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The formalism of spin-adepted reduced Hamiltonians has been formu-
lated so far on the assumption that the underlying orbital space is or-
thonormalized. In this paper, the formalism is generalized to the non-or-
thogonal case, which may be important if the basis set of atomic orbitals
is used or when studying intermolecular interactions.

INTRODUCTION

The overwhelming majority of calculations on correlation energy is done in or-
thogonal basis sets. To some extent, this is because one usually starts the procedure
with a Hartree-Fock calculation and then works in an orthogonal MO basis. There
are some exceptions, however, where Cl or VB type calculations are done in non-or-
thogonal metrics (see, for instance, Refs. 1, 2).

Explicit handling of non-orthogonality effects becomes important if one wants to
develop (or program) the theory within the overlapping atomic orbital (AO) basis,
or if intermolecular inter action s are studied. In the latter case, the non-orthogonal-
ity arises from the overlap of MO's on different molecules.

In the last years, there has been a development of Spin-adapted Reduced Hamil-
tonians+l? (SRH). This approach is a density-matrix-oriented formulation of the
many-electron problem, where the many-body representation of the Hamiltonian is
averaged without losing the correlated nature of the problem. By spin-adaptatian it
is meant that the reduced Hami1tonian is different for each N-electron total spin
quantum number since it is a contraction of the block of the fuU-CI matrix with the
given spin symmetry.

Thus far, this formalism has been developed in orthogonal basis sets. The aim
of this paper is to generali ze it to the case of overlapping metrics.
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Since the SRH theory makes use of the second quantization formalism, a suit-
able approach for such a generalization can be found in the worksl1-16 where the 2nd
quantization is done in a non-orthogonal basis. Our experience has shown that the
most convenient way of doing this is offered by the biorthogonal formulation which
will be described below.

SECOND QUANTIZATIONFOR NON-ORTHOGONALORBITALS

The second quantized formalism has been generalized to the non-orthogonal case
by several authors.Pv'" (For a review, see Ref. 19). The most convenient approach
makes use of the reciprocal orbitals

- '" S-IXi = L.... ij Xj
j

(1)

which are biorthogonal to the original ones:

(2)

In Eq. (1), S is the metric (or overlap) matrix. Accordingly, one can define the
creation operators and their adjoints over the reciprocal space

bI = I Si] bJ
j

bi = I Si] bj

j

(3)

where bJ creates an electron orbital, Xj' and b, is the adjoint of bJ. One finds the fol-
lowing anticommutation rules:

(4)

This clearly shows that a mixed use of the original and reciprocal fermion operators
for creating and annihilating electrons, respectively, ensures the validity of the same
algebra as in the orthogonal case. The only exception is that the creation and anni-
hilation operators b0 and b.; are not adjoints to each other.

The one- and two-particle many-body Hamiltonians in this formalism can be
written as

iI = I S;l(Zlhij) bI" bj" + % I Si] SkJ (JrIZs) bI. bt i,e' br.
iJ,1 iJ,l,k,r,s

o

(5)

c.c'





160 P. R. SURJAN AND C. VALDEMORO

BASIC FORMALISMANDALGORITHMS

The 2-SRH is a matrix representation of the Hamiltonian in the two electron
space that contains all the relevant information about an N-electron system in an
averaged form. It can be defined as the contraction to a 2-electron space of the ma-
trix representation in the N-electron space for a given spin symmetry+J" of the
Hamiltonian operator. By construction, the 2-SRH is Nvrepresentable'" and by ex-
tending this concept, it is also S-representable (S stand s here for the total Spin quan-
tum number). Since the different steps involved in building the 2-SRH matrix have
been repeatedly described in detail, we will consider here only the most important
parts of the development and those which are affected by the use of the nonortho-
gonal basis.

We start from the Hamiltonian of Eq. (11). Using a complete set of N-electron
functions (1\1 as a basis set, the matrix representation of this Hamiltonian is

HAri. = ~ I {ikl]l} (I\~LiIQ) =I {ik"l} Dk1Z
iJ.h.l iJ.k.l

(13)

where, by definition, Dk12 is the element of the second order transition density ma-
trix between the state s 1\ and Q. The explicit form of the second order transition
density matrix in the non-orthogonal basis set is obtained from Eq. (10) by taking
the relevant matrix element

Dk12 =%I (1\Ibl. bJ•. l\ bk.lO) .
ce'

(14)

Note that Eq. (14) is not symmetric in the pairs of indices (kl) and (ij) due to nonor-
thogonality efects.

