
CROATICA CHEMICA ACTA CCACAA 69 (3) 899-925 (1996)

ISSN-00l1-1643
CCA-2350 Original scientific paper

Development of a Quantum Chemical Two-Electron
Integral Program for a Hierarchical Distributed
Shared Memory Multiprocessor System (MEMSY)

Joachim Nedvidek and Peter Otto

Chair for Theoretical Chemistry, Friedrich-Alexander-Uniuersity Erlangen
Niirnberg, Egerlandstr. 3, 91054 Erlangen, FRO

Received November 8, 1995; revised April 24, 1996; accepted June 14, 1996

A quantum mechanical integral program has been implemented on
a multiprocessor system with a hierarchical architecture, having at
the same time a global memory and a locally distributed memory.
Due to this hardware concept the possibilities of communication
are manifold and therefore more complexin comparison with other
multiprocessor systems, e.g. Intel iPSC/860 or workstation clusters.
Nevertheless, the efficiencyobtained using asimulator or the real
system are of comparable quality. It is expected that this variety
of interprocessor communications can be employed to its full extent
in the second part of the program in which hermitian eigenvalue
problems have to be solved many times.

INTRODUCTION

Analysis, modelling, prediction and optimization of molecular and macro-
molecular structures with the help of computers is one of the challenging
classes for scientific supercomputers. The basis for understanding biological
processes in the cell is the investigation of reaction mechanisms of bio-
molecules, e.g. DNA and proteins. Theoretical studies can provide important
contributions to biochemistry at the molecular level.

Organic polymers are of increasing importance as materials for new
technologies. Due to the variety of composition, structure and configuration,
materials with a selected combination of physical and chemical properties
can be designed. However, to obtain results which can be compared with ex-
perimental results, it is necessary to apply accurate quantum mechanical ab

900 J. NEDVlDEK AND P. OTTO

initio methods. The use of these theoretical methods for investigations on
the molecular level can in principle serve two purposes:
* theoretical models can be very useful for explaining new physical phe-

nomena and for verifying postulated quantum mechanical interpretations
versus experimental evidence. Current topics of high interest are e.g. the
high-temperature superconductivity of ceramic materials, nonlinear opti-
cal properties and electrical transport properties of organic polymers.

* the application of theoretical models can be very useful in designing new
materials with specific selected chemical and physical properties e.g. us-
ing structure-activity relations of biochemical molecules to predict new
compounds with improved pharmacological efficiency.The necessary data
can be obtained from quantum chemical calculations. In this way expen-
sive and time-consuming experimental investigations can be avoided ar
at least reduced.
The size of chemical systems that can be treated numerically depends

on the specific computer and its equipment. To investigate chemically inter-
esting systems, which are usually very complex, supercomputers with large
care memory, external disk space and an efficient Ila-system are needed.
Therefore, new attempts should be made to scale problems to computers as
well as to develop supercomputers with extreme capacity. These require-
ments, also arising from many other scientific areas, where heavy numerical
operations are required, have stimulated the development of the new com-
puter generation, mainly following three directions:
'" large-scale multi-purpose computers with one ar more scalar processors

and additionally equipped with vector facilities (CDC CYBER 995E, IBM
3090 VF)

* vector computers with one ar more «32) processors (CRAYY-MP,CRAY-T90)
* massively parallel computers with many (up to more than 1000) proces-

sors (CRAY,Intel, CONVEX, IBM, workstation cluster).
The computer industry enforces the strategy of massively parallel com-

puters because systems appropriate for individual needs and financial re-
sources can be designed. The hardware of a massively parallel system can
be built up of nearly any number and any type of processors in very different
architectures. The currently available mu1tiprocessor systems differ not only
in the architecture but also differ significant1y in the interprocessor commu-
nication (synchronous/asynchronous), the storage and access of data (shared/
distributed memory, local disks) and the software supporting parallel com-
puting. Almost every multiprocessor system has its own communication pos-
sibilities and specific commands. Having worked out the proper partitianing
of tasks of the mathematical problem under consideration, the user has to
write a program for each parallel system to be used. Only in the last years
attempts were undertaken to standardize parallel program software (PVM
- Parallel Virtual Machine ').

QUANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 901

Since the early development of parallel computers by Clementi on the
lcap (Ioosely coupled array of processors) system.v" many parallel imple-
mentations of quantum chemical programs have been reported in the litera-
ture," e.g. the parallelization of a Direct Rartree-Fock program by Almlof"
for shared MIMD (Multiple Instruction Multiple Data) architectures and by
Wedig for a trans put er system." Since our first attempts to reformulate our
polymer program for the lcap system we have succeeded in improving its
performance'' by introducing a dynamical partitioning scheme. Later, we
have developed an ab initio Hartree-Fock Crystal Orbital (RF-CO) program
for SUPRENUM, Intel iPSC/S60 and a workstation cluster.9-11

In this work we rep ort the properties and results of the two-electron in-
tegral program for polymer calculations, which is the first time-consuming
step of the RF-CO method obtained for MEMSY. It is a multiprocessor sys-
tem with completely different architecture from that of the Intel or SUPRE-
NUM.

