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We propose a new general-purpose algorithm for locating global
minima of differentiable and nondifferentiable multivariable func-
tions. The algorithm is based on combination of the adaptive ran-
dom search approach and the Nelder-Mead simplex minimization.
We show that the new hybrid algorithm satisfies the conditions of
the theorem for convergence (in probability) to global minimum. By
using test functions we demonstrate that the proposed algorithm
is far more efficient than the pure adaptive random search algo-
rithm, Some of the considered test functions are related to mem-
bership set estimation method for model parameter determination
which was successfully applied to kinetic problems in chemistry
and biology,

INTRODUCTION

A large class of global optimization problems can be rather successfully
handled by random search techniques.l-f This is especially true for functions
which have many local minima or functions with discrete range. Although
the convergence to the global minimum is in probabilistic sense guaranteed,
the rate of eonvergenee may be rather slow. On the other hand the Nelder-
Mead Simplex algorithm," which can be equally applied to any function (dis-
eontinuous, diserete), eonverges to a loeal minimum faster, However, for this
algorithm there is no demonstrated probabilistie assuranees that the global
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minimum will be found. This situation motived us to combine the so called
»Adaptive Random Search- (ARS) algorithml-" with the Simplex algorithm.
The resultant hybrid algorithm is expected to provide faster convergence
then the pure ARS technique and is expected to retain the same nice prop-
erty of probabilistically guaranteed convergence to global minimum. We
prove the latter assertion rigorously in the Appendix of the paper.

The ARS algorithm has been compared to other algorithms for global
minimization on a number of standard continuous functions." Its combina-
tion with the quasi-Newton algorithm for local minimization appeared fa-
vorable" in comparison with other techniques. In this paper we compare
pure ARS algorithm and our proposed hybrid to random-cost algorithm re-
cently developed by Berg5 and successfully applied to ground state confor-
mations search for the protein metenkephalin. The comparison is performed
on the illustrative function proposed by Berg with the results showing ad-
vantage of the ARS algorithm and still more remarkable advantage of our
hybrid algorithm.

Recent years had witnessed a tremendous development of evolution and
genetic algorithms for global optimization (see e.g. Ref. 6). In this paper we
compare the performance ofproposed hybrid algorithm to performances ofvari-
ous genetic algorithms on 10-dimensional Griewangk's function 7 and 20-
dimensional Rastrigin's function.f The hybrid algorithm performed signifi-
cantly better than all considered genetic algorithms on Griewangk's function
but could not match the performance of most genetic algorithms for the Ras-
trigin's function.

The special interest for application of the proposed hybrid algorithm is
the membership estimation method for parameters of nonlinear models.9-12
This method offers comprehensive insight in parameter uncertainty regions
and thus makes possible to characterize the nonuniqueness of parameter es-
timation. However, the method requires minimization of discrete criterion
function which cannot be performed by standard minimization algorithms
such as the Levenberg-Marquardt algorithm (designed only for functions
with continuous range and continuous derivatives). Therefore, to make the
membership estimation method workable E. Walter and his collaborators=P
applied the ARS algorithm described in Ref. 4. In this paper we demonstrate
by numerical experiments that the proposed hybrid algorithm converges to
the global minimum of criterion function much fast er than the pure ARS al-
gorithm, which in consequence makes the membership estimation method
more practical.

For minimization of membership estimation criterion function we have
chosen examples relevant to mathematical models in chemistry. Our first ex-
ample is related to Hill's function which describes the velocity-substrate de-
pendence in enzyme kinetics and which is the generalization of the well
known Michaelis-Menten kinetic equation. The second example is the two-
exponential decay model with four parameters which is ubiquitous in chem-
istry, biology and physics.
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DESCRIPTION OF ALGORITHMS

ARS Algorithm

The Adaptive Random Search algorithm for finding the global minimum
of a function can be applied to a large class of functions [ : S ~ R where S
is a subset of the d-dimensional Euclidean space Rd and the function is as-
sumed to be sufficiently regular so that point(s) of the global minimum of (
exists in S. In the following we describe the algorithm in some detail. More
formal and rigorous description together with the theorem of convergence
is given in the Appendix.

