miiller, and K. Szymanski, Computational Che-
mical Graph Theory: Characterization, Enumeration and Generation of Chemical Structures
by Computer Methods, Horwood, Chichester, 1991, Chapter 9.

K. Osmialowski and R. Kaliszan, Quant. Struct. — Act. Relat. 10 (1991) 125.

N. Trinajstié, Chemical Graph Theory, 2nd revised CRC Press, Boca Raton, FL., 1992.

L. Benedetti, G. Battistuzzi Gavioli, and C. Fontanesi, J. Chem. Soc. Faraday Trans. 88
(1992) 843.

Z. Mihali¢, S. Nikoli¢, and N. Trinajstié, J. Chem. Inf. Comput. Sci. 32 (1992) 28.

Z. Mihali¢ and N. Trinajstié, J. Chem. Educ. 69 (1992) 701.



128

44.
45.

46.
47.

48.

S. NIKOLIC ET AL.

I. Gutman, Y. -N. Yeh, S. -L. Lee, and Y. -L. Luo, Indian J. Chem. 32A (1993) 651.

(a) A. Voelkel, T. Kopczynski, and A. Gawalek, J. Mol. Struct. (Theochem) 279 (1993) 217.
(b) T. Kopczynski and A. Voelkel, ibid. 284 (1993) 143.

M. Randi¢ and N. Trinajstié, J. Mol. Struct. 300 (1993) 551.

(a) O. E. Polansky and D. Bonchev, Math. Chem. (Milheim/Ruhr) 21 (1986) 133.

(b) O. E. Polansky, in: MATH / CHEM /| COMP 1988, A. Graovac (Ed.), Elsevier, Amsterdam,
1989, p. 167.

(c) O. E. Polansky and D. Bonchev, Math. Chem. (Miilheim /Ruhr) 25 (1990) 3.

L. H. Hall and L. B. Kier, in: Reviews in Computational Chemistry II, K. B. Lipkowitz and
D. B. Boyd, VCH, New York, 1991, p. 367.

N. Adler and L. Kovaéié-Beck, in: Graph Theory and Topology in Chemistry, R. B. King and
D. H. Rouvray (Eds.), Elsevier, Amsterdam, 1987, p. 194.

M. P. Hanson and D. H. Rouvray, in: ibid. 1987, p. 201.

. L. Lukovits, J. Chem. Soc. Perkin Trans. 2 (1988) 1667.
. (a) L. Lukovits, Reports Mol. Theory 1 (1990) 127.

(b) I. Lukovits, Quant. Struct. — Act. Relat. 9 (1990) 125.

(a) D. Bonchev, V. Kamenska, and O. Mekenyan, Int. J. Quantum Chem. 37 (1990) 135.
(b) D. Bonchev, V. Kamenska, and O. Mekenyan, J. Math. Chem. 5 (1990) 43.

I. Gutman and D. H. Rouvray, Comput. Chem. 14 (1990) 29.

J. K. Labanowski, I. Motoc, and R. A. Dammkoehler, ibid. 15 (1991) 47.

N. Bosnjak, Z. Mihalié, and N. Trinajstié¢, J. Chromatogr. 540 (1991) 430.

. Z. Mihali¢ and N. Trinajstié, J. Mol. Struct. (Theochem) 232 (1991) 65.

S. Nikolié, N. Trinajstié, Z. Mihalié, and S. Carter, Chem. Phys. Lett. 179 (1991) 21.
A. Graovac and T. Pisanski, «J. Math. Chem. 8 (1991) 53.

. L. Gutman and Z. Soltés, Z. Naturforsch. 46a (1991) 868.

. L Lukovits, J. Chem. Inf. Comput. Sci. 31 (1991) 503.

. D. J. Klein, Z. Mihalié, D. Plavsié, and N. Trinajstié, ibid. 32 (1992) 304.

. L Lukovits, Int. J. Quantum Chem.: Quantum Biol. Symp. 19 (1992) 217.

. D. Horvat, A. Graovac, D. Plavsié, N. Trinajstié, and M. Strunje, ibid. 26 (1992) 401.

. M. Randié, Chem. Phys. Lett. 211 (1993) 478.

