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Abstract: The Superposing Significant Interaction Rules (SSIR) method is revised and implemented. The method is a simple combinatorial 
procedure, which deals with in situ generated rules among a dichotomized congeneric molecular family, selecting the most probabilistically 
relevant ones. The mere counting of the number of relevant rules attached to new compounds generates a molecular ranking useful for 
database filtering, refinement and prediction. The algorithm only needs for a symbolic molecular representation and this allows for mining the 
database in a confidential manner. Third parties will not know the real compounds that are on the way to be worked out. The procedure is 
tested for a complete series of substituted amino acids. Areas under the receiver operating characteristic (AU-ROC) are always greater than 0.9 
for all the following tried protocols: training, leave-one out, balanced leave-two-out and 5-fold cross validations and, finally, a stochastic series 
of calculations combined with a randomization test. 
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INTRODUCTION 
ESPITE that several methods exist to mine data of 
congener series or combinatorial data sets,[1–5] none 

has been shown to be as simple as the Superposing 
Significant Interaction Rules (SSIR) method.[6,7] Despite not 
being a quantitative method, this simple and systematic 
procedure is able to rank analogous series. A seminal basic 
procedure that inspired SSIR was based on a substitutions 
frequency analysis, leading to good results when dealing 
with small peptide libraries.[8–10] The algorithm genesis was 
inspired by the Design of Experiments (DoE) theory,[11] but 
seeking for a general procedure avoiding to deal with 
predefined orthogonal designs (i.e., avoiding to synthesize 
a series of predefined analogues). Instead, the present 

method allows working with the database 'as it is'. 
 SSIR procedure is able to work with congeneric series 
presenting many substitution sites (named factors in DoE 
terminology), each one able to accommodate an (almost) 
arbitrary number of substituents (or levels). The procedure 
systematically quantifies the importance of substituent 
interactions and extracts relevant information even for 
unbalanced (arbitrary) libraries. The method is also well 
suited for the treatment of molecular sets described by 
fingerprints (i.e., series of categorical or rank descriptors). 
In this case it is not necessary to deal with a congener series 
and the method becomes applicable to arbitrary molecular 
families. Additionally, the process allows dealing with 
confidential data because the symbolic codification permits 
the data owner to distribute them in a masked way.  
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EXPERIMENTAL SECTION: 
GENERAL FRAMEWORK 

Libraries and Sublibraries 
Usually, a congener series will be defined after the 
presence of a common core structure along a molecular 
family. Other approximation relies on the process of 
molecular alignment and ulterior definition of equivalent 
substitution sites. In both cases the molecular family can be 
represented schematically as a set of n substitution sites 
where, in turn, each element i is constituted by a set of mi 
possible substituents (A, B, C, ...). Within the chemical 
framework, some of the substituents can be repeated in 
different sites, but, in general, their chemical influence is 
distinct. As the molecular positioning of substituents is 
relevant, one is free to use the same set of symbols (A, B, 
C,...) to represent each series of substituents provided that 
the anchorage points (1, 2, ..., n) make the sets diverse in 
essence. The list of substituents per site expands the 
combinatorial universe of compounds, the number of them 
being 

 
1

n

i
i

M m


  (1) 

This corresponds to the cardinal of the following Cartesian 
product: 
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The set of n-tuples as AAA...A or EBD...Z constitutes the 
whole database or the entire molecular universe 
representation. 
 This paper deals with structure-activity relationship 
(SAR) ranking rules along sublibraries, which are subsets of 
the complete set of M elements. In practice, these 
sublibraries were generated according to a particular 
history and are usually disperse and inhomogeneous. That 
is the reason why the available set of molecules or subsets 
of them normally does not correspond to a homogeneous 
or systematic (orthogonal) sublibrary as those required 
either by DoE or by D-Optimal designs.[11] 

The Hypothesis 
SSIR method is based on the assumptions that the 
interactions among substituents (factors) play an important 
role and that the activity is not due to a simple substituent 
but to the cooperative effect of several residues. Prior to 
the method application, a binary encoding must be set into 
the database. Sometimes the partition will be natural (i.e., 
the variable or property of interest is by itself binary), and 
in other cases (e.g. for categorical or continuous variables) 

some congeners are arbitrarily labeled as being of interest 
(e.g. be active, be a drug, give high signal, etc.), while others 
as molecules of not interest. This partition will depend on a 
fixed threshold value set by the researcher along the 
studied molecular property. 
 SSIR method consists into loop over combinations of 
k = 1, 2, 3, ... sites, and for each combination loop over all 
the possible variations of residues. Each sequence of k 
residues conforms a variable or rule of order k that is 
attached to a library subset. It is said that the rule 
condenses this subset of molecules (i.e., the congeners 
fulfill the rule) and some of them will be of interest 
according to the previously fixed database partition. Then, 
each rule is evaluated from a probabilistic point of view, 
according to the number of condensed analogues of 
interest. Significant rules are kept and a vote is attached to 
each one. Normally, many probabilistically significant rules 
are found and the superposition or combination of them 
results in a synergic positive effect giving a clue to 'point' 
towards new interesting derivations. In other words, each 
training, test or validation compound will have a score 
coming from the votes of the rules that condenses it. It is 
expected that the higher the score the higher the 
probability for the molecule to be useful. 