* Basic step. Generate n2 random points

(1)

where d components of !/ are independent and normally distributed
with zero mean and variances vii' ... Vid' In other words, Si has d-di-
mensional normal distribution with zero mean and covariance V =
diag(vi1> ... vid)' xsp is a chosen starting point. If {(xi) :o; ((Xi-i) then Xmin
= :xJ, otherwise the previous xmin is retained. If agenerated point XJ
does not belong to admissible domain S, it is replaced by a border
point in S, i.e. if the k-th coordinate ~ < rk min> than ~ is replaced by
rh,min or if xj, > rh,max it is replaced by rh,max.' The interval [rh,min, rh,max]
representd the given admissible range for k-th coordinate.

* Step 1. Repeath the basic step ni times, each time usin a smaller co-
variance vi = diag(vi1>... Vid), i = 1, ... ni (in a sense that variances
by coordinates are smaller; see Figure 1). xsp is fixed, The number n2
of generated points per covariance diminishes with covariance accord-
ing to n2 = [n3Ii]. The most successful covariance Vopt is the one cor-
responding to the final Xmin after all points of this step were gener-
ated.

* Step 2. Repeat the basic step n4 times with n2 = 1and covariance vopt'
each time choosing the current Xmin as starting point xsp (Figure 2).

* Repeat steps 1 and 2 until the minimal covarianceu.j was selected
as the optimal covariance for n5 times successively, or until n6 such
repetitions are completed. The final Xmin is assumed to be the global
minimum.

Clearly, positive integers n1> n3, n4, n5, n6 are to be set in advance. Re-
sults in Ref. 4 show that certain combination of their valu es provides effi-
cient solution for a wide class of optimization problems. However, numerical
experiments in this study indicate that values of these parameters should
be increased as dimension d of the problem increases.
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Figure 1. The first step of ARS with the parameters nI = 3, n3 = 10. The picture
represents the density plot of the function which should be minimized. Brighter are-
as represent areas with the smaller function value. Cireles shows the magnitude of
covariances Ul, ... , Un! and Xmin is the best obtained point of minimum at that step.
Randomly generated points with the same covariance are represented by the same
symbol.

Figure 2. The second step of ARSwith parameter n4 = 4. Arrows show the way how
the starting point change from Xmin, found at the first step of ARS, to the best point
found by the second step. This point will became either the starting point xsp for
the first step of ARS in next iteration or the final point of the global minimum. Cir-
eles illustrates the magnitude of the fixed covariance Uopt used for generating ran-
dom points. The same symbol represents random points generated from the same
starting point.
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In the actual implementation of the algorithm the initial starting point
xsp = xO is conveniently chosen at the central point of the domain S.4 More
precisely

x2 = (rkmax - rkmin) /2, k = 1, ... , d ., ,

For the functions which have the global minimum at the central point of the
domain the starting point was chosen as

x2 = ark,min + (1 - a)rk,max, k = 1, ... , d

where a E [O, 1] denotes uniformly distributed random number. The dimin-
ishing covariance matrices are chosen" to decrease in norm by factor 102, i.e.,
u,· = 0.12ui_l with Ul = diag(rlmax - rimin' ... , rdmax - rdmin)2.

) , , ,

ARS + SIMPLEX Hybrid algorithm

It has been pointed out by Pronzato et al. that the efficiency of the ARS
algorithm for differentiable functions can be greatly improved by applying
quasi-Newton method for local minimizations." In the context of the ARS ap-
proach the local minimization occurs when the smallest covariance Un (in

. Ithe sense descnbed above) was chosen as Uopt.

We will partially adopt this strategy by introducing the Nelder-Mead
simplex (NMS) algorithm'' (sometimes also called the polytope algorithm) as
a mean for faster local minimization. The NMS algorithm converges to the
local minimum by advancement of simplex (or polytope) - a geometric figure
in d-dimensional space which have d + 1 vertices. In two dimensions the
simplex is a triangle. The advancement of simplex towards the region of mini-
mum is obtained by its reflection, expansion, contraction and shrinkage.š+'