The reduction of the Hamiltonian to the 2-particle space is done by averaging
the elements of the Cl matrix with the transition density matrix elements as weight-
ing factors:

(15)

The Hamiltonian H is the 2nd order reduced Hamiltonian. If the state s 1\ and
Q are pure spin states, H will be factorized into blocks according to spin symmetry
and is called the spin-adepted reduced Hamiltonian, SRH. We use the notation 2-
SRH to indicated that the reduction has been done to the two-body space.

It can be shown? that the trace of the 2-SRH matrix is an invariant of the sys-
tem:

tr (H) = (~) tr (H) (16)

HAri. is equivalent of the Cl (configuration interaction) matrix. It can be diagonal-
ized to yield
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H --= " r.t»;pr,qs L.. N qs,pr
-c

(17)

where t!' is the energy of the system and o« is the second order density matrix in
the eigenstate -C.

Turning back to the general Equation (15), we arrive at an important result by
substituting into it the Cl matrix elements from Eq. (13):

Hpr,qS =I I {ikl]l} Dk1~Dq~~r =iI {ikl]l} I (AIEk} E~~IA). (18)
An ij,k) ij,k) A

Here, we have substitued the density matrices and utilized the resolution of identity
by summing over 10>(OI·

Introducing ashort hand notation for the trace term, we can write:

Hpr;qŠ =iI {ikUl} (EkiEtI> .
ij,k,l

(19)

The relevant expression for the case of an orthogonal basis set can be obtained
simply by ignoring the tildes on the indices,

Hpr;qS = i I {iklJl} (E~iE::>
ij,k)

(20)

which is, naturally, the same as the formulae published previously.?
The essential feature of these results is that the elements of the reduced Hamil-

tonian matrix appear as sums of system-depended integrals {ikJjl} multiplied by eon-
stants, the trace-terms in Eq. (19). We can see that this generalizes to the non-or-
thogonal case as well.

In evaluating the traces in the orthogonal case, one proceeds in the following
manner.v+" The only non zero elements of this matrix are those where the two sets
of indices {k,l,q,s} and {ij,p,r} are equal, although any ordering is permitted. This
implies that the possible types of elements of the 2-SRH matrix are those in which,

• The set {p,r} is equal to the set {q,s}.

Hpr,F(Pr) =I (AZ! {kmlkm} + BZ! {kmlmk})
k,m

(21)

A

where P refers to the permutation operation applied to the ordered indices pr.
• Either p or r, say p, is equal to one of the two indices q or s.

H pr,F (ps)= I (Ai" {kr;ks} + B~,F {krlsk}) .
k

(22)
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• The four indices p, r, q, s are different

H pr} (qs)=A 2} {pqlrs} + B2} {pslrq} . (23)

In all these cases, Ai} and Bi} represent the different values of the traces ap-
pearing in relation (20) and corresponding to each of the three cases just given.

Generalizing of these results to the non-orthogonal case is straightforward. As
already mentioned, the E operators obey a similar algebra in both bases. Also, the
traces of these operators are constants whose value depends only on the dimension
of the configurational space, the number N of the electrons of the system, the total
spin quantum number S and the ordering of the indices, P. In consequence, the val ue
of these traces cannot depend on the basis of the representation chosen. For this rea-
son, the algorithm in the non-orthogonal basis can be performed in a similar way
as in the orthogonal basis, except that the following symmetry property is lost:

{ikl]l} * {kill}} (24)

Luckily, this symmetry restriction only implies that the matrix H is no longer
symmetric and that, therefore, not just half of the matrix elements be evaluated.
Thus, the list of generalized integrals is twice as long as in the orthogonal basis.

Invariance of the traces of shift operators, when the latter are transformed into
the biorthogonal basis, can be illustrated in the following simple example. Consider
the trace

(25)
o

Using Lowdin's symmetric orthogonalization'Pand definition (3), the creation and in-
nihilation operator s are expressed as

bTa=L st; aja
j

(26)

b- -" S-I b -" S-V2ka - ~ kl la - ~ lk ala·
I I

(27)

a]a(ala) are creation (annihilation) operators in the orthogonal basis set, for which
we have":

L <aja ala> = Oji f (N, K, S) .
o

(28)

Thus, the trace in (25) is expressed as
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(Ei> =L L st; Si};2(aJ" az,,>=L st; S;};2f (N, K, S) = 0ik f (N, K, S) . (29)
JI o j

So, the same formula is valid for the trace in the non-orthogonal basis if the mixed
representation for the creation and annihilation is used, that is, the latter are taken
from the reciprocal set. The same proof can be performed for more complicated cases
mutatis mutandis.