Generation of Rules: 
Tracking Interactions 

For illustrative purposes, a toy library is here considered. A 
full database or molecular universe can be obtained by 
combining four residues in n=4 sites. The full set of 
molecules is given by the Cartesian product R=R1R2R3R4 
where the site substituents are represented by the sets 
R1={A,B,C}, R2={A,B,C,D}, R3={A,B,C,D} and R4={A,B,C,D,E}. 
Their cardinals being m1 = 3, m2 = m3 = 4 and m4 = 5. Hence, 
the complete library R has, according to equation (1), 
M=3445=240 congeners: R={AAAA, AAAB, AAAC ,..., 
CDDD, CDDE}. Note that the combinatorial database 
codification is made up from arbitrary symbols. 
 It is convenient to define the whole available set of 
residues attached to a particular site i. This set is denoted 
by the wildcard X or as the set {X}i. Under this notation, the 
full database can be denoted by R = {X}1{X}2{X}3{X}4 = 
{XXXX} = XXXX. The last symbol is the rule defining the set 
of molecules having any of the available residues at the 
corresponding positions, i. e., the entire library. 
 As said, partial subsets of molecules from the 
database are specified (collected or condensed) by a rule of 
a certain order k. For instance, a possible set of 
combinations of sites are those involving the second and 
the fourth, for which the list of combinations are denoted 
by the Cartesian product {X}1R2{X}3R4. This pattern 
gives a total of m2m4=45=20 rules of order 2. These rules 
identify the variations of residues at positions 2 and 4 
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disregarding of the substitutions at positions 1 and 3 and 
are XAXA, XAXB, and so on up to XDXE. 
 Figure 1 shows a grid arranging all these 20 rules, 
each one collecting or condensing a maximum of m1m3 = 
12 compounds. For instance, the rule XAXA is understood 
as the set of compounds having the simultaneous 
substitutions AR2 and AR4 at positions 2 and 4, 
respectively: 

  , , , ,
, , , ,
, ,

{

, }

XAXA AAAA AABA AACA AADA
BAAA BABA BACA BADA
CAAA CABA CACA CADA


  

In the combinatorial chemistry field[12] there are several 
methods to systematically generate libraries in the 
laboratory that are related to the synthesis of mixtures of 
the compounds found in each of the rules appearing in 
Figure 1. Within the experimental context, the notation X 
at a certain rule position stands for a mixture of all 
compounds presenting all the possible substituents at that 
position. For instance, for a synthetic combinatorial 
chemist the variable XAXA can mean a mixture of the 12 
compounds listed above. In the laboratory it is very 
common to obtain these mixtures in a progressive 
robotized framework, which in turn can lead to the 
knowledge of the mean activity of the mixture. At the end 
of programmed sequences, when arriving at a rule "without 
Xs" standing for a single compound, the activity of this 
particular compound can also be known. 
 In general, a library arising from a scaffold presenting 

n substitution sites, R=R1...Rn, generates a total of 
 
 
 

n
k

 

combinations of k sites. Each combination generates a fixed 
number of variables of order k. If the sites are able to 
accommodate m1, m2, ..., mn moieties, for the case of rules 

of order 2 there are  
 
 

n
2

 combinations of two sites and 

 Combination 1 expands sites 1 and 2, and generates 
m1m2 rules, each one condensing a maximum of 
m3·m4···mn compounds. 

 Combination 2 expands sites 1 and 3, and generates 
m1m3 rules, each one condensing a maximum of 
m2·m4···mn compounds. 

 ... 
 Combination n(n−1)/2 expands sites n−1 and n, and 

generates mn−1mn rules, each one condensing a 
maximum of m1·m2···mn−2 compounds. 

 
The mathematical expression giving the total number of 
rules, V, provided that there are not redundant symmetry 
issues (which of course it may occur in chemistry), is 
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      (2) 

In Eq. (2) the outer leftmost summation defines the order 
of the interaction of the rule. In practical applications 
usually only low rule orders will be explored (as it is found 
in the DoE field, interactions of low order uses to be the 
main responsible of the molecular responses). The series of 
the inner k summation symbols generates the combi-
nations of k elements taken from the pool of n (i.e., the 
selection of involved sites in each variable of order k). 
Finally, the rightmost product involving k terms counts how 
many variables are generated from the previously selected 
k substitution sites. This corresponds to permutations with 
repetition. Given the values of i1, i2,...,ik, (i.e., the 
identification of the sites being combined) the number of 
generated rules is 

  1 2
1

, ,...,
j

k

k k i
j

v v i i i m


   (3) 

The maximum number of compounds being condensed by 
each one of these rules is[6] 
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Notice that, for each order k, the full generation of rules 
and the total count of compounds being condensed by 
them gives the total number of potential molecules in the 
library, i.e., M = ckvk. In practical applications, the total 
number of molecules belonging to the library or being 
condensed by a rule may not be available or yet 
synthesized. That is the reason why we are using a 
terminology in terms of maximum number of compounds.  