Generally, the NMS algorithm is not as fast as for example the quasi-
Newton or the conjugate gradient algorithm, but it can be applied to non-
differentiable functions. In addition, the strategy of the NMS algorithm of- .
fers the possibility of accelerating the overall global minimum search, not
just an improvement of the local minimization. On the other hand the ap-
plication of the pure NMS algorithm for global minimization may suffer to
often of finding only the local minimum. That is the reason why we believe
that the NMS minimization have to be combined with the ARS minimiza-
tion. After some numerical experimentation we found an efficient combina-
tion which can be shown to converge in the probabilistic sense to a global
minimum. The proof of convergence is given in the Appendix and the hybrid
algorithm is described below.
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The structure of the hybrid algorithm remains the same as that of the
ARS algorithm. The only modification occurs in Step 2 where NMS minimi-
zation is included. More precisely the new Step 2 is:

" Step 2a. Repath the basic step n4 times, each time generating n2 = d + 1
random points with the covariance uopt and xsp set at the current Xmin'

Each time use the generated d + 1 random points to form the initial
simplex and start the minimization according to the NMS algorithm.

Steps 1 and 2a are again repeated until the minimal covariance un was
selected as the optimal variance for n5 times in succession, or until n6 1such
repetitions are completed. The final Xmin is assumed to be the global minimum.

It is significant that the initial simplex in ste p 2a is defined by randomly
chosen points. In this way both smaller and larger size simplexes are cre-
ated enhancing the chance for NMS to find the global minimum. For the
NMS algorithm we have essentially used its implementation from »Numeri-
cal Recipes-l? adding some features regarding the stopping criterion and
provision how to treat the points of the current simplex which fall outside
the admissible domain. We employ the stopping criterion based on the quan-
tities Rf and s;

(2)

where Xh and XI are the »highest« and the »Iowest- points of the current sim-
plex, i.e. ((Xh) = max1 s i s d+l rex) and {(XI) = min. ; i s d+l {(x;). In the actual
implementation C =10-2°. The quantity R; is given by

R; = max
lsk s d, 1sijsd+l

(3)

where the function uo is given by (2) and Xkj is the k-th coordinate of j-th .
point of the current simplex. For the stopping criterion wefirst require that
the function values in vertices of simplex do not mutually differ more than
some prescribed tolerance cf' i.e. we require Rf -:;.cf' If this is satisfied we re-
quire that the size of the simplex is sufficiently small, i.e. R; -:;.Cx where Cx

is a given tolerance (cf< cx)' In other words we require that the simplex is
sufficiently localized in the neighborhood of the local minimum. If such eri-
terion cannot be met before Rf < cf/10 the procedue is terminated. The pro-
cedure is also terminated if the number of function evaluations exceeds cer-
tain maximum number.
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When the NMS algorithm creates a new simplex vertex we require this
point to be within the admissible domain. Therefore, if Xki < rk,min then we
replace xki by

Similarly, if xki > rk,max then we replace Xki by

Here 17 E [0,1] denotes uniformly distributed random number, different each
time when the vertex point escapes from the admissible domain.

COMPARISONOF ALGORITHMS ON TEST CASES

In the absence of any rigorous theoretical argument why our hybrid al-
gorithm should converge faster to global minimum than the ARS algorithm
we present some numerical examples which clearly demonstrate fast er eon-
vergence.

Differentiable functions

We will first search the global minimum of the function

d
rex) = I [A(x~ - B)2 + CXk], X = (Xl, o o o, Xd), Xk E [-1,1] (4)

k~l

with A = 10, B = 0025, C = 001, which was used by Berg for illustrating his
random-cost approach for optimization.š For the chosen parameters there
are 2d local minima in a given domain.

In assessing the efficiency of ARS and hybrid algorithms we have per-
formed 50 minimizations for a given combination of parameters nv n3, n4,
n5, n6 and a given algorithm. These minimizations differ only by the choice
of a seed for the random number generator, i.e. generated points in each.
minimization are different. The efficiency of the algorithm is measured by
i) the average number (for 50 trials) of function evaluations N with standard
deviation s; ii) the median number M of function evaluations; iii) the per-
centage P of successful findings of the global minimum, and iv) by the stand-
ard deviation from the value of the function at the »exact« global minimum

xexact (found by analytical methods): sr = ~±[f(x~) - {(xexacuf / l, l ~ 50
i~l

where x~ are points of the global minimum found by the algorithm. We have
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TABLE I

