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Based on the generalized population analysis of appropriate func-
tionals derived from higher order densities, the multicentre bond
indices were introduced at both SCF and post-SCF levels. The cor-
responding indices were applied to the visualization of bonding in
several simple molecules both without and with three-centre
bonds. The ability of these indices to detect and to localize the pres-
ence of three-centre bonds was tested on the analysis of bonding
in several simple boranes BoHg, B4H;g, BsHg. The three centre
bonds were always detected in complete agreement with expecta-
tions. The approach is quite general and can be applied to the
visulization of bonding in other cases of molecules with complex
bonding patterns.

INTRODUCTION

The quantum chemical calculations are rapidly becoming a routine tool
for obtaining the energies and the structures of both stable and transient
molecular species. Unfortunately, the increased sophistication required to
reach the desired accuracy inevitably results in a loss of transparency of the
corresponding wave functions. For this reason, introduction of sophisticated
computational procedures is also accompanied by a parallel design of new
methods allowing interpretation and visualization of the structural informa-
tion hidden in the wave functions.'”® Among various techniques of this type,
the idea of the so-called population analysis has found the most extensive
use.”1® This analysis in the form of the so-called Mulliken population
analysis® has found the widest use but the same idea of partitioning the
electron density into contributions that can be directly related to intuitive
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but highly appealing concepts of charge density, valence or bond order!6-2°
has been used rather frequently and various generalizations of the popula-
tion analysis have been proposed so far. An example of such a generalization
can be, e.g., the recently proposed pair population analysis,?! in which we
demonstrated that the properly chosen pair populations can be used as a
new simple means of visualization of the classical structural formula. In its
original form, however, the method was straightforwardly applicable only to
molecules well described by the Lewis model of localized two-centre two elec-
tron (2c¢-2e) bonds but, for electron deficient molecules with three centre
bonds, the resulting picture of molecular structure was not so clear and sim-
ple.?2 The question thus naturally appeared whether it would not be possible
to design some new indices that would be able to detect the possible pres-
ence of three- or multicentre bonding.

The first attempt in this respect is the so-called three-centre bond index
independently proposed by Giambiagi?® and by Sannigrahi and Kar.?* The
similar idea of detecting the possible presence of multicentre bonding was
recently used also by us and the resulting methodology of the so-called non-
linear population analysis of the pair densities?® was successfully applied to
the visualization of bonding in various electron deficient molecules.?® In
spite of the promising results of that study, the original formalism had, how-
ever, one important conceptual limitation. This limitation is that the formal-
ism of this nonlinear analysis is applicable only to SCF wave functions and
the extension to correlated post-SCF wave functions is impossible.

Our aim in this study is to remedy this partial limitation and to propose
a new generalized population analysis allowing the multicentre bonds of any
order k to be detected via the so-called multicentre bond indices. Although
in this study the approach is practically tested only at the SCF level of the-
ory (for both semiempirical and ab initio methods), the formalism itself is
completely general and can easily be extended to the level of post-SCF wave
functions. Such an extension is at present limited by the restricted avail-
ability of correlated higher order densities but we believe that the informa-
tion hidden in these densities is attractive enough to reward the effort de-
voted to their future systematic exploration.

THEORETICAL

SCF level of theory

Introduction of the multicentre bond indices can be best demonstrated
by starting with the simple case of the standard Mulliken population analy-
sis. Within this analysis, the monoatomic populations (charge densities) can
be straightforwardly introduced from the partitioning of the normalization
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relation Eq. (1) according to Eq. (2), where P represents the usual charge
density bond order matrix and S the overlap matrix.

N= J.p(l)drl (1)
A
N=22 (PS),, =2 ¥ 2)
A « A

The first order denstity p(1) is not, however, the only quantity normalized
to the total number of electrons N. The same normalization is satisfied also
for some other quantities derived from higher order densities. The simplest
example of such a quantity is the so-called exchange part of the pair density
which is given by Eq. (3) and where p;(1,2) is defined as Eq. (4).