 

Figure 1. The example of full arrangement of second order 
rules, each one condensing 12 molecules. 
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 Expressions (2)−(4) are attached to variables for 
which only the 'presence of a residue' concept is being 
considered. The number of variables increases if rules 
involving the concept of 'non presence of a residue' are 
taken into account. The negation of a certain residue will 
be denoted by a bar. In our example, the set of molecules 
not having residue A at position 1 is defined by the rule 
AXXX . This stands for the set {BXXX,CXXX} or, equivalently, 

for a difference of two sets: {XXXX}\{AXXX}. The 
combination of two complementary (non exclusive) rules 
can lead to other specific sets. Following with our example 
in terms of set notation, the following rule (5) stands for the 
sublibrary of molecules not having residue A at the first site 
and simultaneously not having the residue B at the second 
anchorage point.  

 ABXX AXXX XBXX    (5) 

That is the same as the set, 

 

       
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or, equivalently, the Cartesian product 

 
       
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, , ,

, , , , ,

.

B C A C D X X

BAXX BCXX BDXX CAXX CCXX CDXX

BAXX BCXX BDXX CAXX CCXX CDXX
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 



   

  

In reference 6 more details concerning the algebra of rules 
notation are given. Despite the algebra opens the 
possibility to define many combinations of rules, in this 
work all the rules will only involve juxtaposed positive (A, B, 
...) and negation ( , ,A B ...) individual terms. Hence, here are 
only considered rules like ABXX = AXXX  XBXX or rules 
involving individual negation operators, as in, 

 A BC D A XXX XBXX XXCX XXXD     

Under these restrictions, the systematic computational 
generation of rules is performed nesting three 
combinatorial entities (see the SSIR basic training algorithm 
below). The first one explicitly generates combinations 
among k sites in order to set up the rule order, the second 
one generates the permutations with repetition among 
residues attached to the previously selected sites. Finally, a 
third one may eventually generate 2k−L binary numbers, 
constituting a flag for the codification of all the possible 
combinations of negations and non-negations. All these 
algorithms are well known in the field of discrete 
mathematics.[13−16] 
 Regarding the generation of binary numbers, it must 
be mentioned that the negation flags are not to be 
systematically applied in all the sites (hence the 
superindex -L above).[6,7] The sites presenting only two 
possible substitutions (i.e. binary sites) are to be avoided 

from this choice because one level is the natural negation 
of the other one. In this case the negations are generated 
implicitly. Particularly, for rules of order 1 involving a binary 
site, only one of the levels has to be considered. This is so 
because this rule, if being interesting form the probabilistic 
point of view, will bear a positive or a negative vote (see 
below) and this information is enough and complete 
because the other (complementary) rule will automatically 
bear a negative or a positive vote, respectively, being the 
information wholly redundant if both rules are kept. 

Probabilistic Significance  
Attached to a Variable 

SSIR method does not take into account every generated or 
definable rule. Only those attached to a significant 
probability are able to enter into the final SAR model. The 
probability of a rule comes from and is influenced by the 
molecular library partition described above. The 
significance of a rule is defined from the hypergeometric 
formula.[17–19] Let us suppose that the library is composed 
by a  M known molecules, and b of them are of interest. 
Then, if a rule condenses c of those known compounds, d 
of them being also of interest, one can ask for the 
probability of this event (see Figure 2a for a simple 
representation of the subsets involved). This probability 
can be evaluated if the independence of events is assumed 
(this is particularly true for true random databases, but not 
strictly for focused ones) and it is given by the following 
conditional probability: 

  



  
  
  

  
 

b a b
d c d

P d, c b,a =
a
c

 (6) 

with  d  c  a  M  and  d  b  a  M 

where d ranges from max(0,c+b−a) up to min(b,c). The 
significance level, or p-value, attached to each rule is 
obtained from the cumulated probabilities that the rule 
condenses d or more (d+) structures of interest: 

 
    

 
 

 
 

min , 1

max 0,

, , : min , , ,

, , 1 , ,
b c d

i d i c b a

p d c b a p d b c c b a

P i c b a P i c b a


   

  

  
  (7) 

Berkopec's algorithm[20] is very useful to compute the result 
of equation (7) in a fast way and for valid arbitrary values 
of a, b, c and d. 
 Following our toy example, despite the whole library 
is virtually formed by M = 240 structures, we will assume 
now that only a=200 are at our disposal with known 
activity, and that in this subset b = 80 structures are 
declared as being of interest. Let us also assume that the 
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aforementioned variable XAXA condenses c = 8 known 
molecules (simulating that the four remaining ones out of 
twelve are not yet synthesized) being d = 7 of them active. 
We see that the proportion b / a = 80 / 200 is less than d / 
c = 7 / 8. This tells us that the variable condenses molecules 
of interest at a superior ratio than the ratio found in the 
entire known subset. This enrichment is desirable in order 
to infer about the performance of the rule outside the 
known sublibrary. The above probabilistic calculation will 
say about the importance of the rule. Equation (6) tells that, 
assuming uniformity of events, the probability to collect 7 
active molecules is P(7,8|80,200) = 0.0069. According to 
equation (6), the probability to collect 7 or more active 
molecules is p(7+,8|80,200) = p(7:8,8|80,200) = 
P(7,8|80,200) + P(8,8|80,200) = 0.0074. Thus, variable 
XAXA is a good candidate to enter into our model because 
it condenses structures of interest at a significant ratio 
attached to a probability of only 0.74 % to get equal or 
better results when selecting a random subset of 8 
structures in our database. The ultimate goal is to guess for 
new unknown compounds being active. It is assumed that 
the accumulation of several significant rules provides a 
scoring method in order to increase the chances to point to 
new active derivatives outside the known portion of the 
database. 