Results of 50 trials in minimization of function (4). Achieved efficiency was
P = 100%, except for the case marked with '" where P = 96%. For the

hybrid algorithm tolerances were set to Ex = 10-3, Ef = 10-7.

d Algorithmozj , n3, n4, n5, n6) M N S Sf

2 ARS(6,85,25,5,40) 9281 9281 0 5. 10-16
2 Hybrid(3,30,20,1,1) 1607 1663 78 9.10-11

3 ARS(6,300,300,5,150) 127901 127901 0 8.10-11
3 Hybrid(3,75,25,1,1) 3648 3686 119 3.10-10

4 ARS*(6,900,900,5,450) 1086751 1086751 0 10-11
4 Hybrid(3,75,70,1,1) 16418 16267 439 4.10-10

chosen parameters nv n3, n4, n5, n6 so that P = 100% or somewhat less and
that sf is smaller than 10-9.

The results of our numerical experiments for d = 2, 3, 4 are shown in
Table 1. The efficiency of the hybrid algorithm is remarkably greater than
the efficiency of the ARS algorithm. Furthermore the difference in efficiency
becomes larger as the dimension of the problem increases. Comparing me-
dians for the number of function ealuations we see that in case d = 2 the
hybrid algorithm is roughly 6 times more efficient; for d = 3 it is over 30
times more efficient and for d = 4 it is over 30 times more efficient. Here
it should be noted that computing time for computations other than the
function evaluation in NMS algorithm is relatively small so that the number
of function ealuations is a good measure of the actual computing time.

From the results of Table I it is clear that for the hybrid algorithm there
is no necessity to set n3 and n6 larger than 1. Essentially, only n3 and/or n4
have to be increased as the dimension of the problem increases. For the ARS
algorithm the number of iterations n6 had to be increased as well. The ac-
curacy in determining the minimum value of the function in hybrid algo-
rithm is easily controlled by tolerance Er- By decresing Ef a substantial im-
provement can be achieved with relatively small increase in the number of
function evaluations.

Bert has applied his random-cost algorithm to function (4) only for d = 2.
In average his algorithm required roughly 300,000 function evaluations to
determine the global minimum, which greatly exceeds the number of func-
tion evaluations required by the ARS algorithm for approximately the same
accuracy. One can imagine that the large number required by the random-
cost algorithm can be somewhat reduced by better tunning of the procedure,
but on the basis of presented results it is difficult to believe that this pro-
cedure might become more efficient than the ARS algorithm.
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In the next example we consider two differentiable functions for which
the search of global minimum is much more difficult. The Griewangk's func-
tion:"

10 X~ +Dr [Xk]
fc(x) =.E 4000 - !~~cos ..Jk + 1, xk E [-512,512] (5)

where X = (XI' ... , xlO), achieves the global minimum fc(xo) = Oat Xo = (O,... , O)
and exhibits a large number of local minima. Four of those are close to the
global minimum: rex) ::::;0.0074 at X ::::; (±n, ±nf2, O,... , O).

After 30 trials with (nI> n3, n4, n5, n6) = (5, 600, 400, 5, 100),
Ex = Ef= 10-6, the hybrid algorithm recovered the global minimum 11 times.
For each trial the algorithm was stopped when approximately 4 x 105 function
evaluations were performed. (Due to simplex minimization which was not im-
mediately stopped the actual number of function evaluations was 4 x 105 + n,
O ::::n ::::2850).

This result comparres favorably with the results of nine genetic algo-
rithms tested on the same function by Gordon and Whitley.8 The most sue-
cessful genetic algorithm recovered the global algorithm 7 times and other
eight algorithms 6, 3, 3, 3, 1, 1, Oand Otimes respectively. In each trial the
search was terminated after 1000 generations with population of size fixed
to 400 leading to 4 X 105 function evaluations.