FRH(L,) = 7 pi(1,2) 3)

occ

Pr(1,2)=2 2. 4(1)6,(2) (4)
This exchange part of pair density satisfies normalization (5).
szjwwmmw@@ (5)

Like normalization Eq. (2), also Eq. (5) can be decomposed into various contri-
butions. The only difference in comparison with partitioning Eq. (2) is that not
only mono- but also biatomic contributions can be introduced in this case.

1
N=§ZZ(PS)uﬂ(PS)/m:ZH(AZ)Jrzngﬁ (6)
a B A A<B )
This type of analysis is closely related to the previously introduced pair
population analysis?' and the populations 79, [T, are in fact identical
with the effective pair populations of that analysis.

The practical use of partitioning Eq. (6) is based on the empirical obser-
vation that the exact normalization sum Eq. (7) can be frequently simplified
to the form Eq. (8)

N=2119+ . 1 (7)
A

A<B
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bonded
N~ 109 + 2 1% 8)
A A<B

in which the summation is restricted only to the pairs of atoms that are clas-
sically bonded in the structural formula. In another words, populations
IT3, attain nonnegligible values only between classically bonded atoms
while for the nonbonded atoms their values are small.

Because of this ability to detect and to localize the two- centre bonds,
populations /7@, can be regarded as two-centre bond indices.

The approximate normalization Eq. (8) was, however, found to hold with
reasonable accuracy only for molecules well described by the Lewis model
of 2c-2e bonds. If such is not the case, as it is, e.g., with electron defficient
molecules, Eq. (8) fails to hold and the contributions between nonbonded
pairs of atoms start to appear. This can be regarded as an indirect indicator
of the presence of multicentre bonding.?®

In this study, we want to demonstrate that it is possible to formulate a
criterion in terms of which the presence of multicenter bonding can be de-
tected directly. In addition to the formalism of nonlinear pair population
analysis, where such a possibility was introduced recently??, there is yet an-
other possibility which is based on the concept od the so-called multicenter
bond indices.?®?4?7 This possibility arises from the useful normalization re-
lations analogous to Eqs. (2) and (5), which hold for the appropriate func-
tionals derived from the higher order densities. Thus, e.g., in the case of
third order density I(1,2,3) which in the case of SCF closed shell approxi-
mation is given by

1 1 1
1,2,3)= 6 pP(Lp2)p(3) - EP(DP%@B) - EP(2)P%(1,3) —
9
s 3)p%1,2 +i (1,2)p4(2,3)p,(3,1)
19 PGPIL2) + 75 p1(1,2)p1(2,3)p,(3,
it is possible to introduce the functional D(1,2,3)
1 1 9 1 9
D(1,2,3) = I(1,2,3) ~ 5 p(Lp@p(3) + 15 p(LPIE,3) + 55 p2)pHL,3) +
(10)

1 1
& ﬁ 9(3)P%(1,2) = E 91(1,2)p1(273)p1(3,1)
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which satisfies the normalization condition (11)

N=3 I DQ,2,3)dr;drodrs . (11)

In keeping with the philosophy of population analysis, expression Eq. (11)
can be partitioned into mono-, bi- and triatomic contributions according to
Eq. (12).

. i > 2 Y (PS)yPS)PS), = 2119 + 2 I + XM, (12)

a By A A<B A<B<C

The importance of this equation is again that, for molecules well described
by the Lewis model of 2c-2e bonds, the above normalization is satisfactorily
fulfilled with pair contributions involving only the pairs of directly bonded
atoms.

bonded

N~ 2009 + ) I1§) (13)
A A

If this is not the case so that multicentre bonding can be expected to play
the role, the triatomic contributions are likely to contribute. Here it is, how-
ever,interesting that these triatomic contributions are not distributed evenly
between all possible triads but are strongly localized to only certain groups
of atoms, namely to those where the three centre bonds are expected. In this
case the approximate Eq. (12) can be rewritten as

bonded

N~ an3>+2ngg anﬁc (14)

A<B A<B<C

This interesting ability of three centre populations T} to detect and to
localize the presence of three-centre bonds was first recognized by Giam- -
biagi?® and by Sannigrahi and Kar?* who heuristically proposed the quantity
I,pc as the so-called three-centre bond index and discussed its properties.