In the following section, we summarize briefly the theoretical physical
problem, i.e. the quantum mechanical method for calculating energy. band
structures and electronic wave functions for polymers. In the next section
the MEMSY hardware and its operating system are presented. Then, a de-
scription follows of the computer program, its structure and ways of com-
munication. Finally, results are reported and discussed and ashort outlook
for future developments is given.

TRE PHYSICAL PROBLEM

Energy band structures and electronic wave functions of quasi one-di-
mensional periodic systems can be calculated with the help of the Hartree-
Fock-Crystal-Orbital (RF -CO)-Method.12-14

The basic numerical problem of the RF -CO method is the solution of the
generalized hermitian eigenvalue problem in matrix form.

(1)
n = 1, , NBF basis functions
i = 1, , NKP points in reciprocal space

The overlap and Fock matrices in eq. (1), respectively, are defined as the
Fourier transforms of the corresponding matrices in direct space

NElG
S(k) = I eiRJ?SOJ(q)

J=-NElG

(2a)

902 J. NEDVIDEK AND P. OTTO

NEIG
F(k) = I eiRj'lfJJ(q)

J=-NEIG

(2b)

The elements of the respective matrices are defined as:

s~ = <x2lxt> (3)

(4)

where the upper indices show that the basisfunction Xa and Xb are located
in the reference and Jth cell, respectively. The Fock matrix element of FOJ

is the sum of one-electron integrals (representing the kinetic energy, elec-
tron-nuclear attraction and, if necessary, effective core potential interaction)

(5)

and two-electron integrals (Coulomb and exchange integrals).
The overlap matrices SOJ occur due to the non-orthogonality of the basis

functions. NElG is the number of cells interacting with the reference cell.

NEIG NBF [1
G?{ = I I pIf!! <x2C!.1)x!!~) -;:- X{/'~l)x~~»-

H,L=-NEIG c,d 12

- %<X~C!.l)xIfC!.z) -;- X~C!J.)X{,C!.z»J·
12

(6)

The first time consuming step consists of the calculation of the two-electron
integraIs shown in eq. (6).

a, b, c, d = 1, ..., NBF
J, H, L = -NE lG, ..., NElG

The basis functions (atomic orbitals) are written as a linear combination of
ni so called primitive Gaussian functions (ni ~ 2 - 10). The superscripts de-
note one of Ngroup possible combinations of cells where the basis functions
are localized. The value of Ngroup increases rapidly with increasing NElG

QUANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 903

(NEIG = 1, 2, 3; Ngroup = 5, 15, 35). The total number of integrals to be
calculated then yields

Ngroup * NBF4

(without taking into account symmetry restriction with respect to basis func-
tions and negligible integraIs smaller than a given integral threshold).

Since the calculation of the two-electron integrals can be performed in-
dependently a high degree of parallelism can be realized.

One of the main problems is the partitioning of tasks in such away as
to achieve a nearly equal load balancing of the processor nodes.

THE MODULAR EXPANDABLE MULTIPROCESSOR
SYSTEM (MEMSY)

The high-performance multiprocessor system MEMSY (Modular Erweit-
erbares Multiprozessor-System)!" has been designed, developed and tested
within the Sonderforschungsbereich 182 (multiprocessor- and network eon-
figurations) of the Deutsche Forschungsgemeinschaft. It belongs to the
group of MIMD-systems (multiple instruction stream - multiple data
stream) and its processor nodes have additional communication memory,
which can be used by other nodes. In this way, MEMSY unifies elements of
a parallel system with global memory and of a parallel system with local
distributed memory. The real system is built up of two planes of processor
units as shown in Figure 1. Identification of the nodes can be done in two
different ways: using either coordinates, or characteristic node numbers (0-3
for the units in plane B; 4-19 for the units in plane A).

o nade of the plane A O nade of the plane B

Figure 1. The MEMSY-architecture.

904 J. NEDVIDEK AND P. OTTO

The configuration of asingle node is:
4 processors, Motorola 88100, 25 MHz
512 KByte Cache
32 MByte working memory
Ports to the communication memories
Ports to the interprocessor-interrupt-network
Port to the global Ivbit-communication system
Port to the FDDI-network
local SCSI-harddisk 512 MB .
Each unit can use its communication memory and has access to the com-

munication memory of its four nearest neighbours (the nodes at the edge are
directly linked with atorus connection to the opposite nodes). Figure 2
shows the connection of the processor nodes and the communication memo-
ries with linking elements.