Highly multimodal Rastrigin's function:"

20
fR(x) =I X~ - 10 cos(2nxk) + 200, xk E [-5.12,5.12]

k~1

(6)

where X = (xI> ... , x20) has the global minimum fR(Xo) = Oat Xo = (O, ... O).
When we tested the hybrid algorithm on that function (with the same pa-
rameters as for the Griewangk's function) the result of zero success in 30
trials showed the algorithm's weakness. Three of nine genetic algorithms
tested by Gordon and Whitley'' were also unsuccessful, but six algorithms
succeeded to recover the global minimum 2, 10, 13, 23, 23 and 24 times re-
spectively.

Nondifferentiable functions

Here we consider the class of functions for which the search of global
minimum is much more difficult task than for the differentiable functions
and obviously none of the classical methods based on knowledge of gradient
can be used. The functions we consider are not mathematical peculiarities
but do appear in problems of model parameter esimation based on the so
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called membership estimation method.? The aim of this method is to find
all model functions (defined by certain number of parameters) which are
consistent with noisy data in a sense that the curve associated with each of
these functions »passes through data error bars«. The following example ex-
plains the essence of the method.

Reaction velocity as dependent on substrate concentration in a simple
enzymatic reaction kinetics can be described by Hill's model function:

«;»
U = h(S; x) = KC + Sc' x = (vmax, K, c) (7)

where u > Ois the reaction velocity with its maximal value Vmax > O, S > O
is the substrate concentration, K> Ois the half-saturation concentration and
c ;:o: 1 is the degree of sigmoidicity related to possible cooperativity. Reaction
velocity is measured as a function of substrateconcentration and these data
are us ed to determine the values of parameter vector x. For the sake of this
example we will assume the following »experimental data set«;

S· = 10-1+O.2(i-1) i = 1 V V = 11~ " . . ., ,

hi = h(Si; x) + eJPi' x = (1, 2, 1.5), o = 0.25

w her eo, is uniformly distributed random variable on [-1,1] and o deter-
mine s the »error bars«. The parameter vector is determined by minimizing
the following criterion function:

m(x)
C(x)=--v- (8)

where mix) is the number of Si for which hi - o < h(si; x) < hi + a, More for-
mally m(x) = card{silh(Si; x) E (hi - a, hi + a)}. The essence of the membership
estimation method is to find the set of all admissible parameter vectors x
for which the criterion function C(x) achieves its global minimum. Thus, the
method requires search for global minimum of C(X) which cannot be smaller
than -1 nor it can be larger than zero. the values of C(x) are obviously ra- .
tional numbers and the function is not continuous. *

* For that reason we had to change the stopping criterion in NMS (see above). Quantity Rf
in (2) is now replaced by Rf = V'(Xh) - {(xI)1 and the stopping criterion is as follows:The procedure
terminates when Rf = O or the maximum number of function calls is achieved. In case Rf = O
and f(xl) * O the additional requirement for termination is as before R; S; Ex or if the number
of such cases exceeds certain maximal number no. In case of Rf = {(XI) = O the procedure is
terminated when the number of such cases exceeds no. Finally the procedure is terminated in-
stantly when the value of the function reaches -1.



A NEW ALGORITHM FOR GLOBAL MINIMIZATION 785

The ARS algorithm has been applied for minimization of discrete crite-
rion (8) extensively by E. Walter and his collaborators=P for various model
functions. Unfortunately in these papers we could not find any reference on
efficiency of the ARS algorithm. Here we compare the efficiency of the ARS
and the hybrid algorithm for minimization of C(x) with Hill's model function.
In Table II we displayed the number N, of successful findings of the global
minimum (-1) for 50 different realizations of data set. We also displayed the
total number Ne> of criterion function evaluation for those class when both
algorithms have found the global minimum. The advantage of the hybrid al-
gorithm is remarkable both in the number of successful findings and in
number of criterion function evaluations.

TABLE II

(Hill's model) Results for 50 simulated data sets. The
tolerance for the hybrid algorithm was Ex = 10-5 and

the termination number was set to no = 2.