A B C
Lipc = 2. 22 20 (PS),4(PS), (PS),, (15)
a p oy

The above procedure for introduction of the three centre bond index can be
straightforwardly extended to higher order densities of arbitrary order k.
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Using the same procedure as described above for £ = 3, it is possible to in-
troduce the functional D(1,2,...%k).

p1(1,2)p1(2,3)...p1(k — 1,k)py(k,1)

D@1,2,..%) = gk 1 (16)
which satisfies the normalization condition.
N~k "-D(I,Z,..k)drldfz...dr,( 17
This normalization can be again partitioned as
N-= 2,6 - Z 2. (PS),(PS)y,...(PS), (PS),, =
(18)

—ZH(’)+ZH(’%+Z

A<B A<B.. <K

The last term of this expansion is closely related to the multicentre bond
index I zpc g of Giambiagi?®?” and Sannigrahi and Kar,?

A B K
Lipo.x = 2 2o . 2. (PS),4(PS);, ..(PS),, (19)

a f K

and, parallel to what was found for £ = 2 and 3, the nonvanishing values
of this index can be expected to indicate the presence of k-th centre bonding.

Post-SCF level of theory

Introduction of multicentre bond indices at correlated level is quite
analogous to theprevious case of SCF. The crucial role is played by the func-
tionals A(1,2,...k) derived from higher order densities so as to satisfy the nor-
malization to the total number of electrons N. The simplest situation that
is for £ = 2 where the functional A(1,2) is defined as a difference between
the true (correlated) pair density and the product of first order densities.

AL2) =2 p(1p(@) - T(1,2) 20)

This quantity satisfies the correct normalization
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N=2 I A(1,2)dr,dr, (21)

so that the two-centre bond indices can be straightforwardly introduced as
biatomic contributions of the partitioning.

N=2 19+ 112 (22)
A

A<B

Similarly, introduction of the (correlated) three centre bond index is based
on the functional A(1,2,3) related to the total three- particle density
I(1,2,3).

1
A28 =I(1,2.3) ~ 5 p(Dp@p(3) + 5 PAE,D) +

(23)
1 1
+3 P@A(1,3) + 5 p(3)4(1,2)
and satisfying the required normalization
N=3 J' A(1,2,3)dr,dry7 (24)

In a similar way, it would be possible to introduce also the multicentre bond
indices of any order %k but, due to the restricted availability of correlated
higher order densities, the practical testing of post-SCF bond indices still
has to wait for its systematic exploration. For this reason, we were also
forced to confine ourselves in testing the applicability of multicentre bond
indices to only the simplest case of SCF approximation. In the following
part, the results of our calculations (at both semiempirical and ab initio lev-
els) will be reported. Before reporting the results of these calculations it is
of interest to mention a general problem common to all kinds of population
analyses. This problem is the basis set dependence of the resulting popula-
tions. In the case of the pair population analysis, this problem was ad-
dressed in a recent study?? and we found that this analysis is much less sen-
sitive to the quality of the basis than the normal Mulliken population
analysis of the first order density p(1). Since the pair population analysis is
a special case of the generalized population analysis proposed here, we be-
lieve that the similar little sensitivity to the quality of the basis will hold
in this case as well. Moreover, the basis set dependence can be expected to
break down in the limits of complete basis.?®
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RESULTS AND DISCUSSION

In order to demonstrate the ability of multicentre bond indices to detect
the presence of multicentre bonds, it is first necessary to show that, for
molecules well represented by the Lewis model of 2¢-2e bonds, the values
of three- and higher-centre bond indices are negligible. For this purpose, the
above approach was applied to a series of simple molecules like CH,,
NH,,H,0, C,H, and, according to our previous experience that higher than
3-centre bonding is apparently very rare, we confined ourselves only to the
analysis of the functional D(1,2,3) allowing detection of 3-centre bonds maxi-
mally. The calculations were performed at both semiempirical and ab initio
levels.

