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Combinatorial (or numerical) self-similarity is an apparently new
concept, introduced here in an attempt to explain the similarity of
properties of the members of a homologous series that are not (geo-
metrically) self-similar and whence are not (deterministic) fractals.
The term is defined in the following steps:

a) Select a numerical invariant, ep, characteristic of the member
of the series

b) Partition this property, ep, into a finite number of parts
through a prescribed algorithm

c) Members are described so as to be combinatorially self-simi-
lar (or to represent a »numerical« fractal) if the limits of the ratios
of ep of two successive members at infinite stages of homologation
are equal for all parts, and equal the corresponding limit for the
total property. In the present work, ep is taken to be the Kekulć
count, K, when dealing with benzenoid systems and the topological
index, Z, (H. Hosoya, Buzz. Chem. Soe. Japan 44 (1971) 2332) when
dealing with saturated hydrocarbons. The previously described
equivalence relation, l, [S. El-Basil, J. Chem. Soe. Faraday Trans. 89
(1993) 909; J. Mol. Struet. (Theochem) 288 (1993) 67; J. Math. Chem.
14 (1993) 305; J. Mol. Struet. (Theoehem) 313 (1994) 237; J. Chem.
Soe. Faraday Trans. 90 (1994) 2201], is used to partition K when the
number of terminal hexagons remains constant throughout the series;
otherwise the method ofKlein and Seitz [D.J. Klein and W.A. Seitz,
J. Mol. Struet. (Theochem) 169 (1988) 167] is used. For alkanes, an
appropriate recurrence relation is used to partition the Z values. It
was found that ep for any homologous series of unbranehed ben-
zenoids, alkanes, Clar graphs, rook broads and King polyominos are
all scaled by the golden mean, t = 1,618033989, while homologous

" Dedicated to Professor Sven J. Cyvin for his elegant applications of combinatorics in chemistry
proper.
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series of other types ofbenzenoidsalso represent »numerical«frac-
tals, but the characteristic scaling factors depend on the closed
form expressions of their K values. In all cases, self-similarities
were manifested by expressing the ratios of adjacent t.p's in the
form of continued fractions, which in some cases led to exact self-
similarity but in most cases self-similarity was only approximate.

»There is no escape from these foxy rabbitsl-
Manfred Shroeder

1. INTRODUCTION

While Euclidean geometry classically considers lines, circles, spheres,
etc., geomtry of fractals deals with algorithms which can generate shapes
and structures that may be used to model and analyze complex forms found
in nature." It is interesting to observe that the classical fractals.š such as
the Cantor dust," the Sierpinski gasket'' and the Koch curve," have been
known for about a century; however, the term sel{-similarity is only some
twenty years old!4When a larger lattice shows exactly the same cluster dis-
tribution as a smaller one, it is described as being self similar or »free of
scale«. It is not true, however, that if a structure is self similar, the n it is
also a fractal. For example, a line segment, or a square or a cube can be
broken into smaller copies which are obtained by similarity transformations,
yet these structures are not fractals.P The latter must have a eharaeteristie
reduction (scaling) factor which is related to the number of scaled down self-
similar pieces into which the object is divided.f This latter parameter enters
into the definition of the fractal dimensionf D, as given by Eq. (1).

Log(number of scaled down pieces)
D = Log(magnification factor) (1)

As an illustration, we consider a fractal object in Figure 1 whose initial
stage is an equilateral triangle to be divided into five triangles, each being
scaled down by a factor of 2.5. The fractal dimension between any two sue-
cessive stages of the construction is given by:

D = Log 5 = Log (5)2 = Log (5)3 = ... = 1.756470797
Log 2.5 Log (2.5)2 Log (2.5)3

(2)

The above value (which happens to be less than the dimension of a square
but more than that of a line)" is certainly not arbitrary. That is why the vari-
ous stages of the object shown in Figure 1 form a fractal, while the corre-
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Figure 1. Afracta13whoseintial stage is an equilateral triangle. At each stage, each
triangle is divided into five ones, each being scaled downby a factor of 2.5.

sponding ones of a cube, say, although self-similar, do not def'ine a fractal
because its reduction factor is arbitrary.

Naturally, fractals have added a new dimension to the Chemical Graph
Theory. 8-14In the present work, homologous series of chemical structures
(such as benzenoid hydrocarbons, alkanes and cycloalkanes) are further re-
considered. The question to be posed is the following: An arbitrary homolo-
gous sequence of (chemical) structures is not self-similar from the viewpoint
of the fractal geometry (unless the series is deterministic, such as those of
Klein et al.), 9 yet the physico chemical properties of the individual members
are indeed very similar. Take for instance the class of unbranched benzenoid
hydrocarbons of the polyphenanthrenoid polyphenes-f (commonly called zig-
zag polyacenesj-f which represents the simplest form of quasicrystal - like
benzenoid systems: Keeping the number of hexagons constant, the members
of this particular series have the highest Kekule counts, shortest wave-
length for their UV spectra, largest sum of non-adjacent numbers and high-
est resonance energy.12This similarity in properties is not a result of geo-
metrical (self-) similarity oftheir skeleton (molecular) graphs. The goal here
it then to look for other types of self-similarities, such as numerical or com-
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binatorial ones, which are likely to be generated from a given graph invari-
ant of these structures. Consider for example the golden mean.F T, (a ratio
of cosmopolitan occurrencel): in its decimal notation, 1.618033989 ... it is just
an irrational number like many other s but if presented as a eontinued frac-
tian,17 its interesting number-theoretic properties get revealed, viz.

1
T = 1+ 1

1+ 1
1+--

1+ ...

= [1; 1, 1, 1, 1, .....]

In fact, it is said that T is a fixed point in the hyperbolic (Gaussian) map.
Indeed, its continued - fraction form Eq. (3) is geometrically self-similar!
Now, a »chemical graph- theoretician will immediately recognize the numbers
2, 3, 5, 8, 13, 21, 34, 55, ... as the Kekule counts of the unbranched.quasi-
crystal-like benzenoids,12and that 3/2 = 1.5; 5/3 = 1.6667; 8/5 = 1.6; 13/8 = 1.625;
21/13 = 1.6154; 34/21 = 1.6190; 55/34 = 1.6176; .

approach
. K(Bo(n + 1))

T = ~l~ K(Bo(n) (4)

where K(Bo(n») = Kekule count of an unbranched quasicrystal - like ben-
zenoid which contains n hexagons.

