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Some of the problems associated with recognising and classifying cage
structures are reviewed briefly and discussed. Some new structures are
considered, including Klein bottles (polyhex and azulenoidl and 'neal' poly-
hex' double tori.

1. INTRODUCTION

Since the discovery of buckminsterfullerene, great interest has attached to the
general concept of molecules that consist of a boundless two-dimensional lattice en-
closing a portion of 3D-space (cages). Good evidence has been amassed for the ex-
istence of spherical and cylindrical structures made of networks with five and six-
membered rings. The theoretical possibility of toroidal forms of benzenoids,
azulenoids and others has been pointed out,l-5 but no fully comprehensive taxonomy
of all possible forms of cage structure seems to have been attempted, nor is it
achieved here. The problem (which is really a cluster of problems) is difficult, for
reasons that are discussed below.

Our studies have been restricted to graphs consisting of a set ofvertices in which
every vertex is adjacent to three others. In other words to trivalent or cubic graphs,
which of course can represent all-carbon molecules in which the carbon atom's four
(sigma) bonds are hybridized to three n-bonds tending to seek a planar 1200 dispo-
sition. The problem may be expressed in the form - »given a molecular cluster of n
3-valent carbon atoms (equivalent to a cubic graph) generated at random, how can
one know all the possible cage structures which could be assumed, ignoring at this
stage any suspected chemical constraints?«

Even with this limitation to regular graphs of degree 3 the subject is not an easy
one, for reasons that include -
1) Combinatorial complexity; as the number of vertices increases, so too does the

number of possible arrangements, typically at an ever increasing rate; a problem
common to most molecular enumerations.
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2) Lack of useful graph invariants; only very limited help is available from currently
known theorems in graph theory.

3) The isomorphism problem; when classifying structures there is frequently the
need to decide whether two apparently quite different structures are in fact the
same. This is well known to be difficult, although it seems to have been largely
solved for this group."

4) Recognition difficulties. These are related to 3) above, but are wider in scope. The
act of recognising whether two graphs are the same or whether they are even re-
lated ill some way (by being of the same genus, or by having some common sub-
graph, for example), is difficult, whether attempted directly and intuitively, or via
an efficient computer algorithm. So also is the converse problem - seeking alter-
native forms of interest that a given graph might display.
Accordingly, the subject is best considered from two directions; (i) by checking

and applying whatever fundamental principles are available and appropriate, and
(ii) by formulating specific structures, and noting their properties, so that these at
least may be recognised when they are found among other, strange ones.

There is of course a third approach; that of determining optimum geometries on
a heuristic basis by considering the energetic strains in a molecule by molecular me-
chanics, but, important as this necessary process is, and complementary to this dis-
cussion, it is not considered further here.

2. GENERALPRINCIPLES AND DEFINITIONS

2.0 In general, Wilson's conventions of graph theory" are followed.

2.1 THE CONNECTIVITYOF A GRAPH

This is the smallest number of vertices whose removal disconnects the graph.
There is an analogous version applying to edges. For the present discussion, struc-
tures with a vertex connectivity of less than three are regarded with little interest,
because - intuitively speaking - they do not lend themselves to forming simple 'all-
enclosing' network cages. It is easy to write a reliable computer algorithm for de-
termining this.

2.2 THE GENUS OF A SURFACE

A rigorous definition of the genus of a surface is best sought from mathematical
textbooks (see references cited by Devlin" for example), but loosely speaking it refers
to the number of holes it has. So an infinite plane, or the surface of any 'solid' object
like a polyhedron or sphere is of genus-zero, whereas a torus has a genus of one,
and an object of genus-two would have two holes in it (for example, a two-handled
coffee cup). A planar or zero-genus surface can be distinguished from others by the
fact that any circle on it, wherever it is placed, can be contracted to a point without
cutting or leaving the surface.

2.3 THE GENUS OF A GRAPH

This is the genus of the lowest genus surface on which the graph can be drawn
without crossing (i.e. embedded). It is well known (Kuratowski's Theorem") that a
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necessary and sufficient condition for a graph to be planar (of zero-genus) is that it
does not contain either Ks or K33, or any subdivision (see 2.4) of either, as a sub-
graph. This theorem is useful when, often by chance, such subgraphs are recognised,
but devising a reliable means of recognition has proved to be too difficu1t to make
this method generally useful.