(/ b c d e f g il

Figure 2. Use of the linking elements in a plane with 16 processors. Connection of
processor-nodes and communication-memories.

QUANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 905

The numbered circles symbolize the processor units, the grey boxes the
linking elements and the numbered squares the communication memories.
Different switching positions of the linking elements enable the required
connections.

The recently developed operating system MEMSOS,16 is based on UNIX
and contains specific 'shared memory' commands.

The architecture of MEMSY is completely different from that of other
parallel-systems, for which the Hartree-Fock Crystal-Orbital program had
already been developed. The Intel iPSC/860 parallel-system consists of up
to 128 processors connected in a hypercube. The communication between the
nodes can be realized by using message-passing commands. In contra st to
the SUPRENUM, the message-passing commands call subroutines to do this
work. Therefore, the standard programming langu ages C and FORTRAN
can be us ed without specific expansions.

Communication Between the Nodes

As mentioned above, MEMSY is a mixed form of parallel systems with
global memory and parallel systems with distributed shared memory and is
equipped with distributed memory and fragmented global memory (commu-
nication memory). Therefore, a communication between two nodes can be
done either with message-passing, or using the communication memory, or
in other ways, briefly indicated in the following paragraphs:

Sen der Receiver

Figure 3. Sending of ashort message to a receiver.

906 J. NEDV1DEK AND P. OTTO

Messages are short informations, which a node can send to a neighbour-
ing node. The possibility of sending messages to distant nodes is installed
at the simulator and planned for the real system. One message contains
only three data words and an identification-number, stored together in a
structure. The reception can be blocking or non-blocking, This possibility of
communication is appropriate for a small number of data, which should be
transrnitted fast. However, in comparison with the message-passing system
of Intel iPSC/860, the message-passing system of MEMSY is very restricted:
* The Intel system can send messages up to 256 KBytes instead of only

three data words.
* The sequence of the received messages in the MEMSY system is pre-

scribed. The receive-command in the program of the receiver gets the next
message and works with ito The Intel system, on the other hand, opens
the possibility of crossing messages. One can characterize a message, by
attributing a type reception will only be done, if the receiver command is
of the same type; all others will be kept in a mail-box until they are re-
quired.

* In the program for MEMSY,one has to create a loop over all nodes to send
a message to all others, whereas for the Intel system it is sufficient to
send a message only to node '-1'.

The weakness of the message-passing system of the MEMSY is founded
in the basic concept that has been followed in its development. MEMSY has
a completely different architecture, predestinated for shared memory com-
munication, and a comparison restricted to this communication possibility
cannot be the only criterium of its value.

The global harddisk permits a node to send informations to any other
node. There is no restriction in the length or type of information. The only
drawback of this way of communication is the slowliness of this method.
Therefore, only large informations should be send by using the global hard-
disk. Writing and reading files on the global disk has to be organized very
carefully because only one node should write or read the same file of the
global disk at a given time. Therefore, several other communications have
to be done to coordinate this procedure. Figure 4 shows an easy way of send-
ing informa ti on to a receiver by using the global harddisk. In this way, it .
could be guaranteed that the reading of the receiver starts after the writing
of the sender has finished. To prevent complicated and inefficient commu-
nication structures, one can use 'global files with characteristic names'. For
example, one can create a global file with a name that contains the number
of the receiver. In this way, several receivers can read their global files si-
multaneously after having identified themselves with the symbolic constant
M_LOCAL.

Data exchange can also result from the use of the communication mem-
ory. This way is the fastest possibility of trans miting informa ti on but it can

QUANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 907

Sender Receiver

Figure 4. Sending of a long message to a receiver.

be done only with the nearest neighbours. Firstly, one has to create a seg-
ment that can be attached to other processes. Following the use of this seg-
ment all attachments can be removed and the segment released. The seg-
ment is created when a request occurs in the program. The segment has to
be generated in the communication memory of that processor node, which
is a neighbour to those who need to use this segment. Only if a segment
that satisfies the requests exists, it can be created.

Other communication-possibilitiee e.g. semaphore, signal and spinlock,
well-known from other multiprocessor systems are also implemented on
MEMSY.

An easy and comfortable way for communication is planned, called
'transport'. The operating system its elf chooses the best way for the sending,
considering the type of the data, the partner of the data transfer and defects
of the system. The only information the user has to supply is the node num-
ber of the receiver.

The MEMSY-Simulator / The MEMSY-System

At the beginning of our investigations, while the real computer system
was still in the testing phase, we used the simulator of the MEMSYrunning
on a Sequent Symmetry system (a multiprocessor system with global shared
memory). After the realization of the real MEMSY-system,the program was
adapted, transferred and tested on this system. The simulator maps the ar-
chitecture with 20 processor nodes (see Figure 2), the message-passing sys-

908 J. NEDVIDEK AND P. OTTO

tem, the use of communication memory, semaphores, signals, spinlocks and
the connection mentioned above. In the simulator, each node consists of one
processor. A program developed for the simulator can be easily ported to the
real system. The only difference is that the message-passing in the real sys-
tem can be done only with the nearest neighbours.