In what follows,we present the final results for the matrix elements of the spin
adapted reduced Hamiltonian, Eq. (19). In order to handle as small matrices as pos-
sible, it is convenient to represent H in the basis of the symmetric, (+), and anti-
symmetric, (-), irreducible representations of the symmetric Group of Permutations,
S2' In this representation, the 2-SRH ir block-Jfac(torize~into the tw~ matrices, de-
noted here: H(+) and H(-) of dimensions l(K; 1) . (K; 1)) and (~J.(~J.respectively.

The general expression of the 2-SRH in this representation is:

(30)

The two blocks of the 2-SRH matrix in the non-orthogonal basis, for
p *- r *- s *- q, have the following elements:

H~±)ps = Qi ({}Jplsr} ± {splDr}) + Q~ {srlkk} + Q~ {krlsk}

(31)
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K-N+l
Qr = K _ 1 D(l) +D(2)

+ (2K-N-l)(N-2) 1
Q2 = 2(K _ l)(K _ 2) D(l) + K _ 2 D(2)

+ (N - K - l)(N - 2) K - 1
Q3 = 2(K _ l)(K _ 2) D(l) + K _ 2 D(2)

Qi =A - 2B + C - Qr

with K being the total number of orbitals (basis functions), while

(~J l2(N - 2)(N - 3) 12
A = (~JD(O) - (K; lJ 3! D(l) + (K - 2)(K - 3) D(2)

(~J 2(N - 2)(N - 6) 4
B = (~JD(O) + (K - l)(K - 2) D(l) - K _ 2 D(2)

C=mD(O) + 2i'. -,5)D(l) + 4D(2)

and

with

'G =D(2)

(32)
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and where the Weyl-Paldus formula/! for the dimentsion of the subspaces

28 + 1 [K - i.+ 1] [ K .: i + 1 ]
D(i) = (K_ i) + 1 N; 2L _ 8 N; 2L + 8 + 1 (33)

for spin state 8 has ben used.
In the precedigng formulae, we have introduced the following shorthand nota-

tion:

K

{kklDp} = I {kklDp} .
k=l

'" (34)

Namely, the letter k indicates that a sum is taken over all the orbital values. And
similarly,

K

{ODIOD} =I {ZlIZl}
1 = 1

K

{OOI-i-l} =I {lzlmm} (35)
lxm=l

1 e zn = 1

As it can be seen, the formulae are identical to those of Ref. 7, except that care
must be taken with the biorthogonal orbitals appearing in the integrals.

In this report, we have specified the matrix elements of spin- adapted reduced
Hamiltonian using a non-orthogonal set of one-electron orbitals when the reduction
is done to the two-particle space. The generalization was done by means of the bior-
thogonal technique, that is, all bra-indices of the appearing integrals are consis-
tently transformed to the reciprocal space. The resulting formulae have a similar
structure as those in the orthogonal case, and they will therefore be useful for fur-
ther studies performing analysis and/or calculations using SRH matrices in non-or-
thogonal representation. Due to the fact that the 2-8RH matrix is not symmetrical,
it will have two sets of eigenvectors which are biorthogonal to each other. Both sets
will have to be employed when approximating the 2-RDMfollowingthe independent
pair model [5,6,18] within the framework of the 2-SRH theory. This aspect of the
question is being considered now.
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SAŽETAK

Spinski prilagođeni reducirani hamiltoniani u reprezentaciji
neortogonalnog baznog skupa

P R. Surjan i C. Valdemoro

Do sada se formalizam spinski prilagođenih reduciranih hamiltoniana formulirao pod pret-
postavkom ortonormiranosti pripadnog orbitalnog prostora. Ovdje je formalizam poopćen tako
da vrijeid i za neortonormirani bazni skup, što može biti važno kada se za bazni skup koriste
atomske orbitale ili kada se istražuju međumolekuska međudjelovanja.