There are some efficient practical algorithms available for testing planarity, i.e.
for testing whether or not g = O, based on systematic techniques for constructing pla-
nar drawings. Workers include Goldstein.? Fisher and Wing,16Booth and Leuker.P
and Hopcroft and Tarjan.P see Refs. 13 and 14 for useful reviews of these and other
papers on planarity testing.

2.4 A SUBDIVISION OF A GRAPH

A subdivision of a graph is one that has been enlarged by the insertion of one
or more degree-2 vertices into its edges. The extent and pattern of branching (and
hence whether or not it is planar) is unaffected.

2.5 THE COUNT OF SMALLESTCIRCUITS

Here this phrase is used to refer to the total number of the smallest ring or cir-
cuit present, followed by the total numbers of each increasing ring size, carried to
an arbitrary extent depending on requirements.

2.6 THE EULER AND OTHER RELEVANTFUNDAMENTALRELATIONSHIPS

For a graph with n vertices, m edges and f faces, with g being the genus, and
vi the degree of any vertex i, the generalised Euler relationship gives

n-m+f=2-2g (1)

The general handshaking lemma gives

(2)
i = 1

and so, for a cubic graph

m = 3nl2 . (3)

It follows that in general

f = nl2 + 2 - 2g, (4)

and in particular

fplanar = nl2 + 2, (5)

ftoroidal = nl2 . (6)
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If we stipulate that for a cage representation every vertex should be shared by
three faces, then

L (face size) = 3n . (7)

Every face must be a circuit in the graph. It therefore follows that we can state
two bounding conditions:
1) There must be a set of smallest circuits where L (circuit size) :o; 3n,
2) There must be a set of largest circuits where L (circuit size) ~ 3n

The first condition is the more useful one in practice.

2.7 POLYHEDRALCAGE

This is taken to be a boundless network that can be embedded on a spherical,
or - by Schlegel projection - on a planar surface. It is 3-connected, and on the sur-
face of a polyhedron every vertex is shared by three faces.

2.8 TOROIDAL CAGE

This is a boundless network that can be embedded on the surface of atorus. It,
similarly, is 3-connected, and every vertex is shared by three faces. It is important
to note that this definition makes no reference to genus, which, although usually of
value one, may be either zero or one, and if zero capable of representation as either
a polyhedral or a toroidal cage. Furthermore, a given toroidal representation is not
necessarily unique; more than one set of faces may satisfy the requirements of a
toroidal representation.š-"

It was mentioned above that 2-connected graphs are not regarded as polyhedral
cages. In the context of tori, this stipulation is still valid, but is probably inadequate;
toroidal polyhexes in which the torus is cut by cutting two edges (resulting in a non-
toroidal but still connected graph) are toroidal and are 3-connected, but it is debat-
able whether they should be called cages, although they are not distinguished fur-
ther here.

2.9 KLEIN BOTTLE CAGE

This is defined in the same manner as for the polyhedral or toroidal cages above,
but using a Klein bottle (Figure 1) as the object for tessellation. Because, in 3D
space, a Klein bottle has a self-interecting surface, it is necessary to explain this. Here
we take it to mean that the network 'passes through' itself with a series of links involv-

Figure 1. A Klein bottle, drawn so as to illustrate its relationship to atorus; it is a cylinder
joined 'end face-behind-end face' instead of 'end face-to-end face' (ef Figure 6).
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Figure 2. Two lattices intersecting without physical contact.

ing an edge passing through a face (Figure 2.). This results in a constrained, ring
interlocked structure, but one that has no connectionaljoin. An alternative treatment is
to establish edge connections between the intersecting networks as shown in Figure 3.

Figure 3. Two networks intersecting with a physical connection. Note that this involves non
hexagonal rings at the intersection.

The choice is a matter of how the 'surface' of a network is defined. There are merits
and demerits to either choice. A non-connected but interlinked intersection allows a
Klein bottle with a uniform tessellation to be constructed, but for small rings, such as
hexagons made of carbon, this is chemically unrealistic. On the other hand connecting
the surfaces means that the connectionboundary has rings that (i) are larger than else-
where on the surface (so that the structure is not strictly a polyhex), and (ii) must, for
any reasonable sized structure, have pronounced out-of-the-plane connections.