ARS(5,100,100,50,100)
Hybrid(5,100,100,50,100)

8
25

59427
10296

Next example requires minimization in 4-dimensional space. The model
function is the two-exponential decay model:

(9)

»Experimental data set« is given by

ti = 10-1+0.2(i-1), i = 1, ... , V, V = 15

t.= {(ti; x) + OPi' x = (0.1, 2,0.9,3), 0=0.25

where Pi is the same as above. The minimization of criterion function given
by (8) (with h(Si; x) replaced by fi...ti; x) and h; by (;) for 50 data set realiza-
tions, yielded results displayed in Table III. Again the hybrid algorithm is
significantly more efficient although not as much as in the case of Hill's
three dimensional model.
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TABLE III

(Two-exponential decay model) ResuIts for 50 simulated
data sets. The tolerance for the hybrid algorithm was
Ex = 10-4 and the termination number was set no = 2.

ARS(8,400,200,50,80)
Hybrid(8,400,200,50,80)

4
10

115972
93663

CONCLUSION

We have shown that the proposed hybrid algorithm based on combina-
tion of the adaptive random search and the Nelder-Mead simplex procedure is
much more efficient in search for the global minimum than the pure adaptive
random search. At the same time the hybrid algorithm share s the property of
convergence to global minimum (in probabilistic sense) with the adaptive
random search algorithm. We performed the number of tests on differenti-
able and nondifferentiable functions with the results clearly in favor of the
hybrid algorithm. Based on our tests the hybrid algorithm can be certainly
recommended for minimizations of discrete functions involved in member-
ship estimation method. Preliminary comparison with genetic algorithms in-
dicated that the hybrid algorithm could be considered as a good alternative.

APPENDIX

Conuergence Theorem

Let S be a subset of the Euclidean space Rd and f : S ~ R be a meas-
urable function (with respect to Lebesgues' measure )..14) defined on S. We
suppose that S is enough regular so that f has point(s) of the global mini-
mum in S. The aim is to find an algorithm which gives an acceptable ap-
proximation of any point of the global minimum.

Random search algorithm for optimization is defined as any algorithm
which has the following form:

choose xO

set k+-O

while stopping criterion is not satisfied do
generate the random value Sk from the distribution I-lk

set xk+1 = G(xk, Sk)

choose 1-1/,

set k +- k + 1
end



A NEW ALGORITHM FOR GLOBAL MINIMIZATION 787

where (j1k; k E No) is a sequence of probabilities on measurable space
(Rd, <<jj(Rd» (.9J(Rd) is a o-algebra of Borel sets in S (Ref. 14) and G : S x
Rd ---+ S is a measurable function with the property that itG(x, ~» :o; itx) for
all x E S, ~ E Rd and (G(x, ~» :o; (~) for all x, ~ E S. The sequence of points
(x"; k E No) in S is a sequence of approximative global minimum points if
that algorithm converges to the global minimum.

If S is not discrete space and (is not function with discrete range, the
family of distributions (j1,,; k ENo) should not be discrete too. Otherwise, the
point of global minimum will never be reached by the random search algo-
rithm. On the other hand, ifthese conditions are fulfilled but (is almost con-
tinuous functions with discountinuity at the point of the global minimum Xo
with property that there exists lim,....•x itx) = L and L > itxo)' inf (will never

o
be reached. The conclusion is that any random search algorithm tries to cal-
culate not the global minimum but the essential infimum essinf ( of the
function f:

essinf(:= inf{t : !"({x ES: (x) < t}) > O} .

Let, for 10> 0, RE := {x ES: (x) < essinf( + s}. The random search algorithm
is said to converge to the global minimum (in probability) if for any
10> 0, lim"....•",P{x" ERE} = 1.3

Solis and Wets3 proved the following theorem.
Theorem. Let (and S be as above and the random search algorithm be

given with the sequence (j1k; k E No) of distributions which have the follow-
ing property:

et)

tj B E 97(S), !"(B) > ° => TI (1- Ji,,(B» = ° .
"=0

Then the random search algorithm converges to the global minimum.