. M. Randié, X. Guo, T. Oxley, and H. Krishnapriyan, J. Chem. Inf. Comput. Sci. 33 (1993) 709.
. M. Randié and N. Trinajstié, Croat. Chem. Acta 66 (1993) 411.

. N. Trinajstié, D. Babié, S. Nikolié, D. Plavsié, D. Amié, and Z. Mihalié, J. Chem. Inf. Comput.

Sci. 34 (1994) 368.
I. Lukovits and W. Linert, ibid. 34 (1994) 899.

. 0. Ori and M. D'Mello, Chem. Phys. Lett. 197 (1992) 49.

. R. B. Woodward, J. Amer. Chem. Soc. 63 (1941) 1123.

. F. Harary, Graph Theory, 2nd printing, Addison-Wesley, Reading MA, 1971.

. D. H. Rouvray, in: Chemical Applications of Graph Theory, A. T. Balaban (Ed.), Academic

Press, London, 1976, p. 175.

. Z. Mihali¢, D. Veljan, D. Amié, S. Nikoli¢, D. Plavsi¢, and N. Trinajsti¢, J. Math. Chem. 11

(1992) 223.

. M. Barysz, D. Plavsié¢, and N. Trinajsti¢, Math. Chem. (Miilheim [Ruhr) 19 (1986) 89.
. H. P. Schultz, J. Chem. Inf. Comput. Sci. 29 (1989) 227.
. W. R. Miiller, K. Szymanski, J. V. Knop, and N. Trinajstié, ibid. 30 (1990) 160.

D. J. Klein, Z. Mihali¢, D. Plavsié, and N. Trinajstié, ibid. 32 (1992) 304.
S. Nikolié¢, N. Trinajstié¢, and Z. Mihalié, J. Math. Chem. 12 (1993) 251.

. D. Plavsié, S. Nikolié, N. Trinajstié¢, and D. J. Klein, Croat. Chem. Acta 66 (1003) 345.
. B. Mohar, in: MATH /CHEM | COMP 1988, A. Graovac (Ed.), Elsevier, Amsterdam, 1989, p.1.
. N. Trinajstié¢, D. Babié, S. Nikolié, D. Plav§ié, D. Amié, and Z. Mihalié, JJ. Chem. Inf. Compudt.

Sci. 34 (1994) 368.

. B. Mohar, D. Babié, and N. Trinajstié, ibid. 38 (1993) 153.
. C. Berge, Théorie des graphes et ses applications, Dunod, Paris, 1958, 136.
. H. Hosoya, in: Proceedings of the Conference on Molecular Structure, Tokyo, 1970, p. 291.

F. S. Roberts, Discrete Mathematics Model, Prentice-Hall, Englewood Cliffs, 1976, p. 58.

. H. Hosoya, private communication to NT (June 17, 1991).



WIENER INDEX: DEVELOPMENT AND APPLICATIONS 129

88.
89.
90.
91.
92.
93.
94.
95.

112.
. M. Randié and N. Trinajstié, J. Mol. Struct. (Theochem) 300 (1993) 551.
114.
115.
116.

117.

118.
119;

120.
121.

122.
123.

R. W. Floyd, Comm. ACM 5 (1962) 345.

M. Bersohn, J. Comput. Chem. 4 (1983) 110.

1. V. Peredunova, V. E. Kuzmin, and Y. P. Konovortskii, Russ. <J. Struct. Chem. 24 (1983) 645.
N. Deo and C. Pang, Networks 14 (1984) 275.

W. R. Miiller, K. Szymanski, J. V. Knop and N. Trinajsti¢, J. Comput. Chem. 8 (1987) 170.
P. Senn, Comput. Chem. 12 (1988) 267.

B. Mohar and T. Pisanski, . Math. Chem. 2 (1988) 267.

K. Balasubramanian, J. Comput. Chem. 11 (1990) 829

S. S. Tratch, M. I. Stankevich, and N. S. Zefirov, ibid. 11 (1990) 899.

. R. C. Entringer, D. E. Jackson, and D. A. Synder, Czech. Math. J. 26 (19756) 283.
. D. Bonchev, O. Mekenyan, J. V. Knop, and N. Trinajsti¢, Croat. Chem. Acta 52 (1979) 361.