Now, one might say that the (hidden) geometrical self-similarity of the
series: benzene, naphthalene, phenanthrene, chrysene, picene.!" .... ete.
»hides. in their Kekulć counts and wil\ be dear when the latter are ex-
pressed as eontinued {raetions:1 + 1

1+ 1
1+--

1+ ...
2. NUMERICAL (COMBINATORIAL)SELF-SIMILARITY POSTULATE

Since arbitrary homologous sequences of (chemical) structures, unless
deteministic.? are not, generally, geometrically self-similar, an attempt is
made here to look for other types of self-similarities, such as numerical or
combinatorial ones. Namely, let the members of a homologous sequence pos-
sess a set of graph invariants, and suppose one selects a combinatorial prop-
erty tp. Then, for the individual structures of a homologous series, one has
the sequence tp{Sd, CP{S2},CP{S3},... where Si is the ith structure in the se-
ries. Now, a function 3'is selected, which partitions cp{S;},i = 1, 2, .... into
j parts, viz.
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STcp{Sd = PI,1 + PI,2 + PI,3 + + PIJ

STcp{S2} = P2,1 + P2,2 + P2,3 + + P2j (5)

j

where, in general, the sum of the individual partitions, L Pik =o cp{SJ for the
ith member. k ~ I

Then, the homologous series Sl> S2' ... is said (kere) to have a combina-
torial self-similarity if

(6)

for all values ofi. that is, if the individual limits of all partitions are mu-
tually identical and equal the limit of the total property.

It is natural when dealing with a homologous series of benzenoid hydro-
carbons to think ofK, the number of Kekule structures.l'' as the »most prom-
ising« candidate of such a combinatorial quantity, namely in Eq. (5) one has:

(7)

where Bi is an »ith« benzenoid hydrocarbon in a given homologous series.
Function ST will then be our (previously introducedlv' equivalence relation
l, which is based on the conjugated circuit model of Randić.l? (section 3.1).

Homologous Series

AJkanes

~
Nonadjacent numbers"

~partition

Recurrence relatiou"

Benzenoid hydrocarbons

~
Kekule countsl8

A""
Method of Equivatence':'
K1ein21 & relation I
Seitz
(section 3.2) (section3.1)

Chart 1.
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Sometimes the function l is not convenient to work with, in which cases we
use the method of Klein and Seitz20 to partition the individual K values (sec-
tion 3.2). When dealing with alkanes (and possibly cycloalkanes), the other
property <p{Sd (of Eq. (5)) will be taken as the sum of Hosoya's nonadjacent
numbers-? and our (partition) function is the appropriate recurrence rela-
tion. (Section 3.4). The following chart 1 outlines the main themes of this
research.

3. RESULTS

3.1. Homologous Series of Benzenoid Hydrocarbons with
a Constant Number of Terminal Hexagons

Figure 2. shows the representative members of this type of homologous
series and some auxilliary systems.

Appendix 1 lists explicit formula s for the K values-" of these series. For
the six types ofthese hydrocarbons, pen), P1(n), P2(n), Q(n), Ql(n), Q2(n), the
equivalence relation I, previously introduced, is used as the partition func-
tion of the Kekule counts.

The algorithm of the l equivalence relation+' is outlined below:

a) Label the terminal hexagons of B by t1, t2, ... , tT. If T = 0, find some
other method to partition K.

b) Place circle s in all terminal hexagons, each circle indicates a resonant
sextet, i.e., an Rl conjugated circuit'" which contains 6 pi-electrons,
and prune out all such terminal hexagons (with their single bonds)
from the rest of the benzenoid skeleton.

c) Find the K value of the remaining (resonating) part. If such K = 0,
the above assignment of terminal R1's are not allowed and one may
look for other distributions.

d) The above procedure is repeated for all terminal hexagons less 1 and
so on until all terminal hexagons are exhausted.
Each assignment generates a subset of Kekule structures which share
the property of having the same number of terminal R1's.

e) The individual subsets are no thing else but equiualence classes+' of
the original Kehule space, K(B) == K, l.e..

(8)
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Q(n)

Q '(n) Q "(n)

1123

P(n)

P2(n)

Figure 2. Homologous series of benzenoid hydrocarbons which possess a constant
number of terminal hexagons throughout the series. Boldly drawn systems are the
auxilliary ones.
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where Kk is the number of Kekule structures of the resonating part of B gen-
era ted by a given assignment of R1's to the terminal hexagons, and (X" is the
multiplicity of this equivalence class of Kekulć structures. It has been
shown12,13that

(9)

wherte r = # terminal R1's in the kth equivalence class.
A convenient (pictorial) way to invisage Eq. (8) is to imagine the indi-

vidual Kekule structures in a given equivalence class as »vertices«, and make
use of the »spin - like- property of the resonant sextet types23 (proper == + 112
and improper == _112)23by connecting any two »vertices- that possess »op-
posite spins«! In this way, a t-dimensional cluster (cube) results at each as-
signment of terminal R1's. Naturally, when r = 0, the corresponding equiva-
lence class contains only vertices (o-dimensional cube) while r = 1 leads to
a collection of »edges- (l-cube), r = 2 generates squares (2-cubes), r = 3 yields
(3-cubes), r = 4 forms tesseracts C4-cubes) and so on.12,13Interestingly, these
hypercubes have found chemical, biochemical and computational applica-
tions.12,13One is then »tempted- to describe our I relation as a form of »clus-
ter expansion of Kehule space«.24

Figure 3 pictorially demonstrates this type of cluster expasion of Kekule
spaces through application of the equivalence relation l by showing all al-

4K{P(n-2)}

Figure 3. The four types of Kekulć structures of the Pl(n) series (C. F. Figure 2),
generated by the equivalence relation13 I on the Kekule space K(Pl(n».
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lowed assignments of terminal RI·s. Where the shaded graphs are the reso-
nating parts, in all cases the multiplicities of all these subsets will always
be integral powers of 2 (possibly times a symmetry factor). No other multi-
plicity is possible. This is a direct result of the »spin-like- property+' of the
aromatic sextet (e.f- Eq. (9».