The simulator needs a program that branches after identification of the
number of the node (M_LOCAL), since the same program has to start on
all nodes.

STRUCTURE OF THE PROGRAM

The program was developed with the help of the programming language
C, because C and C++, which indicate excellent tools for working on memory
management, were the only compilers implemented on the system. The pro-
gram uses the MASTER-SLAVE-method together with the FARMING-con-
cept. One node, the defined MASTER, distributes the tasks to the other
SLAVEnodes. If any SLAVEhas nothing to do, he asks for a new task and
gets it from the master. This concept is responsible for the fact that in the
real system only 7 nodes can be used, since the master-nude had to be the
nearest neighbour to the slaves, as shown in Figure 5. In this way, one ele-
mentary pyramid and two additional nodes of the B-plane can be used.

The program for the simulator and also for the real system does not sup-
port the architecture of MEMSY and neglects the particular properties of
communication memory, which is in this case more advantageous than push-
ing the problem into the architecture. The calculation of two-electron inte-
gral s does not need any local data exchange which is supported by MEMSY.

To restrict the number of slaves, a symbolic constant NSLE was intro-
duced, which gives the number of the last working slave .

• master

slave

Figure 5. Connection of master and slaves in the program for the MEMSY-system.

QUANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 909

master slave

"~"~
Figure 6_ Master-slave concept of the integral program.

Running-structure of the Program

Figure 6 shows the main idea of the program. The left side demonstrates
the master-program and the right side the slave-program. Tokeep the figure
easily understandable, the last part (not necessary for the calculation) of the
program does not appear, The following scheme describes in more detail the
main steps of the program as it is indicated by the boxes in Figure 6_

master-node:
* Reading the input.
* Calculation of some informations and storing on harddisk,
* Sending the first results to all nodes.
* Reading from harddisk the informations for one integral group.
* Distribution of the work into tasks
* Sending one task to a free slave, from which the master got the corre-

sponding information. All tasks are distributed in this way_
* If all groups are not calculated yet, the master reads the information for

the next group, distributes the tasks, and so on.
* If all groups are calculated, the master gathers all control results and fin-

ishes his work.

910 J. NEDVJDEK AND P. OTTO

slave-node:

* Reception of the results, which have been calculated by the master.
* Request for a new task.
* Getting a task from the master.
* Calculation of the integrals of this task.
* Storing the integrals on the local harddisk.
* New request for a task.

If the slave does not get a task,
* termination.

Loop Structure of the Integral Calculation

For all relevant combinations of H, J and L Ngroup groups were built
up and in each group the variables a.b.c.d, are given by the loops over the
contracted Gaussian basis functions.

igroup = 1, ..., Ngroup
ab = 1, ..., NBFa * NBFb

c = 1, , NBFc
d = 1, , NBFd

<end of all loops>

The values of NBFi indicate possible symmetry restrictions with respect
to the function indices a, b, c and d. The partitioning of the integral-calcu-
lation task to realize a parallel calculation is done in the ab loop.

Communication Structures of the Program

In comparison with the corresponding program for the Intel iPSC/860,
the program for MEMSY is much more complex. The reason is the more ad-
vantageous message-passing system of the Intel iPSC/860, which meets bet-
ter the requirements of the program. MEMSY needs in addition for the same
problem the use of the global harddisk. Furthermore, the MEMSY architec-
ture is completely different from the architecture of the Intel, so it is nessec-
cary to rewrite the program.

With respect to the communication requirements in the program, three
cases can be differentiated, which are discussed shortly in the next paragraphs.

QUANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 911

The first part is the transport of the primarily calculated results from the
master to all slaves. The calculation of the integrals is done in the second
part. The master generates the individual tasks and distributes them. The
third part represents the collection of the control results by the master.

The Master Sends Precalculated Information to All Slaves

The master precalculates data from the input and sends this information
to all slaves. If every node calculated these data, there would be no advan-
tage. It is true that this part of communication could be avoided, but other
problems would appear, like the coordination of the reading of the input or
the synchronization of the nodes after having performed the calculations.
Two different possibilities can be distinguished:

The Master Sends aShort Information to All Slaves

It is very easy to send ashort information to all slaves, which can be
done in a loop structure counting message-passing commands. For example,
to send aseven integer vector to all slaves, the master has to perform a loop
over all slave numbers which includes three send commands. The slave
function requires only three blocking receive commands. The following
scheme explains in more detail Figure 7 and its individual steps.

master:
ml: start of the loop;
m2: junction;
m3: any slave without information?

yes: continue m4;
no: goto mS;

m4: send message to slave imemsy;
m5: as m4;
m6: as m4;
m7: increase imemsy;

goto m2;
mS: continue program;

slave:
sl: blocking reception of a message;
s2: same as sl;
s3: same as sl;

continue program

912

Master

J. NEDVlDEK AND P. OTTO

Slave

m3
imemsy
<- NSLE? >======:::::t

m4: send

m5: send

m6: send

no

s2: receive

s3: receive

Figure 7. The master sends ashort information to all slaves.