3. DISCUSSION

3.1 CLASSIFICATION

Figure 4 shows the beginnings of a classification of cubic graph types (with some
examples). It is important to emphasize that what is being considered here are rep-
resentations of cubic graphs, not just the structures themselves, so that the scheme
shown does not necessarily provide a unique classification position for any given
graph. Thus in Figure 4 the 'cube' graph is used as an example to illustrate both
polyhedral and toroidal shapes of 3-connected genus 0 graphs, and many others can
have alternative representations, while a genus 1 graph may have more than one toroi-
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Figure 4. A partical classification of same cubic graps in relation to 'shape'

dal form and/or Klein bottle forms, depending on the number and size of circuits that
are available as possible faces for an embedding. The Klein bottle example shown
is a Klein bottle polyhex, but it can also be arranged or perceived as a non-polyhex
toroidal graph. (It may be the case15 that every Klein bottle graph has one or more
isomorphic toroidal forms; we do not know).
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3.2 GRAPH INVARIANTSFOR DISTIGUISHING NON ISOMORPHIC GRAPHS

The best method currently available for indexing a particular graph appears to
be the combination of its eigenspectrum and its 'T(G)' matrix, as used previouslyl"
following work by Liu and Klein.6 The conjecture that this method resolves all
chemically interesting graphs appears empirically plausible, but has not been
proved, so that the possibility of hidden degeneracies must be kept in mind, but no
case of failure has come to light so faro

3.3. GRAPH INVARIANTSFOR DISTINGUISHING GENUS.

References to some algorithmic methods were given in 2.3 above, and it was
noted that the presence or absence of subgraphs ~, K33 (or subdivisions of them)
is a graph invariant that distinguishes betweeen genus = O and genus » O, but it
not a generally useful one.

The generalised Euler equation (2.6) is the only known simple equation giving
the genus. A number of other bounds have been derived,? but in practice they fre-
quently give tolerance limit s that are too wide to be useful in practice, at least for
this group of graphs.P The problem with using the Euler equation itself is that, be-
sides the numbers of vertices and edges (unambiguous and easily measured), it re-
quires knowledge of how many faces there are, and this is much more problematic,
for it involves choosing a suitable set from what may be a large total number of cir-
cuits in the graph.

Generally speaking, 'genus' seems to have rather little effect upon other easily
observed characteristics ofgraph. One interesting observation made recently.l? is the re-
lationship betweem the numbers of spanning trees in a labelled molecular graph and
in its dual. For planar graphs they are equal, and, since the (frequently smaller) inner
dual may be used (with its generalised characteristic polynomial), this often provides
a means for simplifying computation, but for non-planar graphs there appears to be
a variable relationship. However,construction of a dual requires knowledge of the faces,
and this in turn presupposes an already existing model or drawing, so that futher
work is needed before it becomes clear whether this distinction can be exploited.

In the absence of any useful general methods, one is reduced to deploying ad
hoc considerations, although the se can sometimes be quite effective. The count of
smallest circuits (see above) together with the Euler equation and others (1-7) are
used. The following section shows an elementary example of this.

3.3.1 An example of genus that can easily be determined: six-uertex cubic graphs

Cubic graphs with six vertices must have nine edges. Any structure must have
five faces (nI2+2) for a polyhedron (g = O) and three (nI2) for an object of genus one.

It is found that connection tables can be constructed for only two non isomorphic
possibilities, referred to as A and B:

Counts of smallest circuit s in the two structures are:

A
B

R5
6
O
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The requirement that the sum of face sizes is 3n (=18) can be satisfied by 2R3
+ 3R4, 2R3 + 2R6 or 3R6. 2R3 + 3R4 gives the five faces required by a polyhedron,
and is available for A. 2R3 + 2R6 (four rings) satisfy neither the five faces of a poly-
hedron nor the-Ifš vertices of a three-faced torus. 3R6, on the other hand, exactly
matches the requirement of atorus, and is available in B, which does not have a
set of five circuits summing to 18. It followsthat A and B, shown below,are of genus
zero and one respectively.

(A) (B)

Figure 5. The two six-vertexcubic graphs.

3.2.2 The genus of toroidal polyhexes

Another case where elementary methods can be applied is for toroidal poly-
hexes." These have nl2 hexagonal faces, and most such structures have no rings
smaller than a hexagon. Since two extra faces are exhibited by a polyhedron, it is
immediately obvious that no (nI2+2) ring set can be chosen that sums correctly to
3n. Since by definition they are embeddable on atorus, their genus must be unity.
These considerations narrow down the field to leave two series that do have smaller
(R4) rings, and, for these, drawings can be used to demonstrate that there is just
one series of even-hexagon toroidal polyhexes that are planar rather than 'truly
toroidal'. (These may also be regarded as simple cyclic ladders. They have been
called 'annuluses' in recent work.l")

Of course, the presumption that this toroidal polyhex series (referred to as
TPH(h-2-1) - see Ref. 3) when h (number of hexagons) is even is the only planar se-
ries among all toroidal polyhexes, remains a conjucture.