It turns out that all benzenoids shown in Figure 2 are combinatorially
self-similar (from the point of view of our defining Eq. (6) where the parti-
tion function Y is the equivalence relation l). Furthermore, this type of nu-
merical self-similarity is associated in each case with a eharaeteristie scaling
factor (given by the limit defined in Eq. 6) and whence the Kekulć eounts
possess the structure of a (raetal. To demonstrate this form of self-similarity,
we compute K values of the PI(n) series shown in Figure 2 as portrayed in
the following (convenientjš'' matrix form:

89 20 40 9 B881 198 396 89

8721 1960 3920 881 D86329 19402 38804 8721

0---0

PI(n - 1) pen - 2) P2(n - 1) PI(n - 2) O

854569

881

(10)

8721

86329

where P1(n) == K{Pl(n)} and so on and a t-cube == 21. For example, the lead-
ing member has a value of K = 881 which is partitioned as 89 x 8 + 20 x 4
+ 40 x 2 + 9 x 1. Now, we find the limits (of Eq. 6), we form a matrix; the
ith element of its;th column is given by

i.e. we simply list the ratio of each two successive elements in each column.
One obtains the following result:

9.8989 9.9000 9.9000 9.8989

9.8989 9.8989 9.8989 9.8989

9.8989 9.8989 9.8989 9.8989

9.8989

(11)9.8989

9.8989
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This result is general for all benzenoid homologous series of Figure 2.
In Appendix 1, the closed form expressions for K values lead to the following
approximate formulas for very large values of n:

pen) "" 0.204 (9.8989)n+l (12)

P1(n) "" 0.908 (9.8989)n+l (13)

P2(n) "" 0.408 (9.8989)n+l (14)

Q(n) "" 0.196 (10.0990)n+l (15)

Ql(n) "" 0.892 (10.0990)n (16)

Q2(n) "" 0.402 (10.0990)n (17)

where pen) '" K{P(n)} and so on.
Table I lists the multiplicities of the various clusters (z-cubes) generated

upon the effect of the l operation on the Kekulć space of the homologous se-
ries of Figure 2. These values are the Kekulć counts of the »resonating por-
tion- of the respective molecular graphs upon a given assignment of termi-
nal Rl circuits. For both Ql(n) and Q2(n) systems Kekule counts of the
auxilliary systems Q'(n), Q"(n) and Ql'(n), (Figure 2, Appendix 2) are used.

Now, it is easy to see the combinatorial self-similarity as defined by Eq.
(6) using Table 1. For example, for the P1(n) series, one may write the fol-
lowing limits, using Eqs. (12)-(14):

. K{Pl(n + I)} . K{P2(n + I)} . K{P(n + I)}
I~l~ K{Pl(n)} = !l~ K{P2(n)} = I~l~ K{P(n)} = 9.8989 (18)

where one asumes that when

n ---+ 00; K{Pl(n - j)} ---+ K{P(n)} ete ... (19)

(j = 1, 2, e.f Table 1).
A similar arithmetic leads to this type of self-similarity for the Q(n),

Ql(n) and Q2(n) series. In thise cases, the corresponding limit = 10.0990 (e.f
Eqs. (15)-(17)).
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3.2. Homologous Series of Benzenoid Hydrocarbons with
a Varying Number of Terminal Hexagons

Figure 4 shows seven such benzenoid families. The notations are those
adopted in Ref. 18. It is not convenient to use the equivalence relation l in
these cases to study the combinatorical properties and self-similarities in
their Kekulć counts. This is because the number of terminal hexagons in-
creases as one moves up in the homologous series. A suitable and illustrative
method for investigating fractal properties of their Kekule counts is due to
Klein and Seitz.20 These author s use a pictorial recursion by writing a se-
quence of numbers inside the hexagons (starting at either end of the chain)
where a 2 is assigned to terminal rings and a 1 outside each such ring so
that the number at a given position is the sum of the two preceding ones.
The desired Kekule count is the sum of two products: the product of num-
bers around a given branched hexagon plus the product of numbers imme-
diately following another phenanthrenoid ring.15 (Terminal rings are taken
to be phenanthrenoid). Thence, these two products represent a given parti-
tion of K. Appendix 3 lists closed forms for the Kekule counts of the seven
series of Figure 4. The method of Klein and Seitz is best illustrated on the

\f'(n) \f' '(n) \f' "(n)

Figure 4. Homologous series of benzenoid hydrocarbons whose number of terminal
hexagons increases with homologation.
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2.2.5 + 1.2.2 = 10" (3)

n=3

2.5.10'(n-2) + 2.2.10'(n-3) = 10" (n)

2.5.22 + 5.2.2 = 240 = 10" (4)

3

n=4

1129

2.5.98 + 22.2.2 = 1068 = 10" (5)

Figure 5. Recursive relation of Kekule counts of the lQ"(n) series derived through
the application of the method of Klein and Seitz20 (e.f Figure 4. Members are rep-
resented in dualist18 forms).

10"(n) systems in Figure 5. The relevant sums of the two products are shown
for n = 3, 4, and 5, and lead to the following recursive relations:

n = 3 -+ 2.5.5 + 1.2.2 = 5 = K{10"(3)}

n = 4 -+ 2.5.22 + 5.2.2 = 240 = K{10"(4)}

n = 5 -+ 2.5.98 + 22.2.2 = 1068 = K{10"(5)}

(20)

and by recalling the closed form K expressions of Appendix 3, one may gen-
eralize Eqs. (20) as follows:

2.5.10'(n - 2) + 2.2.10'(n - 3) = 10"(n) (21)

Analogously, one might write the following two recursions:

2.2.'I'(n - 1) + 'I"(n - 1) = \jf(n) (22)

(23)
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Similarly, the approach of Klein and Seitz leads to the recursions:

2.~'(n - 1) + ~"(n - 1) = ~"(n) (24)

2.~(n - 1) + ~'(n - 1) = ~'(n) (25)

10'(n) + 2.10(n - 1) = 10(n) (26)

10(n - 1) + 2.10(n - 1) = 10'(n) (27)

where, in the above equations, the symbol of a homologous series stands for
its Kekule counts, e.g. ~(n) == K{~(n)} and so on. Naturally, there are other
methods of generating the above recursive relations but the method of Klein
and Seitz20 can be easily applied in a consistent way. Now, in order to test
the existence of combinatorial self-similarity (Eq. (6», one must prove the
equality of the relevant limits. For instance, Eq. (22) is expected to lead to
the following equality