The Master Sends a Long Information to All Slaves

To send a long information to all slaves, the master first has to write it
in one or more global files. Then, he has to order one single slave to read
this information. The master has to wait until the reading has been fin-
ished. Afterwards, he can order the next slave to read the informa tion. When
all slaves have got their information, the master has to unblock the barrier
at which the slaves are waiting. This barrier is necessary because a confu-
sion of the 'reading finished message' and subsequent messages of the pro-
gram may produce serious errors. The following scheme is explained in Fig-
ures 8 and 9 and its individual steps.

QUANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 913

Master Slave

Figure 8. The master sends a long informa ti on to all slaves (part 1).

Master:

ml: open global files;
write global files;
close global files;

m2: start of the loop; imemsye L;
m3: junetion;
m4: any slave with out information?

yes: continue m5;no: goto mS;

914 J. NEDVIDEK AND P. OTTO

s4: continue

yes

Figure 9. The master sends a long information to all slaves (part 2).

m5: send message to slave imemsy (-> sl) to start reading global files;
m6: blocked waiting until reading has finished;

receive message from slave imemsy (all others wait at sI or s5);
m7: increase imemsy; goto m3;
mB: continue m9;
m9: start of the second loop; imemsye I;
mIO: junction;
mll: any slave without barrier-unblocking-message?

yes: continue m12;no: goto m14;

QUANTUM CHEMICAL TWO·ELECTRON INTEGRAL PROGRAM 915

m12: send unblocking message to slave imemsy (-> s5);
m13: increase imemsy; gata m10;
m14: continue program;

Slave:

sl: blocked waiting until master sends inforrnation «- m5) to start
reading global files;

s2: open, read and close global file;
s3: send information to master (-> m6), that the reading of global files

has been finished;
s4: continue s5;
s5: blocked waiting (barrier) until master orders «- m12) to continue

program;

The Master Distributes the Tasks to the Slaves,
Which Calculate the Integrals

This is the most difficult part of the program. The master has to send
tasks to a free slave until the complete work is dane. The slaves have to
calculate the integraIs of the tasks and then ask for another task. After fin-
ishing all tasks, the master has to send a relevant signal to each free slave.
Because of the size of the task information, a data exchange with the global
disk is absolutely nessecary.

A serious problem is the fact that a free slave should send in this part
of the program only one message to the master because a second message
could cause errors. The master cannot differentiate between the request of
a free slave for a new task and other messages (see above).

These difficulties can be solved by using global files with characteristic
names. The master creates files with filenames, which are built up of same
characters and the number of the free slave, sent to the master by asking
for a new task.

The master nade receives the node-number of a free slave. He tells the
slave that there is a remaining und one task and sends the information for
this task with the help of messages and global files to the slave.

To prevent the long waiting time until the slave has finished the reading
of the global file, the master creates a receiver-characteristic global file and
informs the slave. Finally, the master is ready to receive the number of the
next free slave, while the first is still reading 'his' global file. After all work
has been dane, the master sends to the asking slaves a relevant message.

916 J. NEDVIDEK AND P. OTTO

The slave node tells the master his readiness by sending him his node
number. Now he gets information to receive a new task and to calculate in-
tegrals or to terminate this part of the program. To calculate a new task,
the slave obtains a message-send vector and information about his specific
global file. He reads this global file, calculates the integrals, stores them on
the local disk and asks the master for a new task. If all tasks have been
distributed, the slave terminates this section. The following scheme is ex-
plained in Figure 10.

Master Slave

s4 yes
igoon - O?)C===::::::::::r

Figure 10. The master distributes the tasks to the slaves which calculate the integrals.

UANTUM CHEMICAL TWO-ELECTRON INTEGRAL PROGRAM 917

Master:

ml: junction;
start of all loops in which distribution of the tasks is done;

m2: creation of a new task;
m3: the master receives the number of a free slave «- s2);
m4: Sending a message to the free slave that there are still

undone tasks (igoone I to -> s3);
m5: Transmitting a vector itransport3, which consists of indices

for integral calculation, with the help of three messages to
the free slave;

m6: creation of a global file with a name characteristic of the
free slave, writing and closing it;

m7: Sending a message to the slave (-> s6) to start reading this file;
m8: All tasks distributed?

no: goto ml;yes: continue m9;
m9: Getting a task-asking message from all slaves (loopwith reception

of the slave numbers);
mIO: Sending to all asking slaves a message that all tasks have been

distributed (loop with message igoone O-> s3);