Positive and Negative Votes 
In our example above, the rule XAXA should be assigned a 
positive vote or score. But there are variables able to enter 
into the model which can be attached to negative votes. 
This will be the case for a rule, say BCXX, that condenses c 
= 10 known molecules and only one of them is active (d = 
1). The probability to collect one or more active molecules 
when randomly selecting 10 compounds in our database is 

given by the expression: p(1+,10|80,200) = 
p(1:10,10|80,200) = 0.9948. This large value indicates that 
the BCXX rule should apparently be avoided because it 
mainly concerns molecules of no interest. Fortunately, this 
is still a helpful information. Notice that the sum of the 
entire range of probabilities P adds up the unit: 

 p(max(0,c+b−a):min(c,b),c|b,a) = 1 

This is because it covers the full range of mutually exclusive 
possibilities. Hence, it is immediate to see that the 
expression 

 p(d−,c|b,a) = 1 − p(d+,c|b,a) + P(d,c|b,a) 

indicates that the probability to select d or less (d−) 
molecules of interest can be a small number provided that 
p(d+,c|b,a) is big and P(d,c|b,a) is small enough. In our 
example, as P(1,10|80,200) = 0.0373, it is found 
p(1−,10|80,200) = 0.0424. For many purposes this will be a 
significant result. As a consequence, if desired, the variable 
BCXX could be also included in the model but attached to a 
negative punishing vote. It is expected that new molecules 
having (only) this variable pattern will probably be of no 
interest. Of course, this is not a forced event, but it is 
expected that the accumulation of several rules is acting in 
a synergic way helping to determine some of the 
characteristics that a (new) analogue of interest must have. 

 The general relationship   
 
n
m

=


  
 

n
n m

 states 

that selecting m objects from a set of n identical ones is the 
complementary action of selecting n−m from n. A similar 
rule relates the P(d,c|b,a) values: in a set of a items being 
b of them of interest, selecting c among a automatically 
forces to make a complementary selection of a−c among 
the same set of a. At the same time, if along the selection 

 

Figure 2. Venn diagrams representing the selection of sets entering into the hypergeometric probabilistic term definitions. a) 
Direct selection of d active compounds (grey zone) when selecting c items when it is known that the global set of a items 
encompasses b actives. b) Equivalent complementary selection of b–d active compounds (dark grey zone). The probability of 
selection of these zones is equivalent, as explained in text. 
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of the first c items d of them are of interest, automatically 
there are found b−d of interest along the subset of a−c. So, 

 P(d,c|b,a) = P(b−d,a−c|b,a). (8) 

In this context, the index d can range from max(0,c+b−a) 
increasing up to min(b,c), as indicated by the range of index 
i in equation (7). Figure 2a schematically shows by means 
of a Venn diagram what the left part of equation (8) stands 
for: in a set of a items where b of them are of interest, when 
a rule selects (condenses) c items it is at the same time 
selecting d active terms from the set of b (grey zone). This 
selection procedure is totally equivalent to the 
interpretation showed in Figure 2b: the selection of the c 
terms causes the simultaneous and complementary 
selection of a–c items (grey zones). Of these items, b–d are 
of interest (dark grey zone). 
 In the complementary space the index of active 
items is swept in the set of a−c items and ranges from 
min(b,a−c) decreasing up to max(0,b−c) along a one-to-one 
correspondence. The series of equivalent probability 
partners (i.e. complementary events) can be read by 
columns in Table 1, where each pair of terms generate the 
same P probability value, as denoted by equation (8). Note 
that the number of active items in each pair of 
complementary partners must add up to b. Hence, 

b = max(0,c+b−a) + min(b,a−c) = min(b,c) + max(0,b−c). 

 Generally, when doing the p-value computation of a 
rule, for which the range of ‘number of items of interest’ is 
[d,min(b,c)] (see Eq. 7), the range of items of interest 
available for the complementary rule is [max(0,b−c),b−d] 
(see Table 1). For this case, both p-values are coincident: 

 p(d+,c|b,a)=p([b−d]−,a−c|b,a). 

Conversely, if the range of the number of items of interest 
is [max(0,c+b−a),d], the range of items of interest swept by 
the complementary rule is [b−d, min(b,a−c)] and 

 p(d−,c|b,a)=p([b−d]+,a−c|b,a). (9) 

 As said, along the above Table 1 series the respective 
sums of terms in a full row adds up a probability of 1. Due 
to the one-to-one correspondence among complementary 
partners, the addition up to the unity can also be written 
involving the appropriate terms of both series, for instance, 

1 = p(max(0,c+b−a):d−1,c|b,a) + p(max(0,b−c):b−d,a−c|b,a) 

or 

1 = p(b−d:min(b,a−c),a−c|b,a) + p(d+1:min(b,c),c|b,a) 