. K{~(n + I)} . K{~'(n + I)}
lim =hm,

,,->00 K{~(n)} ,,-+«> K{~(n)}
(28)

and similarity for other homologous series.
Indeed, all the relevant limits that appear in Eqs. (21)-(27) equal, as it

can be easily envisaged by inspection of the following approximate K formu-
las for very large n values (cf Appendix 3)
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3.3. Characteristic Scaling Factors

The Kekule counts of a homologous series of benzenoid hydrocarbons,
Btn), form a fractal whose characteristic scaling factor, :/h, is defined (here)
by the following equation:

_Q • K{B(n + I)}
JQ = lim -----'-----'_-.----.C-"--

n-->oo K{B(n)}
(36)

For example, the polyphenanthrenoid polyphenes+ (benzene, naphtha-
lene, phenanthrene, chrysene, picene, fulminene, ...)16,the recently called
unbranched quasicrystal - like benzenoids12,13== Bo(n) genrate the famous
»prototype«, self-similar Fibonacci's sequence

2, 3, 5, 8, 13, 21, 34, ...

Self-similarity in this case might be envisaged by multiplying each term by
1.6 and rounding up to the nearest integer to obtain

3, 5, 8, 13, 21, ....

i.e. the sequence is generated again. The (characteristic) scaling factor is the
(popular) golden mean,12, 13c. obtained as the limit of two successive num-
bers (the larger one being the numerator). The limit is approached gradu-
ally:

3/2 = 1.5; 5/3 = 1.6; 8/5 = 1.6; 13/8 = 1.625; 21113 = 1.615384615, ...,
limn _ 00 Bo(n + 1)/Bo(n) = 1.6180330/989 = ({5 - 1)/2 .

The above limits has the following peculiar property:

r = 1+ r-1 (37)

where r-1- 0.618033989. Indeed, this irrational limit can be approached by
the following rule:

Add one and take the reciprocal " oiz:

1 ---+ (1 + 1)-1 = 1/2 ---+ (112+ 1)-1= 2/3 ---+ (2/3 + 1)-1=
= 3/5 ---+ 5/8 ---+ 8/13 ...

Self-similarity in the above fraction is best revealed if expressed in the form
of continued fractions+'
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1 12 =--1 == [1,1]
1+-

1

2 1 13="3=--1 == [1,2]== [1,1,1]
1+-2 2

311
5=5=--1

1+-3 3
2

1--1-:-- - [1,1,1,1]
1+--

11+-2

(38)

[1,1,1,1,1]

and so on. Indeed, r-l == [1,1,.....1] == [1]

Naturally, it is possible to compute analogous scaling factors which charac-
terize the Kekule counts of the homologous series of benzenoid systems
studied in this paper. These are collected in Table II. The self-similar scaling
properties of the c2(n) homologous series are outlined in Table III as a rep-
resentative example of other series. While using Ko underestimates Kn val-
ues (second column), KI seems to exaggerate these values (third column).
However, the use of chrysene CK2 = 8) leads to reasonable values (e.g. error
in KlO is about 0.5%). It is perhaps safe to asume that the higher members
of the series are better reprentatives than the very early ones.

TABLE II

Characteristic scaling factors, ~, of the
Kekule counts of the homologous series
of benzenoids studied in this work.

Series

=:2
'f', 'f", 'f'''
10, 10', 10"
P, Pl, P2
Q, Qb Q2

2.732050808
4.561552813
4.449489743
9.898979486
10.09901951



COMBINATORIAL SELF-SIMILARITY

TABLE III

1133

Self-similarity of the Kekulć counts of S2(n) series with
-!tJ = 2.732050808 (ef Table II). Computed values are

rounded to the nearest integer.

n

o
1
2
3
4
5
6
7
8
9

10

1
3
8

22
60

164
448

1224
3344
9136

24960

1
3
7

20
56

152
416

1136
3104
8480

23168

3
8

22
61

167
457

1248
3408
9312

25440

8
22
60

163
446

1218
3327
9089

24831

3.4. Homologous Series of Alkanes

In the early 1970's, Hosoya21,26defined the quantity p(G, k) as the num-
ber of selections of k edges in graph G so that no two of them are adjacent,
sometimes called the number of k - matchings. These numbers are the co-
efficients of the various powers of a variable x in Hosoya's21,26counting poly-
nomial, H(G X), viz.

M

H(G;X) =I p(G,k) xk
k=O

(39)

where M is the value for a maximal matching in G. The sum of these num-
bers, i.e. H(G; 1), is the topological index, Z(G) of graph G. Here, we take
this sum to correspond to the property <p of eqns 5 and 6. It is possible to
partition Z(G) by application of the standard recursive relationr'!

H(G x) = H(G - e; x) + xH(G - e; x) (40)

where e (EG) is an edge in G; G - e is a (disconnected) graph obtained when
e is pruned out of G and G - e is obtained from G when e plus its two ver-
tices are removed from G. In order to make sense (of our postulated defini-
tion of combinatorial self-similarity), edge e should be the same throughout
the members of the homologous series. We illustrate the procedure on 2-
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methyl alkanes where (arbitrarily) the third edge after the branched vertex
is selected. This limits the »first- member of this series at 2 - methylhexane.
Application of Eq. (40) leads to 18 = 14 + 4, as illustrated below:

1 + 6X + 9X2 + 2X3 = (1 + 4X + 2X2)(1+ X)
= 1 + 5X + 6X2 + 2X3

+ X(l + 3X)
+ X(l + 3X)

The sequences of p(G,k) for G = 2-methyl hexane are:

{1, 6, 9, 2} = {1, 5, 6, 2} & {1, 3} (41)

or 18 = 14 + 4 (42)

where the left-hand side of Eq. (42) is obtained as the sum of the integers
in brakets to the right of the equality sign in Eq. (41). The righthand side
of Eq. (41) are the corresponding values of the disconnected graphs. For ex-
ample, the 2 represents the case where k = 3, i.e.

Now, because of the factor x in the recursive relation, the second number
in the first brakets is added to the first one after the union sign and so on.
Doing this leads to replacement of the & sign (in 41) by the + sign (in Eq. (42)).