Slave:

s1: junction;
start of an endless loop (this loop can only be left by if-branching);

s2: Sending the own node number to the master (-> m3);
s3: Getting igoon from the master «- m4 or <- mIO);
s4: igoon = O?

yes: goto s9;no: continue s5;
s5: Receiving of the vector itransport3 with the help of three

receive-commands «- m5);
s6: Blocked reception of the informa tion that the slave can start

reading global file;
s7: Reading of the characteristic global file;
s8: Calculation of the integraIs and storing them on local disk;

goto sl;
s9: continue program;

918 J. NEDVIDEK AND P. OTTO

The Master Collects Control Results of the Slaues

This part of the program is not necessary for the integral calculation. It
is induced only to control the correct run of the program but, due to the in-
teresting communication structure, it will be discussed here. While calculat-
ing the integrals, each slave creates control results, which are sent to the
master, where they are summed up. To prevent errors in the subsequent use
of the integrals by the master, again the method of global files with node
specific name s is chosen. Each slave writes his control results on a file,
whose name includes his nade number. Now, he sends his nade number to
the master as information that he has finished writing. In a loop over the
number of all slaves, the master receives the number of the slave, who has
just finished, reads 'his' global file and sums up the results. Note that the
loop variable need not be equal to the actual slave number. It only accom-
plishes that each slave has a data exchange with the master. Figure 11 ex-
plains the following scheme and its individual steps.

Master:
ml: start of the loop; imemsye l ;
m2: junction;
m3: any slave unconsidered?

yes: continue m4;no: goto m8
m4: blocked reception of the number of the finishing slave;
m5: reading of the characteristic global file;
m6: summation of the control results;
m7: increasing of imemsy;

goto m2;
m8: continue program;

Slave:
sl: Storing of the control results in a global file with a node-

number characteristic name;
s2: sending the node-number to the master;
s3: continue program;

RESULTS AND DISCUSSION

The performance of a multiprocessor computer system depends on the
capacity of the processors, the hardware architecture, the operating system
including communication and synchronization tasks and, of course, on the

QUANTUM CHEMICAL TWO-ELECTRON JNTEGRAL PROGRAM 919

Master Slave

Imemsy
<- NSLE

?

s3:continue

Figure 11. The master collects control results of the slaves.

quality ofthe user-supplied programs, i.e. the partitioning oftasks to achieve
an optimal load-halancing of the participating processors.

Detailed measurements are necessary to evaluate the efficiency of the
parallel computer system. Firstly, distinguished model calculations have to
he worked out and, secondly, CPU- and wall times are required for a sequen-
tial version of the program. These performance times on a sequential system
can then he us ed to compare with and to analyze the results on a parallel
computer with respect to CPU, communication and synchronization time
contrihutions.

920 J. NEDVIDEK AND P. OTTO

At present, it is not possible to configurate MEMSY as a true sequential
machine using only one processor. Therefore, we have performed the calcu-
lation for a configuration consisting of a master and only one slave proces-
sor. This choice is not unreasonable because in this configuration one of the
nodes performs the complete calculation while the other one is in the stand-
by state, and appropriate measurements of time differences yield the nec-
essary values for comparison.

The quality of a parallel program can be evaluated using the two quan-
tities, speed-up and efficiency,which are defined as follows:

d
TI CPU-time of the sequential version

spee -up =-=
Tp CPU-time of the parallel version

. . Sp speed-up
efficiency = - = ---=----=-----

p number of processor

In contrast to the efficiency,the speed-up is not characteristic of the per-
formance of the whole system but of the degree of parallelization in the pro-
gram. This analysis has been carried out on the MEMSY Simulator and on
the real system, respectively.

We succeeded in running the program on the simulator with up to 13
nodes for calculating (CH2)x (NBF=7) in the first neighbours interaction ap-
proximation (NEIG=l). Due to the fact that the processors of the simulator
were not equal and that the program could not select the processors, the
time measurements were not reproducible and, therefore, no reliable conclu-
sions could be drawn.

Therefore, we transfered and implemented the program to the real
MEMSY computer. Due to the restriction of the interprocessor communica-
tion with the help of message-passing, which is allowed only between near-
est neighbour processors, not more than seven nodes (one master and six
slaves) could be used. However, in a near future project, software tools will
be available to circumvent the present limitation. Nevertheless, it is possible
to investigate the speed-up and efficiency as functions of the number of
nodes, the number of tasks to be distributed and the size of the individual .
tasks.

Model calculations have been performed for polyethylene (number of ba-
sis functions NBF=7) in the neighbours interaction approximation ranging
from 1 to 4 (NEIG=1,2,3,4; Ngroupeč, 15, 35, 65). The results are summa-
rized in Table I.