3.4 THE CONSTRUCTIONOF CAGEADJACENCYDIAGRAMS

3.4.1 Structures with genus ~ 2

As noted above, in order to complement analytical methods described so far, it
is desirable to construct diagrams of cages to known specifications, and this ap-
proach has received considerable attention in the literature, especially for polyhe-
dra,16,19-30,but also in a few cases for other forms.I-5,18,31-33Balasubramanian's
work= on enumerating substitution isomers of C60should also be noted.

Among the more comprehensive and systematic studies was one made by mem-
bers of the Galveston Group.š"who introduced the term 'amenable' to describe a tri-
valent polyhedron with only five and six sided faces, and who counted 1790 such iso-
mers of C60,although this figure was later correctedš! to 1812 (see also Ref. 22),
classified according to two integers p and q: the number of pairs of pentagons shar-
ing an edge, and the number of triples of pentagons sharing a vertex. (And they in-
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troduced the interesting intuitive concept of the surface being, as it were, a sea of
hexagons, on which 12 pentagons float around in varying aggregates). Clearly p and
q should be used as a basis for further subdivision of the category of 3-connected- ,
zero genus polyhedra in Figure 4.

There is an important sense in which working with a toroidal surface is simpler
than with a sphere. Chemists suffer the same problem as cartographers when con-
templating polyhedral cages; that these can be projected onto a plane only with con-
siderable distortion, apparently more than is the case for the torus which may more
naturally be 'skinned' to give a rectangle that repeats to cover the infinite plane.
(This procedure allowed the systematic three-integer code for toroidal polyhexes al-
ready mentioned to be developed, together with a method for enumeration and ad-
jacency matrix compilation, and for deriving closed eigenvalue formulao.š)

Another very useful method of deriving adjacency information for genus-one
structures is to draw them as planar rectangles with opposite sites being made 'iden-
tical' and having the same vertex labels. This is directly analogous to manufacturing
a physical torus by taking a semi-stiff rectangular sheet, and folding and gluing op-
posite edges, first to a cylinder and then, by joining the now-circular ends, to a hol-
low torus (Figure 6). If, for a given size, every shape for which this can' be done is
identified, and if each pair of sides (top-bottom and lef-right) is given arelative twist
(a cyclic permutation from Oup to 180 degrees) before the 'gluing' process, then all
the 'connectional' isomers will be found. It should be noted that there are various
other sources of possible isomerism which are not taken acount of here. These in-
clude the order in which the two 'gluings' are made; degrees of twist> 180 degrees;
disconnected tori with catenane-type linking; knots tied in the torus tube, and so
on. We have also arbitrarily restricted this discussion to structures where the toroi-
dal tube is of uniform radi us.

This method can be adapted for Klein bottle construction. The requirement is
to join one end of the intermediate cylinder 'from behind' rather than 'face-to-face
with' the opposite end. This is achieved simply by labelling the equivalent vertices
in the opposite sense around one end.

Alternatively, the process may be divided into two stages. Two rectangles are
drawn; each is converted to a cylinder, and the two cylinders are joined end-to-end
to form the torus. If each rectangle is twisted at the first stage, the result is two
Mobius bands. A Mobius band has only one edge (in the global not graph-theoretical
sense), and if two are joined, the result is a Klein bottle (Figure 7).

1__ 1

( ,
Figure 6. Creation of atorus by rolling a rectangle to a cylinder, which is then glued end to end.



278 E. C. KIRBY

II
,. u

11 " 11

IZ " 12

•.. U U

lO •• lO

lS 15

,. 17 ,. ,. 11 ,.

Two cylinders, making a
toroidal polyhex.

TwoMcbius bands, making
a Klein bottle polyhex.

Figure 7. Two-stage construction of genus-1 polyhexes.

Table I shows some preliminary resu1ts that compare tori with Klein bott1es,
where the latter seem consistently to have a higher total energy, but the same
HOMO LUMO gap,

Although it does not seem especially useful, it is perhaps worth pointing out that
this method can also be used for constructing polyhedral cages. If, as indicated, the
two rectangles of Figure 8 are not formed into cylinders, but are glued immediately
matching the whole perimeter of one with the other, the resu1t is a polyhedral cage;
in this case buckminsterfullerene, (See also Ref. 5).