TABLE I

Comparison of MNDO and STO-3G calculated values of -
multicentre populations for a series of several simple

molecules
Molecule  Population MNDO STO-3G
C 1.01 3.23
H 0.26 0.20
CH 1.47 1.49
CH, H.H 0.01 0.01
CHH 0.00 0.00
HHH 0.00 0.00
N 2.95 5.18
H 0.20 0.15
NH 1.48 1.44
NH; H.H 0.00 0.01
NHH 0.00 0.00
HHH 0.00 0.00
0 4.79 6.81
H 0.15 0.15
Hy0 OH 1.45 1.44
H.H 0.00 0.01
HOH 0.00 0.00
¢ 1.11 3.34
H 0.22 0.16
CH 1.44 1.48
cC 2.97 3.02
Loty H..H 0.00 0.00
HCH 0.00 0.00
CCH 0.00 0.00

HHH 0.00 0.00
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Semiempirical calculations were performed by the standard MNDO
method included in the MOPAC 6 package;?® for ab initio calculations, the
Gaussian 92 series of programs was used®® with the minimal STO-3G basis.
In all cases, the molecules were considered in completely optimized molecu-
lar geometries. The resulting values of mono-, bi- and triatomic populations
are compared in Table I.

Let us discuss now the conclusions suggested by these values. First of
all it is possible to see that, irrespective of the method used and in keeping
with the expected absence of three-centre bonding in these simple molecules,
the 3-centre populations [T} are practically negligible. In addition to this,
it is possible to see that all biatomic contributions between the pairs of clas-
sically nonbonded atoms are also practically negligible. As a consequence,
the approximate normalization Eq. (13) is satisfied extremely well, thus sug-
gesting close adherence of these molecules to the classical structural for-
mula. The only greater differences between semiempirical and ab initio
methods are observed for monoatomic contributions on heavy atoms but this
difference (~ 2) is clearly due to the neglect of 1s core electrons in semiem-
pirical methods.

As a further example, the formalism of the multicenter population analysis
was applied to the molecule of BoHg, for which the presence of two 3-center
bonds is generally accepted.?'3® The calculations were again performed at
semiempirical (MNDO) and ab initio (4-31G) levels and the resulting popu-
lations are compared in Table II. Similarly as in previous cases, the result-
ing picture is practically insensitive to the method used, and greater devia-

TABLE II

Comparison of MNDO and 4-31G calculated values of
selected multicentre populations for diborane

Molecule Population MNDO 4-31G
B 0.64 2.58
Ht 0.27 0.28
H, 0.22 0.29
BH, 1.42 1.51
BH, 0.52 0.54

ByHg B..B 0.46 0.42
H,.H, 0.00 0.00
Hy...Hy, 0.08 0.14
BH,H, 0.00 -0.01
BH,H,, 0.00 -0.03

BH,B 0.35 0.32
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tions in the values of monoatomic contributions are again due to neglect of
core electrons in the MNDO method. The most important conclusion sug-
gested by this Table is the dominance of mono- and biatomic contributions
between the pairs of bonded atoms. However, as it can be seen, the approxi-
mate normalization Eq. (13) valid for the case of the strict adherence to
the classical model is not satisfied with satisfactory precision, so the pres-
ence of nonbonded pair or three-centre contributions to bonding can be
expected.

21735’) + AITE) g + 4116y = 10.56 (25)
A

As it can be seen from the Table, this is indeed the case and the nonbonded
B...B pair- and two B..H,,,.-B three-centre populations are the dominant
contributions to correcting the picture of bonding in this case. The picture
of bonding suggested by the above analysis thus closely corresponds to the
set of 4 B-H bonds between the borons and the terminal hydrogens and two
three-centre BHB bonds involving the bridging hydrogens. In order to dem-
onstrate the accuracy of such a generally accepted picture of bonding, it is
possible to use normalization Eq. (26), which clearly demonstrates that all
important bonding interactions are exhausted by this model.