Table IV lists the topological indices of 2-methyalkanes and their parti-
tions as defined above, while Table V shows the sum and partial sum ratios
for adjacent members in the homologous series. In all cases, these ratios ap-
proach the golden mean, r = 112(1+ ..J5) = 1.618033989, for large numbers
of carbon atoms, thus demonstrating the combinatorial self-similarity of the
homologous series of alkanes in the light of our postulated definition (Eq. (6)).
The same pattern is obtained when studying cycloalkanes using a similar
approach.
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TABLE IV
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Topologicalindices,Z(Gi) od 2-methylalkanes and a possible
partitionthrough applicationof Eq. (40) (G6 = 2-methylhexa-

ne, G7 = 2-methylheptane ete... )

Z'(GJ + Z"(GJ

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

18
29
47
76

123
199
322
521
843

1264
2207
3571
5778
9349

15127
24476
39603
64079

103682
167761
271443
439204
710647

1149851
1860498
3010349
4870847
7881196

12752043
20633239
33385282
54018521
87403803

141422324
228826127
370248451
599074578
969323029

1568397607

14
21
35
56
91

147
238
385
623

1008
1631
2639
4270
6909

11179
18088
29267
47355
76622

123977
200599
324576
525175
849751

1374926
2224677
3599603
5824280
9423883

15248163
24672046
39920209
64592255

104512464
169104719
273617183
442721902
716339085

1159060987

4
8

12
20
32
52
84

136
220
356
576
932

1508
2440
3948
6388

10336
16724
27060
43784
70844

114628
185472
300100
485572
785672

1271244
2056916
3328160
5385076
8713236

14098312
22811548
36909860
59721408
96631268

156352676
252983944
409336620
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TABLE V
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Z(Gi+1) / Z(G;) values and the corresponding partial sums listed in Table IV In all
cases, the ratios approach the golden-mean, 1" = 1.618033989, at large values of i.

The table is intended to demonstrate combinatorical self-similarity (ef Eq, (6»

n

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

1.611111111111111
1.620689655172414
1.617021276595745
1.618421052631579
1.617886178861789
1.618090452261306
1.618012422360248
1.618042226487524
1.61803084223013
1.618035190615836
1.618033529678296
1.618034164099692
1.618033921772239
1.618034014333084
1.618033978977986
1.618033992482432
1.618033987324193
1.618033989294465
1.618033988541888
1.618033988829346
1.618033988719547
1.618033988761487
1.618033988745467
1.618033988751586
1.618033988749249
1.618033988750142
1.618033988'749801
1.618033988749931
1.618033988749881
1.6180339887499
1.618033988749893
1.618033988749896
1.618033988749894
1.618033988749895
1.618033988749895
1.618033988749895
1.618033988749895
1.618033988749895
1.618033988749895

1.5
1.666666666666667
1.6
1.625
1.615384615384615
1.619047619047619
1.617647058823529
1.618181818181818
1.617977528089888
1.618055555555556
1.618025751072961
1.618037135278515
1.618032786885246
1.618034447821682
1.618033813400125
1.618034055727554
1.618033963166706
1.618033998521803
1.618033985017358
1.618033990175597
1.618033988205325
1.618033988957902
1.618033988670443
1.618033988780243
1.618033988738303
1.618033988754322
1.618033988748204
1.618033988750541
1.618033988749648
1.618033988749989
1.618033988749859
1.618033988749909
1.61803398874989
1.618033988749897
1.618033988749894
1.618033988749895
1.618033988749895
1.618033988749895
1.618033988749895

2
1.5
1.666666666666667
1.6
1.625
1.615384615384615
1.619047619047619
1.617647058823529
1.618181818181818
1.617977528089888
1.618055555555556
1.618025751072961
1.618037135278515
1.618032786885246
1.618034447821682
1.618033813400125
1.618034055727554
1.618033963166706
1.618033998521803
1.618033985017358
1.618033990175597
1.618033988205325
1.618033988957902
1.618033988670443
1.618033988780243
1.618033988738303
1.618033988754322
1.618033988748204
1.6180339887 50541
1.618033988749648
1.618033988749989
1.618033988749859
1.618033988749909
1.61803398874989
1.618033988749897
1.618033988749894
1.618033988749895
1.618033988749895
1.618033988749895
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3.5. Manifestations of Self-Similarity

Self-similarity of the golden mean becomes apparent if expressed in the
form of an infinite continued fraction (ef. Eq. 38).

In order to investigate the fractal (scaling) self-similarity properties of
combinatorial characteristics of homologous series of (chemical) structures,
the ratios of relevant values of adjacent members are represented as their
continued fractions. Figures 6-9 show these representations for the classes
of benzenoids studied, where K values are used to generate the required ra-

Pen)

20
198

1960
19402

192060
1901198

18819920
186298002

1844160100
18255302998

[ 10 1
[ 9,1,9 I

[ 9. 1,8,1,9 I
[ 9. 1,8, 1,8, 1,9 1

[ 9, 1. 8, I, 8, 1, 8, 1, 9 I
[ 9, 1,8. 1,8,1,8, 1,8, 1,9 I

[ 9, 1,8, 1,8, 1,8, 1,8,1,8, 1,9 I
[ 9, 1,8, 1, 8, 1,8, 1,8, 1,8, 1,8, 1,9 I

[ 9, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,9 I
[ 9, 1,8, 1,8, 1. 8, 1,8, 1,8, 1,8, 1,8, 1, 8, l, 9 I

9
89

881
8721

86329
854569

8459361
83739041

828931049
8205571449

[ 9 I
[ 9, 1,8 I

[ 9, 1,8, 1,8 I
[ 9, l, 8, l, 8,1,8 I

[ 9, I, 8, i, 8, I, 8, I, 8 I
[ 9, l, 8, 1,8, 1,8,1,8, l, 8 I

[ 9, 1,8, l, 8, 1,8, 1,8, 1,8, 1,8 I
[ 9, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8 I

[ 9, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8 I
[ 9, 1,8, 1,8, 1, 8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8 I

4
40

396
3920

38804
384120

3802396
37639840

372596004
3688320200

[ 8 I
[ 10 I

[ 9,1,9 I
[ 9, 1,8, 1,9 1

[ 9,1,8,1,8, 1,9 I
[ 9, 1. 8, 1,8, 1,8, 1,9 I

[ 9, l, 8, l, 8, 1,8, 1,8, 1,9 I
[ 9, 1,8, t, 8, 1,8, t, 8, 1,8, 1,9 I

[ 9, 1,8, 1, 8, 1,8, 1,8, 1, 8, 1,8, 1,9 I
[ 9, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,8, 1,9 I