Following with the example of the fictitious rule BCXX, it 
should be noted that, due to Eq. (9), the significant term 
p(1−,10|80,200) is equal to p(79+,190|80,200). This last p-
value is the one attached to the complementary or 
negation of BCXX rule: its contrary event is the full negation 
BCXX BXXX XCXX  , i.e., the rule which avoids the 
simultaneous combination of substituents B and C at 
positions 2 and 4, respectively. This means that the 
sentence above related to the negative votes that should 
be addressed to BCXX rule could also be reformulated in 
terms to give positive votes to the complementary rule 
BCXX . In this case, the inclusion of the rule BCXX in the 
model with a positive vote is equivalent to assign positive 
votes to a set of 11 variables of order 2: 





, , , ,

, , , ,

, , ,

BCXX AAXX ABXX ACXX ADXX

BAXX BBXX BDXX

CAXX CBXX CCXX CDXX



 

For practical purposes, instead of assigning positive votes 
to several variables conforming a full negation rule, a 
negative vote is assigned to a single rule, the original BCXX 
variable. 

SAR Models and Consensus Votes 
The generation of the SAR model involves the assignation 
of positive or negative votes to each rule declared as 
significant. Afterwards, each molecular structure will 
cumulate the votes of all the significant rules that are 

Table 1. Series of the possible number of active molecules that can be found along the set of known structures (a congeners 
being b of them of interest). See text for the symbols. The numbers depicted at the bottom are those corresponding to the 
example explained in the main text (a = 200, b = 80) when c = 10 and d = 1 

Increasing number of active items in original set  
max(0,c+b-a) max(0,c+b-a)+1 max(0,c+b-a)+2 ... d-1 d d+1 ... min(b,c)-1

 min(b,c) 
min(b,a-c) min(b,a-c)-1 min(b,a-c)-2 ... b-d+1 b-d b-d-1 ... max(0,b-c)+1

 max(0,b-c) 
Decreasing number of active items in complementary set  

Increasing number of active items in original set (particular toy example case in the main text)  
0 1 2 ... 4 5 6 ... 9 10 
80 79 78 ... 76 75 74 ... 71 70 

Decreasing number of active items in complementary set (particular toy example case in the main text)  
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condensing it. The ultimate goal is to apply this voting 
procedure also over new compounds not present in the 
sublibrary (either with unknown activity or yet not 
synthesized) and it is expected to rank them properly. 
 The following algorithm is implemented in the 
program SSIR[21] and it conforms the basic module of 
training (getting a model) and model application to an 
external set. 
 

Algorithm: Basic SSIR procedure for ranking aext items 
from the rules trained with atrn items. 
1. Input the molecular training data information: 

1.1. Read the molecular structure symbolic 
codifications: atrn congeners entered. 

1.2. Set the number of anchorage points per 
congener: n. 

1.3. Set the number of substituents per ancorage 
point: m1, m2,..., mn. 

1.4. Read the molecular data property values and 
dichotomize it: a total of btrn training molecules 
are declared of being of interest. 

2. Set the range of rule orders to be explored: [ki , kf] 
where 1  ki   kf  n. 
3. Set the threshold p-value per rule order: pt(k), k = ki , ... 
, kf. 
4. Generate rules and keep the probabilistically relevant 
ones: 

4.1. Number of rules kept: Nr=0 
4.2. Loop for k = ki , kf. Loop over rule orders: 

summation over k in equation (2). 
Loop: For each rule order generate the C(n,k) 
combinations of sites. This corresponds to k 
nested loops, i. e., the summations over i1, i2, ..., 
ik in equation (2). 
Loop: Generate the variations among the mi1, 

mi2, ..., mik elements of each substitution 
site (rightmost part of equation (2)). This 
corresponds to k nested loops. 

Loop: If needed, generate the negation 
terms. This corresponds to a 
maximum of k nested binary loops. 

Count how many training congeners are 
condensed by the rule: c. 
Count how many of these condensed 
congeners are of interest: d. 
if p(d+,c|btrn,atrn)  pt(k) then put rule in 

list of kept rules: 
Nr=Nr+1: One more kept rule. 
Vr(Nr)=+1: Rule number Nr has a 
positive vote. 

else If negative votes are being 
considered then 
if p(d–,c|btrn,atrn)  pt(k) then put rule 

in list of kept rules: 
Nr=Nr+1: One more kept rule. 
Vr(Nr)=–1:Rule number Nr has a 
negative vote. 

end if 
end if 

End Loop of negation terms. 
End Loop of variations. 

End Loop of combinations. 
End Loop 4.2. over rule orders. Nr rules kept as being 
relevant with positive or negative votes. 

5. Loop for L = 1 , aext : loop over external congeners and 
collect votes from rules. 

v(L)=0. Number of votes per congener number L. 
Loop for r = 1 , Nr : loop over accepted rules 

If rule number r condenses external congener 
number L then 

v(L) = v(L) + Vr(r) 
end if 

End Loop over rules 
End Loop 5 over external congeners 
6. Molecular external set is ranked. Sort congeners 
according to votes: v(1)  v(2)  ...  v(aext). 