The Table contains information on the number of slave processors, the
total CPU time, speed-up and efficiency. Figure 12 shows the resulting
speed-up as a function of the number of tasks and the number of processors

QUANTUM CHEMICAL TWO·ELECTRON INTEGRAL PROGRAM 921

TABLE I

Running time, speed-up and efficiency for the calculation
of (CH2)x, in the NElGth neighbours' interaction approxi-

mation

number tins speed-up efficiency
of slaves in %

NErc = 1 1 203 1.00 50.0
2 121 1.68 55.9
3 86 2.36 59.0
4 67 3.03 60.6
5 59 3.44 57.3
6 55 3.69 52.7

NEIG = 2 1 808 1.00 50.0
2 427 1.89 63.1
3 293 2.76 68.9
4 223 3.62 72.5
5 187 4.32 72.0
6 163 4.96 70.8

NE lG = 3 1 2105 1.00 50.0
2 1084 1.94 64.7
3 731 2.88 72.0
4 562 3.75 74.9
5 460 4.58 76.3
6 394 5.34 76.3

NElG = 4 1 4374 1.00 50.0
2 2233 1.96 65.3
3 1509 2.90 72.5
4 1150 3.80 76.1
5 934 4.68 78.1
6 793 5.52 78.8

for NEIG=l up to 4 us. the ideal straight line. The efficiency for the same
series of measurements is graphically diagrammed in Figure 13. It has to
be mentioned that the capacity of the processors (MOTOROLA 88100 25 .
MHz) implemented in MEMSY is too low to permit calculation of polymers
with large elementary cells or many basis functions, respectively.

In the case of model calculations with a large number of tasks to be dis-
tributed (NEIG=3 and 4), the speed-up is line ar from nslavee I up to 6
whereas for smaller problems the linearity is no longer fulfilled. The de-
creasing speed-up for the larger number of processors finds its explanation
in the fact that the number of integrals per task to be calculated by each
slave processor becomes very small, so the total time will be determined

922

speed-up
7

6
o NEIG-1

5
+ NEIG-2

4

o NEIG-3
3

d NEIG-4
2

O+---~----~--~----~----._--_r--~
O 2 4

Figure 12. Speed-up for the calculation of (CH2)X.

number of SLAVES

J. NEDVIDEK AND P. OTI'O

6

more and more by communication processes, waiting and synchronization
times. From the obtained results we can conclude that, for heavy numerical
applications, the speed-up will increase linearly for more processors. The
qualitative results of the speed-up are also reflected in the graphic of the

efflciency

90
a NEIG-1

+ NEIG-2

70
o NEIG-3

60

50

~+---~----~---~----~----~--~--~
o 2 4

Figure 13. Efficiency for the calculation of (CH2)X.

number of SLAVES
6

QUANTUM CHEMICAL TWO·ELECTRON INTEGRAL PROGRAJvI 923

efficiency us. the number of slaves, shown in Figure 13. The efficiency
reaches the value of 0.8 for the largest calculation that could be performed
for six slaves. Again, for numerical applications of complex chemical sys-
tems, we can expect even a higher efficiency,

One important point has to be mentioned in evaluating the respective
efficiencies. At present, the program running on the master processor serves
only to precalculate and to distribute data to the slaves but does not take
part in the actual calculation of integrals, This strategy has, of course, an
important effect in the case of only a few processors. This effect has been
investigated for a workstation cluster developing a version of a parallel pro-
gram in which the master program is equivalent to the slave program except
for the initialization of tasks. A significant improvement of the parallel per-
formance has been observed. However, this increase in efficiency becomes
less important when the parallel configuration unifies many processors and
the influence of the »inactive- master processor will be strongly reduced.

SUMMARYAND PREVIEW

In this work, we have investigated the implementation of quantum me-
chanical programs - taking as an example the two-electron integral program
as it is used for ab initio Hartree-Fock crystal orbital calculations - on a
multiprocessor system with a hierarchical architecture with distributed and
global storage possibilities. The comparison with other parallel computers
shows, on the one hand, that despite the essentially different communica-
tion and synchronization procedures, a comparable speed-up and efficiency
of the program could be obtained, It has also to be mentioned that the mani-
fold ways of communication could be used only partially for the program un-
der investigation, e.g. no advantage has been taken from the communica-
tion-memory available for nearest neighbouring nodes.

On the other hand, we expect that especially the variety of communica-
tions available in MEMSY can be employed in a very efficient way in the
second part of the program, the iterative solution of hermitian eigenvalue
problems. We have already developed parallelization algorithms and the cor-
responding computer programs for the diagonalization based on the QR al-
gorithm. Detailed investigations show that, for the size of our problems, a
small number of processors would be suitable and therefore the local mem-
ory could be efficiently used.