Algorithms
d

Let S c Rd be a compact cube, S = TI [rj,min' rj,maxl, vi = diag(ViI>... Vid),
j=i

i = 1, ... , nI>be a sequence of diagonal matrices, (each representing a co-
variance matrix) such that vi} > vi+1J for all j = 1, ... d, i = 1, ni - 1 and
Vi = diag(rlmax - rlmin' ... , rdmax - rdmin)2. Shortly, Vi > v2 > > vn = Vmin'

, I J , 1

Let 1T.s : Rd ---+ S be a coordinate projector onto S. The ARS algorithm+i can
be formulated .as follows:
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choose xO

set k ~ O

put (min ~ f(xO), Vopt ~ Vmin

while max. no. iter, n6 is not achived or Vmin is not chosen n5 times successivelydo
{The first step:}

k
xsp~x

for i ~ 1 to nI do

n2 ~ [n3/i]

for j ~ 1 to n2 do

gene rate S from vi(dx) = 1 e' V2(ui
1
x~) dx

~ (2rr)d det Vi

S" = 1(S(Xsp + S)
if {(S") < {min then

xh+1 = S"

{min ~ {(S")

Vapi ~ Vi

else x"+ I = x"

k ~k+ 1

{The second step:}

for j ~ 1 to n4 do

gene rate point S from v(dx) = 1 e- v2Cu:;txP=) dx
~(21()d det Vapi

S" = 1(S(x" + S)
if {(S") < {min then

xh+1 = S"

{min ~ {(S")

else xh+1 = X"

k ~k + 1

end

It should be noted that f," has truncated normal distribution f.lk.

The form of the hybrid ARS + SIMPLEX algorithm can be formulated
as follows:
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,
\

choose xO

set k+-O

°put fmin +- f(x ), Vopt +- Vmin

while max. no. iter, n6 is not achived or Vmin is not chosen n5 times successivelydo

{The first step:}

"xsp +- x

for i +- 1 to n1 do

n2 +- [n3/i]

for j +- 1 to n2 do

generate ~ from vi(dx) = 1 . e- V2(v;-1 Xfx) dx

-y (2n)d de tVi

~" = ns(xsp + ~)

if f(~") < fmin then

xh+l =~"
fmin +- f(~")

Uopt +- Vi

else xh+ 1= x"

{The second step:}

for j +- 1 to n4 do

generate d + 1 points ~L, ... ~d+l from v(dx) 1 e-V2(V~;txfx)dx

-Y(2n)d det Uop i

call simplex(x" + ~l; l = 1, ... , d + 1)

if simplex finds a better point x" + ~L E S the n

~"=X"+~L

xh+l =~"
fmin +- f(~")

end

----
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Conuergence of algorithms

Both algorithms fulfill the condition for global convergence noted in
Theorem (Solis & Wets3). Namely, let (;lk;) E N) be a subsequence of the dis-

)

tributions (;lk; k E No) which were used in the first phase of the algorithm
all with the same covariance Ul, but with different mean parameters. Let B
be any Borel set in S with positive Lebesgues measure, BC = Rd\B. The func-

tion F : S ~ R,defined by F(y) := 1 f e-V2(vl\x-y)~-y)dx is continu-
Y(2n)d det ul BC

ous with compact domain. So, there exists the point of maximum yo of Fin
S. Therefore, for any} E N, f.1k{S\B) .s;F(yo) < 1, which implies

)

00 00 00

O.s;TI (1 - f.1k(B».s; TI (1 - f.1,,{B» = TI f.1,,(S\B) .s;lim F(yo)'t = O .
) ),,~o j~l )=1 n
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SAŽETAK
Novi algoritam za globalnu minimizaciju zasnovan na kombinaciji prila-

godljivog slučajnog pretraživanja i simpleks algoritma Neldera
i Meada

Miljenko Huzak i Željko Bajzer

Predlažemo novi algoritam opće namjene za određivanje globalnih minimuma
derivabilnih i nederivabilnih funkcija s više varijabli. Algoritam se zasniva na kom-
binaciji prilagodljivog slučajnog pretraživanja i simplex minimizacije Neldera i Mea-
da. Pokazujemo da novi hibridni algoritam zadovoljava teorem o konvergenciji (po
vjerojatnosti) prema globalnom minimumu. Pomoću probnih funkcija pokazujemo da
je predloženi algoritam znatno efikasniji od čistog prilagodljivog slučajnog pre-
traživanja. Neke od razmatranih probnih funkcija su povezane s metodom ocjene
skupa članstva koja se koristi za određivanja modelskih parametara i koja se poka-
zala uspješnom u primjeni na kinetičke probleme u kemiji i biologiji.