The program needs to read the training set (step 1) and the 
main calculation parameters (range of rules to explore and 
the respective threshold p-values) in steps 2 and 3. Then, 
the code generates all the rules definable from the training 
set (by means of the loops included in step 4). Optionally, 
negation terms can be included if desired. For each gene-
rated rule, the code counts how many training structures 
condenses (c) and how many of these are of interest (dc). 
This information allows the computation of the cumulated 
hypergeometric probabilities p(d+,c|btrn,atrn) or, even-
tually, p(d−,c|btrn,atrn). Comparing these values against the 
corresponding p-value threshold allows to assign a positive 
or a negative vote, if any, to the rule (variables Vr(:) in the 
algorithm). After the step 4 is completed, a total of Nr rules 
are kept with the corresponding positive or negative vote. 
In step 5 a loop starts over the external congeners (this can 
be also done along the training items, but our philosophy 
focuses on the application over external items of trained 
models, as it will be seen en next section). Each external 
molecule is faced against each kept rule in order to see if 
the congener is condensed by it or not. If condensation 
occurs, the compound cumulates the rule vote. At the end 
of step 5 every external compound will bear a certain 
number of cumulated votes coming from the previously 
selected rules during training. Now the external molecular 
set can be ranked according to these vote scores. An 
evaluation of the method efficiency can be done if the 
molecular property values are known for the external 
congeners (this is the usual case for cross-validation tests, 
as they will be presented below). 
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 Steps 1−4 of the above algorithm not only conforms the 
training process, but also a variable (rule) selection 
procedure. Note that this selection process is (must be) 
totally independent of the external molecular set. It is 
understood that training and external sets are mutually 
exclusive. Of course, the external set has to belong to the 
same global library, as the selected (trained) rules must be 
applicable to it. In other words, the available substitution 
sites and the residues found in the external set are to be 
also present in the training one. 

Cross-validation 
The program SSIR implements several cross-validation 
(CV)[22–24] procedures. Our code is always based on the 
Internal Test Sets (ITS) paradigm.[17,25–28] This means that 
every cross-validated training to be done over a subset 
must start from scratch and the variable selection must be 
totally independent of the other cross-validation loops or 
subsequent prediction over a test or validation set. This is 
accomplished by the above algorithm because the training 
and the model application are done in distinct molecular 
and mutually exclusive sets. This notion is nowadays 
promoted in several places of the literature.[23,24] As seen, 
in SSIR context variable selection means rule selection. 
Hence, at every training/test simulation cycle the rules 
entering into the model are selected from scratch. This is 
done this way in order to simulate a real-world feature: 
only after the training is finished and a model is set up, the 
structures whose property has to be predicted are 
revealed. 
 In the above algorithm, steps 1−4 constitute the rule 
generation from scratch. Steps  5 and 6 serve to apply the 
SAR model over an external molecular set. This algorithmic 
structure is useful to do CV calculations following the ITS 
paradigm: It is only necessary to do a dynamic partition in 
blocks of the original database, and for each left-out block 
do the training (i.e. select rules and set their votes) with the 
sole information of the remaining blocks using steps 1−4. 
Then, each left-out block receives (or cumulates) the 
corresponding predictions by means of application of steps 
5 and 6. In order to speed the process, during the CV cycles 
it is not necessary to generate all the rules again. It is 
possible to generate and keep all the rules from the 
beginning. But it is compulsive to recalculate the rule votes 
at each cycle. In previous works[6,7] it has been described 
how SSIR procedure allows the implementation of leave-
many-out procedures in a faster way than the explicit 
leave-and-put cycles with replacement accompanied by the 
subsequent explicit training and prediction. This is so 
because the model is obtained by a mere addition of 
integer votes. 
 The CV variants we are considering here are of two 
types: exhaustive systematic and stochastic. The systematic 

procedures are the Leave-one-Out (L1O) and the Balanced 
Leave-two-Out (BL2O) ones, being both exhaustive 
processes. The first one selects one congener at a time and 
builds a model with the remaining ones. Then, the model 
serves to assign a certain number of votes to the left-out 
molecule (i. e., the loop in step 5 of the above algorithm 
only involves a single compound). Then, the left-out item is 
replaced and the procedure starts again but selecting the 
next item to be left apart. The BL2O process is a similar 
process but two congeners are left-out at the same time 
(two items involved in the loop of step 5), as it will be 
explained below. The stochastic procedure chosen is the 5-
fold CV, for which the molecular set is randomly partitioned 
into 5 blocks of equal size. Each block will act as test set 
while the four remaining ones serve as training set. Despite 
the 5-fold procedure is also exhaustive once the 5 training-
test loops are done, the results depend on the particular 
molecules that entered in each block. Hence, the whole 5-
fold process can be repeated obtaining distinct results. As 
it will be see below, this feature has been taken into 
account in order to estimate the variability and stability of 
the final results. 
 