2P + AT ¢ + A1) ¢ + 2 + 1Ty p=11.49~ 12 (26)
A

In view of the success of the above population analysis in detecting the
three-centre bonding in B,Hg we decided to apply the same approach to
higher boranes (B,H;, and B;H,) for which the 3-centre bonds are also gen-
erally accepted.?:343% In this case, the analysis was performed only for the
ab initio wave function generated again in 4-31G basis by the GAUSSIAN
92 series of programs.?® The resulting values of symmetry unique mono-, bi-
and triatomic populations greater than 0.03 are summarized in Tables III
and IV.

Let us now discuss the conclusions suggested by these values, first for
the case of B,H;,. First of all, it is possible to see that, despite the large
number of possible combinations, the number of nonnegligible populations
is relatively very small. This suggests that the bonding interactions are re-
markably localized to only certain well restricted regions. The resulting pic-
ture of bonding is, therefore, relatively simple and closely corresponds to
what can be expected on the basis of the Lipscomb rules.?43% According to
these rules, the structure of B;H;, can be represented by the set of six 2¢c-2e
BH bonds between the borons and terminal hydrogens together with two
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TABLE III

4-31G calculated values of selected
multicentre populations for BjHq

Molecule Group Population
B, 2.64
Bj 2.62
H; 0.25
Hy 0.23
Hyp 0.22
BBy 0.62

B4H1g B1Bs 0.36
B,H, 0.99
Byl 0.59
BsHs 0.98
BsHyy 0.31
B1ByB3 0.12
B{BsH1; 0.30

TABLE IV

4-31G calculated values of selected
multicentre populations for BsHg

Molecule Group Population
B, 2.57
Bs 2.60
Hy 0.24
H; 0.22
Hyq 0.24
B1Bg 0.58
BsBy 0.48

BsHo g, 1.00
B{Hy; 0.04
BsH7 0.99
B3Bjs 0.05
BsHyy 0.44
B{B3By 0.15
BsB4Hy; 0.30

BBB and four BHB three-centre bonds (Scheme I). As it can be seen from
Table III, this is exactly the picture suggested by the values of populations.

Practically the same close correspondence between the expectations of
Lipscomb rules and the values of populations is also observed for B;H,. Its
structure can be described by a schematic structural formula (Scheme II)
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Scheme 1

and, as it can be seen from Table IV, this formula with its presence of four
BBB three-centre bonds and four BHB three-centre bonds closely corre-
sponds to the predictions of the Lipscomb rules as well as the more recent
studies of orbital localization.

Summarizing the above results, it is perhaps possible to conclude that
the multicentre bond indices represent new, remarkably sensitive, means of
detection of multicentre bonding and we believe that their future systematic
use may considerably help in the understanding of bonding in molecules like
boranes, transition metal complexes etc., for which the presence of three- or
multicentre bonding is generally required.

Scheme 11
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SAZETAK

Indeksi za visecentri¢ne veze dobiveni na osnovi poopéene
populacijske analize gustocéa visega reda

Robert Ponec i Filip Uhlik

Na osnovi poopéene populacijske analize prikladnih funkcionala definiranih na
gustocama visih redova, uvedeni su indeksi za visecentri¢ne veze i to na razini SCF-
raduna ili visoj. Ti su indeksi upotrebljeni za vizualizaciju kemijske veze u nekim
jednostavnim molekulama sa ili bez trocentri¢nih veza. Prikladnost ovih indeksa za
uocavanje i lokaliziranje trocentri¢nih veza je provjerena na nizu jednostavnih borana
(BoHse, BaH10, B5sHg). Uveden je pristup oopéenit i moZe se primijeniti za vizualiza-
ciju kemijske veze i u drugim molekulama s kompleksnim tipovima kemijske veze.