Figure 6. Self-similarity of ratios of Kekulć counts, of successeive members of Pen),
Pl(n) and P2(n) series shown in Figure 2 Boldly printed numbers are Kekule counts
while sequences in square brackets are ratios of K's represented in the form of eon-
tinued fraction_17
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20
202

2040
20602

208060
2101202

21220080
214302002

2164240100
21856703002

Q(n)

9
91

919
9281

93729
946571

9559439
96540961

974969049
9846231451

4
41

414
4181

41224
426421

4306434
43490761

439214044
4435631201

Ql(n)

S. EL BASIL

[ 10 I
[ 10.10 I

[ 10.10.10 I
[ 10.10.10.10 I

[ 10. 10. 10, 10, 10 I
[ 10. 10, 10, 10, 10. 10 I

[ 10. 10. 10, 10, 10. 10, 10 I
[ 10. 10. 10, 10, lO. lO, 10. 10 I

[ 10. lO. 10. 10. 10. 10. 10, 10, 10 I
[ 10. 10, 10. 10, 10, 10, 10, 10, 10, 10 I

[ 9 I
[ 10,9 I

[ 10, 10,9 I
[ 10, lO, 10,9 I

[ 10, 10, 10, 10,9 I
[ 10. 10, 10, lO, 10,9 I

[ 10, 10, 10, 10, 10, 10,9 I
[ 10, 10. 10, 10, lO, 10, 10,9 I

[ 10, 10, lO, lO, 10, lO, lO, 10,9 I
[ lO, 10, 10, io, 10, 10, 10, 10, 10,9 I

[ 4 I
[ 10,4 I

[ \O, 10,4 I
[ 10,10,10,4 I

[ 10, 10, lO, 10,4 I
[ 10. 10, 10, 10, 10,4 I

[ !O, 10, 10, 10. io, 10,4 I
[ 10, 10. 10, lO, 10, 10. 10,4 I

[ 10. 10, 10. 10, 10, 10, 10. 10.4 I
[ 10, 10, 10. lO, 10, 10, 10, 10. 10,4 I

Figure 7. The same as in Figure 6 for the indicated series of Figure 2. The Q(n) sy-
stem is exactly self-similar!

tios. Figure 10 is the corresponding representation for topological indices of 2-
methyl alkanes and their partial sums. In all cases, the resulting sequences
are either exactly self-similar (e.g. Q(n) system, Figure 7) or approximately so .
(e.g. IJ''' series, Figure 4). Scaling factors can be expressed in closed forms, e.g.
Kvalues of the 10 n, 10 n', 10 n" benzenoids generate the self-similar fractal

whose characteristic scaling factor is

42424242 (43)
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9 [ 4,2 I
'1'. 41 [ 4, 1, 1,4 I

187 [ 4, 1, 1,3, 1, 1,2 I
853 [ 4, I, 1,3, 1, 1,3,3 I

3891 [ 4, I, 1,3, 1, 1,3, 1, 1,6 I
17749 [ 4, 1, 1,3, 1, 1,3, 1, 1,3, 1,2,2 I

80963 [ 4, 1, 1,3, I, 1,3, I, 1,3,1, 1,2, 1,4 I
369317 [ 4, I, 1,3, 1, 1,3, 1, 1,3, 1,1,3,2,9 I

1684659 [ 4, 1, 1,3, 1, 1,3, 1, 1,3, 1, 1,3, 1, 1,4,4,2 I
7684661 [ 4, 1, 1,3, 1, 1,3, 1, 1,3, 1, 1,3, 1, 1,3, I, I, I, 1, 1, 1,3 I

5 [ 5 I
23 [ 4,1,1,2 I

'1'.' 105 [ 4,1,1,3,3 I
479 [ 4, 1, 1,3, I, 1,6 I

2185 [ 4, 1, 1,3, I, 1,3, 1,2,2 I
9967 [ 4, 1, 1,3, 1, 1,3, 1, 1,2, 1,4 I
45465 [ 4, 1, 1,3,1, 1,3, 1, 1,3,2,9 I

207391 [ 4, 1, 1,3,1,1,3, 1, 1,3, I, 1,4,4,2 I
946025 [ 4, 1, 1,3, 1, 1,3, 1, 1,3, l, 1,3, l, 1, 1, 1, 1, 1,3 I

4315343 [ 4, 1, 1,3, 1, 1,3, 1, 1,3, I, 1,3, I, 1,3,4,7 I

3
13

59
269

1227
5597

25531
116461

531243
2423293

[ 3 I
[ 4,3 I

[ 4, I, 1,6 I
[ 4, l, 1,3, 1,2,2 I

[ 4, I, 1,3, I, 1,2, 1,4 I
[ 4, 1, 1,3, I, 1,3,2,9 I

[ 4, 1, 1,3, 1, 1,3, 1, 1,4,4,2 I
[ 4, 1, 1,3, 1, 1,3, I, 1,3, I, 1, I, 1, I, 1,3 I

[ 4, I, 1,3, I, 1,3, I, 1,3, 1, 1,3,4,7 I
[ 4, I, 1,3, I, 1,3, 1, 1,3, I, 1,3, 1, 1,8,3,2 I

Figure 8. The same as in Figure 6 for the indicated series of Figure 4.

where j = 0, 1, 2, .... generating the values:

2, 112, 2, 112, ...

The above sequence can be obtained from the sequence of Eq. (43):

4/2, 2/4, 4/2, 2/4, ...