RESULTS AND DISCUSSION: 
APPLICATION EXAMPLE 

Previous application examples of SSIR method are shown in 
references 6 and 7. There, molecular non-peptidic 
congeneric families are studied. In both referred cases 
molecules present various substitution points and, at the 
same time, each substitution site is able to allocate several 
residues. Here an example is presented in order to show 
how SSIR can be applied in a systematic way for a set of 
substituted peptides. The example consists on the ranking 
of a full series of M = a = 29 = 512 peptides presenting 
activity against NK1 receptors.[29,30] The activities where 
codified in percentage (values ranging from 0 up to 100) in 
such a way that the higher the value, the higher the activity. 
This complete set was previously studied by means of 
Formal Inference-based Recursive Modeling (FIRM) by 
Young and Hawkins[31] and with classical Design of 
Experiments by Barroso and Besalú[18] arriving to similar 
conclusions. The peptides structure is 

H-[Arg]-[Pro-1]-[Lys]-[Pro-2]-[Gln-1]-[Gln-2]-[Phe-1]-
[Phe-2]-[Gly]-[Leu]-[Met]-NH2 

Where in the 9 marked bold positions the L-enantiomers 
were systematically replaced by the D-enantiomers of the 
same aminoacid, obtaining all the combinations. Previously 
cited works show that the most important single point 
substitution is the terminal [Leu], followed in importance 
by the single substitutions in [Phe-2], [Phe-1], and [Gln-2], 
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in this order. In Barroso and Besalú’s work the substitutions 
in [Gln-1] and [Pro-2] appear to be a secondary interaction. 
This agrees with the results of Young and Hawkins, as they 
affirm that the single substitution in these places is not 
enough to decide which position is more important. Young 
and Hawkins argue that second order interactions should 
play an important role at this level of description. As it is 
shown below, this feature is related to the fact that SSIR 
rules of order 2 are the most relevant ones found in this 
study. 
 In this example, the application of SSIR methodology 
is straightforward. It is enough to define which are the 
active molecules of interest to delineate the database 
binary encoding. This was arbitrarily set as those presenting 
a 30 % of activity or more (152 structures). At the same time 
it was set a cutoff p-value of 10−10. Hence, the declared 
relevant rules will be those having a p-value equal or less 
than 10−10. The total number of rules of order 1 that can be 
generated is 9 (one per site, DXXXXXXXX, XDXXXXXXX, and 
so on). Recall that for this set described by binary 
substitutions it is not necessary to generate (redundant) 
negations as, for instance, the rule LXXXXXXXX gives the 
same information as the DXXXXXXXX one. Only 4 rules of 
order 1 are significant, i. e., having p-values less than 10−10 
(see Table 2). A positive vote was assigned to these four 
rules that favors the presence of the L-aminoacids at any of 
the last four substituted positions. The ordering for 
preference of the rules, according the respective p-values, 
are the ones attached to the sites [Leu], [Phe-2], [Phe-1] 
and [Gln-2]. It is worth noting that a simple calculation that 
only took a few seconds leads to the same main conclusions 
referred in the above articles, focusing the attention on the 
relevant sites. It has to be told that performing the SSIR 
calculation requires minimal preparatory actions, as the 
residues codification is symbolic and arbitrary. 
 Both, the training fit and the Leave-one-out CV (L1O-
CV) procedures gave the same results: area under the 
Receiver Operating Characteristic (AU-ROC) curve equals 
0.927 (Accuracy = 92.2 %, Sensitivity = 89.5 %, Specificity = 
93.3 %, Precision = 85.0 %, Matthew’s CC = 81.6 %) The hit 
rate at 5 % was 96.9 % with an enrichment factor of 3.3, the 

maximum being 3.4. This hit rate corresponds to select the 
first 32 ranked molecules and found that 31 of them are of 
interest. The ROC curve depicted in Figure 3 shows how the 
method can be a good preliminary tool able to filter a 
database. The graph becomes segmented because only five 
kinds of cumulated votes were generated by molecule (0, 
1, 2, 3 or 4). 

 A total of   
 

9
4 144

2
 rules of order 2 can be 

defined in this set and 15 of them have p-values less than 
10−10. For training it is obtained AU-ROC = 0.947 (Accuracy 
= 93.0 %, Sensitivity = 88.2 %, Specificity = 95.0 %, Precision 
= 88.2 %, Matthew’s CC = 83.2 %, Hit rate at 5 % = 96.9 % 
with an enrichment factor of 3.3, the maximum being 3.4). 
The participation of the last four substitution sites becomes 
evident along these most relevant variables (see Table 3). 
Curiously, only site [Gln-1] seems to have here a marginal 
role and not [Pro-2], as stated by other authors. As 
expected, the L1O-CV returns a smaller AU-ROC value 
(0.929), but the other parameters (Accuracy, Sensitivity, ...) 
are maintained. When dealing with rules of order 2 the ROC 
curves become smoother as the range of cumulated 
molecular votes spreads. 
 The balanced leave-two-out (BL2O) procedure is a 
CV test suitable for dichotomized sets.[6,7] The name 
balanced comes from the fact that at every simulated cross-
validation loop two molecules are left out simultaneously, 
one being of interest and the other being not. This prevents 
to generate all the combinations of molecular pairs but only 
nintnnint, the product of the number of items of interest 
(nint) by the number of compounds labeled as not being of 

Table 2. Relevant rules of order 1 for the set of 
neuropeptides. Only the relevant substitution sites are 
listed in the table header. L stand for L-enantiomers. Dots 
stand for wildcard (X) rule elements. See text for more 
details 