The restriction of message-passing with only the nearest neighbours
leads to the desire of using all 20 nodes of MEMSY for the discussed pro-
gram. This wish was an interesting aspect for those persons who developed
the operating system of MEMSY. An optimal configuration which allow to
calculating with one master and 20 slaves is shown in Figure 14. One node

924 J. NEDVlDEK AND P. 0'1''1'0

• master-task

• slave-task

o distribution-task

Figure 14. The use of 20 nodes with master-slave concept.

of the B-plane is defined as the master, all four nodes of the B-plane are
distributers and, in addition, all 20 nodes of the A-plane and the B-plane
act as slaves. The hardware to solve this problem already exists because
each node consists of four processors and the connections are the same as
those still used. Therefore, more than one task can be started on one node.

The realization of this possibility by extending the operating system is
in progress and will be a long-term task for the computer science.

Acknowledgement. - The authors are very grateful for the financial support of
the German Research Council (Sonderforschungsbereich 182 »Multiprozessor- und
Netzwer kkonfigurationen «},

REFERENCES
1. PVM 3.0:Parallel Virtual Machine System 3.0, University ofTennessee, Knoxville

TN. Oak Ridge National Laboratory, Oak Ridge TN. Emory University, Atlanta
GA. Authors: A. L. Beguelin, J. J. Dongarra, G. A. Geist, R. J. Manchek, B. K.
Moore, and V S. Sunderam.

2. E. Clementi, G. Corongiu, J. Detrich, S. Chin, and L. Domingo, Int. J. Quant.
Chem. Symp. 18 (1984) 601.

3. E. Clementi, S. Chin, and D. Logan, in: Lecture Notes in Chemistry, Vol. 44, M.
Dupius (Ed.), 1986.

4. E. Clementi, G. Corongiu, and S. Chakravorty, in: MOTECC-90, E. Clementi (Ed.),
ESCOM Publisher, Leiden, 1990.

5. R. J. Harrison and R. Shepard, Ann. Reu. Phys. Chem. 45 (1994) 623.
6. H. P. Luethi, J. E. Mertz, M. W.Feyereisen, and J. E. AlmlOff,J. Comput. Chem.

13 (1992) 160.

QUANTUM CHEMICAL TWO·ELECTRON INTEGRAL PROGRAM 925

7. U. Wedig, A. Burkhardt, and H. G. v. Schnering, Z. Phys. D. 13 (1989) 377.
8. S. Kindermann, E. Michel, and P. Otto, J. Comp. Chem. 13 (1992) 414.
9. P. Otto and H. Friichtl, Computer & Chemistry 17 (1993) 229.

10. H. Friichtl and P. Otto: Quantum Mechanical Programs for Distributed Systems:
Strategies and Results; in Bode A., Dal Cin M., Parallel Computer Architectures,
Theory, Hardware, Software, Applications; Lecture Notes in Computer Science,
Berlin 1993.

11. G. Fritsch, W. Henning, M. Peric, M. Schafer, E. Schreck, H. Friichtl, and P. Otto:
Numerische Anwendungen auf Verteilten Rechensystemen, in: Wedekind H., Ver-
teilte Systeme, Grundlagen und zukunftige Entwicklunge; Mannheim, 1994.

12. G. Del Re, J. Ladik, and G. Biczo,Phys. Reu. 155 (1967) 997.
13. J.-M. Andre, L. Gouverneur, and G. Leroy,Int. J. Quant. Chem. 1 (1967) 427,451.
14. J. Ladik, Quantum Theory of Polymers as Solids, Plenum Press, New York, 1988,9.
15. F. Hofmann and C. U. Linster, Modular erweiterbares Multiprozessor-System,

Multiprozessor- und Netzwerkkonfigurationen, Arbeits- und Ergebnisbericht des
Sonderforschungsbereichs 182, Friedrich-Alexander-University, Erlangen 1992.

16. MEMSOS Programmer's Manual, Erlangen 1991, 1993.

SAŽETAK

Razvoj programa za račun kvantno-kemijskih dvoelektronskih
integrala za hijerarhijski ustrojen višeprocesorski sustav

sa zajedničkom memorijom (MEMSY)

Joachim Neduidek i Peter Otto

Program za kvantno-mehaničke integrale prilagođen je za višeprocesorski sustav
s hijerarhijskim ustrojem koji je opremljen globalnom i lokalno pridruženm memo-
rijom. Zahvaljujući ovakvoj koncepciji, mogućnosti komuniciranja su mnogostruke i
složenije u usporedbi s drugim višeprocesorskim sustavima kao što su npr. Intel
iPCS/860 ili grupirane radne stanice. Ipak, efikasnost procijenjena uz pomoć simu-
latora ili stvarnog sustava podjednako je dobra. Očekuje se da će raznolike medupro-
cesorske komunikacije doći do izražaja u drugom dijelu programa u kojem se mnogo
puta računaju vlastite vrijednosti hermitskih matrica.