Analogously, for the tpn' tp' n and 'P"n series, one might see the sequence

113113113113 ... (45)

after neglecting the initial term and a few last terms. The characteristic
scaling factor in this case is

(46)
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9
40

178
792

10 o 3524
15680

69768
310432

1381264
6145920

5
22
98

10 o' 436
1940

8632
38408

170896
760400

3383392

3
12

10 o" 54
240

1068
4752

21144
94080

418608
1862592

3
8
22

60
164

448
1224

3344
9136

24960

S. EL BASIL

[ 4,2 1
[ 4,2.4 1

[ 4,2,4,2 1
[ 4, 2, 4, 2, 4 1

[ 4, 2, 4, 2, 4, 2 1
[ 4. 2, 4, 2, 4, 2, 4 1

[ 4,2,4,2,4, 2, 4, 2 1
[ 4, 2, 4, 2, 4, 2, 4, 2, 4 1

[ 4, 2, 4, 2, 4, 2, 4, 2, 4, 2 1
[ 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4 1

[ 5 1
[ 4,2,2 1
[ 4,2,5 1

[ 4, 2, 4, 2, 2 1
[ 4, 2, 4, 2, 5 1

[ 4, 2, 4, 2, 4, 2, 2 1
[ 4, 2, 4, 2, 4, 2, 5 1

[ 4, 2, 4, 2, 4, 2, 4, 2, 2 1
[ 4, 2, 4, 2, 4, 2, 4, 2, 5 1

[ 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 2 1

[ 2 1
[ 4 1

[ 4,2 1
[ 4,2,4 1

[ 4,2,4,2 1
[ 4, 2, 4, 2, 4 1

[ 4,2,4, 2,4,2 1
[ 4,2,4, 2, 4, 2, 4 1

[ 4, 2, 4, 2, 4, 2, 4, 2 1
[ 4, 2, 4, 2, 4, 2, 4, 2, 4 1

[ 3 1
[ 2,1,2 1
[ 2, 1,3 1

[ 2, 1,2,1,2 1
[ 2, 1,2,1,3 1

[ 2, 1,2, 1,2,1,2 1
[ 2,1,2,1,2,1,3 1

[ 2, 1,2, 1,2, 1,2, 1,2 1
[ 2, I, 2, I, 2, 1,2, I, 3 1

[ 2, 1,2, 1,2, 1,2, 1,2, 1,2 1

Figure 9. The same as in Figure 6 (ef Figure 4).

where

which generates

j = 0, 1, 2, 0, 1, 2, 0, 1, 2, ...

1, 113,3, 1, 113,3,1, 113,3, ... (47)

The above values can be obtained as ratios of successive values of the fractal
of Eq. (45). A similar approach may be used to investigate cycloalkanes.
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29
47

76
123

199
322

521
843

1364
2207

3571
5778

9349
15127

[ LI, I, 1, 1,3 1
[ L I, I, I, I, 1,3 1

[ 1, I, 1, 1, I, I, 1,3 1
[ I, L 1, 1, 1, I, I, 1,3 1

[ I, I, I, 1, I, 1, 1, I, 1,3 1
[ I, I, I, I, I, I, I, I, 1, 1,3 1

[ 1,1, I, I, 1, 1, 1, I, I, I, 1,3 1
[ 1,1,1, 1, 1, 1, 1, 1, 1, 1, I, 1,3 1

[ 1,1, I, I, 1, 1, I, 1, I, 1, I, 1, 1,3 1
[ 1,1, 1, 1, 1, 1, 1, 1, 1, I, 1, I, 1, 1,3 1

[ 1, I, I, 1, 1, 1, I, I, I, I, 1, 1, 1, 1, 1,3 1
[ 1,1,1,1,1,1,1,1,1,1, I, I, I, I, 1, 1,3 1

[ 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, I, I, 1, 1, 1,3 1
[ 1, I, 1, 1, 1, 1, I, 1, 1, 1, I, 1, I, I, I, 1, 1, 1,3 1

21
35

56
91

147
238

385
623

1008
1631

2639
4270

6909
11179

[ 1,2 1
[ 1,1,2 1

[ 1,1, 1,2 1
[ 1,1, I, 1,2 1

[ 1,1,1,1, 1,2 1
[ 1,1,1,1,1,1,2 1

[ 1,1,1, I, 1, 1, 1,2 1
[ 1,1,1,1,1,1, I, 1,2 1

[ 1, I, I, 1, I, I, I, I, 1,2 1
[ I, I, 1,1, I, 1, I, I, I, 1,2 1

[ 1,1, I, 1, 1, 1, 1, 1, 1, 1, 1,2 1
[ 1,1,1,1,1,1,1, I, I, 1, 1, 1,2 1

[ 1,1,1,1, I, I, I, 1, I, I, I, I, 1,2 1
[ I, I, I, 1, 1, I, I, I, I, I, I, I, I, 1,2 1

8
12

20
32

52
84

136
220

356
576

932
1508

2440
3948

[ 2 1
[ 1,2 1

[ 1,1,2 1
[ 1, I, 1,2 1

[ I, I, I, 1,2 1
[ 1,1,1,1, 1,2 1

[ 1, 1, 1, 1, 1, 1,2 1
[ 1, I, 1, 1, 1, I, 1,2 1

[ 1,1,1, I, I, I, I, 1,2 1
[ I, I, I, 1, I, 1, I, I, 1,2 1

[ 1,1, 1, I, I, 1, 1, 1, 1, 1,2 1
[ 1,1,1, I, 1, 1, 1, 1, I, I, 1,2 1

r 1, 1, 1, 1, 1, 1, 1, 1, I, 1, 1, 1,2 I
I 1,1,1,1,1,1,1,1,1,1,1, 1, 1, 2 r

Figure 10. Continued fraction17 representation of the ratios of topologiealindiees21

of two sueeessive members of 2-methyl alkanes (top third) and the eorresponding
partial sums (lowertwo-thirds).ef TableIV (e.g. 29 = 21 + 8, 47 = 35 + 12,and so on).

4. DISCUSSION AND CONCLUSIONS

A basic fact of organic chemistry is that members of a homologous series
of structures exhibit similar properties. For example, the linear acenes are
known/ to loose stability beyound six rings: Heptacene is green-black and
cannot be obtained in a pure state. On the other hand, the polyphenan-
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(X)~ CXX)~ oxa ~CCCCO
2210 2515 2740 3030

2510 2870 3160 3480

2570 2860 3130

Figure 11. Three homologous series of benzenoid hydrocarbons. Numbers below mo-
lecular graphs are the UV wave-Iengths of their 0 band.16

threnoids12,15,16(polyphenes in which the benzene rings are annellated in a
zig-zag way) show much higher stabilities (highest K values and shortest
wavelengths). In Figure 11, three homologous series of benzenoid hydrocar-
bons are shown with their wavelengths of the ~ bandsš". It seems that, in-
itially, in each series each additional benzene ring leads to an »average- de-
crease of approximately 300 nm. However, members of the series themselves
are not geometrically self-similar, but they generate combinatorial parame-
ter s which form self-similar sequences with characteristic scaling factors
and, hence, might be viewed as fractals. Homologous series of alkanes (and
cycloalkanes) are Fibonacci graphs12,28,for which a given combinatorial
property recurs as