3.4.2 Double tori

One or two examples of polyhex-derived double tori are given in Figures 9-11.
These are 'near polyhex' structures that can be embedded on a double torus. These
are probably graphs of genus 2, a1though this is only a conjecture which has not been
proved here.

TABLE I

A comparison of some 'Ibroidal (T) and Klein (K) bottle structures. The first seven are poly-
hexes and the la st one an azulenoid.

Size Enln Difference
HOMO-LUMO GAF

T K T K
16 1.457 1.537 0.080 0.828 0.828
24 1.411 1.524 0.113 O O
32 1.441 1.544 0.103 0.469 0.469
64 1.559 1.573 0.014 0.469 0.469
84 1.572 1.575 0.003 0.494 0.494
72 1.562 1.570 0.008 O O
80 1.558 1.573 0.015 0.351 0.351
64 1.523 1.523 * O O

" The difference is small and positive, appearing at the 5th decimal place of En/n. The eigenspectra are
not the same.
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Figure 8. An unusual adjacency diagram for a polyhedron - in this case buckminsterfullerene
(ef Figure 7).

They are constructed by taking a toroidal polyhex, creating two holes, and gluing
on a cylindrical polyhex to bridge them. There are, obviously,many possible isomers.
There are at least two modes of construction, depending on whether the polyhex hole
is made such as to require gluing at edges (Figures 9 and 10), or at isolated vertices
(Figure 11).A number of points of interest arise. Are there other possible construc-
tion modes? For the se both involve the creation of a hole larger than the perimeter
of the cylinder, and involve the formation of non hexagonal 'surface' rings. More spe-
cifically,can a double torus be tessellated solely with hexagons? The method shown
fails in this regard, and we have not yet thought of an alternative. From the point
of view of the mathematics of asurface there is no difference in local properties
when atorus is made by adding one handle to a sphere, and when one goes on to
add a second handle. It is not elear, however,whether the same can hold true in this
context of surfaces that are networks.

lZ

7

18 Z 4

5

Zl 18

za 19

Figure 9. A simple 'near polyhex' double torus constructed by adding a polyhex cylinder to a
13-hexagon toroidal polyhex with two holes. En is 49.0549, compared with a range of
46.0958-50.8328 for single tori of the same size (32 vertices).
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Figure 10. A larger cylinder used with the same construction method as shown in Figure 9,
resulting in a 44-vertex structure, En 68.4490. (Single toroidal polyhex range 63.2897-70.4099)

These approaches are appealing because of the direct physical analogy, but their
disadvantage (in comparison with the method used for polyhexes referred to above'')
is that they do not so easily provide closed formulae, nor an independent means of
eliminating isomorphic repeats, and sole reliance must be placed upon eigenspec-
tratr(G) matrices" for this.

The process of covering the surface of an imaginary object with a trivalent net-
work has obvious similarities with the problem of 'tiling' as a mathematical exer-
cise.35-37 However, again, we have not encountered any theorems of real use for the
present purpose. (For example, on the number of tilings that are possible, if stipu-
lations about regularity or symmetry are removed). A further point is that many til-
ing studies are unconcerned with how many tile edges meet at a point, whereas here
this is amatter of importance.

3 5 9

12 41

53 53

57 S7

48 3

Figure 11.An alternative construction mode used to attach a cylinder to a 26-hexagon toroidal
polyhex with two holes, giving a 60-vertex double torus, En 92.9137 (Single toroidal polyhex
range 85.9175-95.9905). En for buckminterfullerene is 93.1685.
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4. CONCLUSION

There are many theoretically possible cage structures that may or may not even-
tually be seen to have a chemical realisation. There is no single technique available
for recognising and classifying them. A number of approaches are in use by workers
in this field, in the attempts to bring overall coherence and order to this universe
of structures.

5. POST SCRIPT

Short1yafter completion of this paper, recent work published from Galveston38-40

and Ilmenau"! became available. These studies have a different approach, but cover
many of the points made here in connection with toroidal polyhexes and Klein bot-
tles including the nature of self-intersecting surfaces.38,4o Work is also in progress+
on the application of molecular mechanics methods to toroidal cages.
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SAZETAK

Primjedbe 0 prepoznavanju genus a i mogueih oblika kemijski zan,imljivih
kaveza oblika poliedra, torusa i Kleinove boce

E. C. Kirby

Dan je sazet pregled i diskusija nekih problema vezanih uz prepoznavanje i razvrstavanje
struktura oblika kaveza. Razmatrane su neke nove strukture kao Kleinova boca (heskagonalna
i azulenoidna) i »gotovo heksagonski« dvostruki torus.