E. R. Canfield, W. R. Robinson, and D. H. Rouvray, J. Comput. Chem. 6 (1985) 598.

. D. H. Rouvray, ibid. 8 (1987) 470.

. L. Gutman, J. V. Kennedy, and L. V. Quintas, Chem. Phys. Lett. 173 (1990) 403.

. P. G. Seybold, M. A. May, and M. L. Gargas, Acta Pharm. 36 (1986) 253.

. D. E. Needham, I.-C. Wei, and P. G. Seybold, J. Amer. Chem. Soc. 110 (1988) 4186.
. D. Bonchev, O. Mekenyan, and N. Trinajstié, J. Comput. Chem. 2 (1981) 127.

. M. Randié, J. Amer. Chem. Soc. 97 (1975) 6609.

. D. Plavsié, S. Nikoli¢, N. Trinajstié, and Z. Mihali¢, /. Math. Chem. 12 (1993) 235.
. O. Ivanciuc, T. -S. Balaban, and A. T. Balaban, ibid. 12 (1993) 309.

. A. T Balaban, J. Chem. Inf Comput. Sci. 34 (1994) 398.

. A. T Balaban, Chem. Phys. Lett. 89 (1982) 399.

. M. Randié, J. Chem. Inf. Comput. Sci. 24 (1984) 164.

. K. Szymanski, W. R. Miiller, J. V. Knop, and N. Trinajstié, Int. J. Quantum Chem: Quantum

Chem. Symp. 20 (1986) 173.
R. E. Merrifield and H. E. Simmons, Theoret. Chim. Acta 55 (1980) 55.

M. Randié, Z. Mihalié, S. Nikoli¢, and N. Trinajstié, Croat. Chem. Acta 66 (1993) 411.

M. Randié, ibid. 66 (1993) 289.

N. Trinajstié, Report at Pedagogical Symposium on Graph Theory in Chemistry — The Fourth
Chemical Congress of North America, New York, August 25-30, 1991.

I. Motoc, A. T. Balaban, O. Mekenyan, and D. Bonchev, Math. Chem. (Miillheim /Ruhr) 13
(1982) 369.

Y.-d. Gao and H. Hosoya, Bull. Chem. Soc. Japan 61 (1988) 3093.

(a) B. Bogdanov, S. Nikoli¢, and N. Trinajstié, J. Math. Chem. 3 (1989) 291.

(b) B. Bogdanov, S. Nikolié, and N. Trinajstié, ibid. 5 (1990) 305.

O. Mekenyan, D. Peitchev, D. Bonchev, N. Trinajsti¢, and I. Bangov, Drug Design 36 (1986) 176.
O. Mekenyan, Molecular Structure Description and Modelling of Structure-Activity Relation-
ships, D.Sc. Thesis, Burgas, 1990.

K. Burkert and N. L. Allinger, Molecular Mechanics, ACS, Washington, D.C., 1982.

D. Bonchev, C. F. Mountain, W. A. Seitz, and A. T. Balaban, J. Med. Chem. 36 (1993) 1562.

SAZETAK
Wienerov broj - razvoj i primjene

Sonja Nikoli¢, Nenad Trinajsti¢ i Zlatko Mihali¢

Prikazane su definicije i metode ra¢unanja Wienerova broja. Istaknuto je da je Wienerov

broj mjera kompaktnosti molekule, definirana njezinim strukturnim znaéajkama kao §to su
razgrananost i prstenastost. Usporedba Wienerova broja i nekih drugih ¢esto upotrebljavanih
topologijskih indeksa u relacijama struktura-vrelite za oktane pokazale je da je Wienerov broj
u ovom sluéaju inferioran veéini razmatranih indeksa. To je rezultat koji su opazili i drugi au-
tori. Spomenuti su takoder i novi razvoji vezani uz Wienerov broj i indekse koji su mu vrlo
sli¢ni. Takoder je prikazano i prosirenje Wienerova broja u njegovu tro-dimenzionalnu inaéicu.