<p(n + 2) = <p(n + 1) + <p(n) (48) .

and hence is associated with the auxilliary Eq.29

r2 - r - 1 = O (49)

The general solution, then, would be

(50)
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where Cl and C2 are constants which depend on the initial conditions. At
very large values of n, only the first term (Eq. (50)) dominates and the limit
of two successive values approaches T, the golden mean. In fact, all homolo-
gous series of compounds which are Fibonacci graphs (with either internal
or external homologationr'" comply with Eq. (6) and, hence, exhibit combi-
natorial self-similarity with the golden mean as their characteristic scaling
factor (regardless, of course, of their initial conditions). This fundamental
fact has computational significance for infinitely large graphs; as an illus-
tration, the numbers of Kekule structures of the benzenoid hydrocarbons
whose hexagons are annelatedš" (respectively) as L3A3lL3can be calculated
from a much earlier member, say L3A4L3(K = 65) by a direct application of
the scaling properties of the Kekule counts of a homologous series of hydro-
carbons. The required value = (65)(1.618033989)27~ 28548260 ; the exact
value = 28710853 ; the percentage error is just a little 0.5%. Here, we em-
phasize that the fractal properties of Fibonacci graphs do not offer a solution
to an unsolved problem (there are many methods for obtaining K), but it is
always illuminating to have options and alternatives. One recalls here that
the calculated value ofK is also the topological index (of Hosoyaj-'' of an al-
kane containing 38 carbon atoms! Since this topological index orders the
physical properties of hydrocarbons, the scaling (fractal == self-similar) prop-
erties of homologous series have both computational and chemical impor-
tance. Further, if one recalls the concept of equivalence of objects of physico-
chemical interest,3l,32 one immediately recognizes the computational K
values as a combinatorial property of certain Clar graphs, king polyomino,
rook board, Young diagram and a caterpillar tree!

Construction of a homologous series of structures (be it chemical or not)
is a »self-same- operation (i.e. repeated addition of carbon atoms, annelation
of hexagons, ring expansion, ...) and this sort of construction is more like
iteration, which is one of the richest sources of self-similarity, and be-
cause of the mathematical equivalence of benzenoid systems with almost
all objects of physical interest (trees, diagrams, boards, etc ..... ), interest
will continue in the study of benzenoid hydrocarbona=' in addition to the
theory of Kekulel8 and the model of Clar, their mathematical equiva-
lence to caterpillar trees (which is a case of data reduction) make a ho-
mologous series of unbranched benzenoids scalable by the golden
mean! Indeed, combinatorial properties of homologous series of other ob-
jects (Young diagrams, rook boards etc ... .)32 will also be scalable by T, which
seems, with the discovery of fractals, to assume the importance of funda-
mental quantities such as Te and Planck's constant and will always remind
us of the »Fibonacci rabbits«!
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Appendix 1

Formulas of Kekule counts.l'' K's of the benzenoid systems shown in Figure 2

Appendix 2

Expressions of the Kekule counts '", K's of auxilliary benzenoid systems
shown (in bold) in Figure 2

K{Q'(n)} = % [K{Q(n)} +K{Q(n - I)}] ; n ~ 1

K{Q"(n)} = ~ [K{Q(n)} + 2K{Q(n - I)} + K{Q(n - 2)}J; n ~ 2
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Appendix 3

1 [- (5 + m)n (5-m)n]
K{\}'(n)} = m (117 + 4) 2 + (m- 4) 2

.: __ 1_ [(5 + 11"1)n+1 (5 - mr1]
K{\}'(n)} - m 2 - 2

" 1 [ (5 + m)n (5 - m)n]K{\},(n)} = 2m (m + 1) 2 + (m - 1) 2

K{10"(n)} = 21 [(2+ ..J6)n - (2- ..J6)nJ

Appendix 4

Calculation of continued fractions of Figure 6

20 1 1
202- 202 2

20 10+20

1 1--1:-= [10,10]
10+ 10

9 1 1
91= 91 = --1 = [10,9]

- 10+-9 9

91 1 1
919- 919 9

91 10+91

1 1
1 = [10,10,9]

10+-- 110+-
9

110+91
9
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414 1 1 1 1 1-------
4181 4181 41 1 10 + 1 10 + 1-- lO + 414 10 + 414414 4 1-- lO + 41 10+4141 -

4
1 [10,10,10,4]
1

10 + 1
10+--

110+-4

SAŽETAK
Kombinatorna samosličnost

Sherif El-Basil

Kombinatorna samosličnost nov je koncept koji se uvodi da bi se objasnila
sličnost svojstava članova homolognih nizova koji nisu geometrijski samoslični i sto-
ga nisu deterministički fraktali. Pri definiranju koncepta treba:

a) odabrati neku numeričku invarijantu ep koja karakterizira članove niza,
b) r;zdijeliti svojstvo ep u konačan broj dijelova po nekom propisanom algoritmu,
c) za članove niza kažemo da su samoslični (ili da predstavljaju »numerički-

fraktal) ako omjer svojstva (jl za sukcesivne, sve veće članove niza teži nekoj
graničnoj vrijednosti, a isto svojstvo moraju pokazati i u b) uvedene particije
tog svojstva.

U ovomradu smo promatrali benzenoidne sustave (svojstvo ep bioje pripadni broj
Kekulćovih struktura), te zasićene ugljikovodike (svojstvo ep bili su Hosoyini indeksi,
Z). Ako je broj terrninalnih heksagona u benzenoidima konstantan, rabi se ranije
uvedena relacija ekvivalencije za particiju broja K, a kada to nije slučaj, onda po-
stupak Kleina i Seitza. Kod alkana je particija broj Z izvedena upotrebom prikladne
rekurzivne relacije, pa je za njihove homologne nizove, kao i za homologne nizove
nerazgrananih benzenoida i neke druge sustave od interesa u matematičkoj kemiji,
nađeno da je svojstvo Z skalirana zlatnim rezom. Nađeni su skalirajući faktori i za
neke druge sustave, kao npr. za razgranane benzenoide. U svima tim slučajevima.
bilo je moguće prikazati omjere svojstava ep za sukcesivne članove niza u obliku ne-
prekinutog razlomka, što u posebnim slučajevima vodi do točne, a u općem slučaju
samo do priližne samosličnosti.