Rule p-value Vote [Gln-2] [Phe-1] [Phe-2] [Leu] 
1 1.7·10−21 + . . . L 
2 6.8·10−16 + . . L . 
3 3.7·10−13 + . L . . 
4 6.7·10−12 + L . . . 
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Figure 3. AU-ROC curve and AU-ROC area for the leave-one-
out training of the set of neuropeptides considering rules of 
order 1. See text for details. 
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interest (nnint). For every pair of molecules kept apart in a 
CV cycle, a couple of prediction votes is given (one for each 
left out item), and they are added up. At the end of the 
procedure, and for the sake of scaling purposes, the sum of 
votes for the relevant and non-relevant compounds has to 
be divided by nnint and nint, respectively. This gives a series 
of comparable votes that conforms a ranking. Additionally, 
during the BL2O cycles for each left out pair it is counted 
how many times a relevant compound had more votes than 
the other companion (correct internal classification case), 
the times both structures received the same number of 
votes (a tie), and the times the relevant item received less 

votes than the other (incorrect classification case). As it will 
be seen now, those counts are related to the AU-ROC 
value.[32,33] 
 For the example explored here, the BL2O procedure 
required 54720 cycles (152360). At each cycle normally 14 
or 15 rules showed to be significant (i. e. p-value not greater 
than 10−10). The AU-ROC for this ranking is 0.940 (Accuracy 
= 93.4 %, Sensitivity = 89.5 %, Specificity = 95.0 %, Precision 
= 88.3 %, Matthew’s CC = 84.2 %, Hit rate at 5 % = 96.9 % 
again). Figure 4 shows the ROC curve for this CV 
experiment. 
 During the BL2O footage the molecular pairs were 
correctly sorted 50227 times, there were 2170 ties and in 
2323 cases the left out pairs were misclassified. As said, 
from those figures an estimation of the AU-ROC value can 
be obtained: 50227 / 54720 = 91.8 % and adding half of the 
ties in the numerator this number increases up to 93.8 %. 
 Present results suggest that the obtained models are 
stable. This has been checked by means of two additional 
tests. First, a 5-fold CV was conducted, giving AU-ROC = 
0.939, Accuracy = 92.6 %, Sensitivity = 88.8 %, Specificity = 
94.2 %, Precision = 86.5 %, Matthew’s CC = 82.4 %, Hit rate 
at 5 % = 100 % collecting 28 active compounds in the list of 
the first 28 ranked. This test has been repeated 10000 
times, always obtaining quite similar results. In particular, 
the mean AU-ROC value for test compounds was 0.940 and 
ranged in the interval [0.925,0.949] for the 95% of the 
cases. Secondly, a series of 1000 randomization tests were 
done, each time scrambling the interest/non-interest labels 
at random and also selecting at random 256 compounds 
conforming the test set and the remaining ones acting as 
training elements. The models involved rules of order 2 and 
the threshold p-value was set now to 0.01 because no 
significant rules can be found if this threshold is set to the 

Table 3. Most relevant rules of order 2 for the set of neuropeptides (p-values not greater than 10−10). Only the relevant sites 
are listed. Dots stand for wildcard (X) rule elements. L stand for L-enantiomers and D stand for D-enantiomers. It becomes 
evident the participation of the last four sites, as stated by other authors. See text for more details 

Rule p-value Vote [Arg] [Pro-2] [Gln-2] [Phe-1] [Phe-2] [Leu] 
1 1.9·10−30 + . . . . L L 
2 2.4·10−29 + . . . L . L 
3 3.4·10−26 + . . L . . L 
4 2.9·10−23 + . . . L L . 
5 1.6·10−20 + . . L . L . 
6 1.9·10−20 - . . . . D D 
7 8.3·10−19 + . . L L . . 
8 1.1·10−17 - . . D . . D 
9 1.7·10−16 - . . D . D . 

10 1.7·10−16 - . . . . . . 
11 2.1·10−15 - . . . D D . 
12 2.3·10−14 - . . D D . . 
13 4.0·10−12 + . L . . . L 
14 8.0·10−11 - L . . . . D 
15 8.0·10−11 - . D . . . D 
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Figure 4. AU-ROC curve and AU-ROC area for the BL2O-CV 
experiment considering rules of order 2 and accepting only 
rules with p-value not greater than 10−10. See text for 
details. 
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highly demanding 10−10 value. Working under the 1 % limit, 
in 377 cases (37.7 %) SSIR procedure was unable to get a 
model. The other models were able to find a maximum of 
18 rules in one case. The range of achieved AU-ROC values 
for training in those cases was 0.567−0.739, whereas for 
the test set it was 0. 381−0.661. The best values were 
achieved by mere chance. Figure 5 shows the cloud 
composed by the 623 experiments with lead to select false 
rules and fake models (during training the method seeks for 
apparent profitable rules, but attached to low p-values that 
will not be useful for the external test set, as they are fake). 
Note in the graph how for the randomized test points all 
the AU-ROC values are surrounding the neutral value of 0.5 
despite in training only values over 0.5 are obtained. In the 
same graphic the upper-right cloud of crosses was obtained 
when real (i.e. non-scrambled) random partitions of the set 
are trained and tested. This was done 100 times and the 
minimal AU-ROC values for training and test were 0.925 
and 0.885, respectively. 
 Rules of order 3 or 4 gave similar results as above but 
did not increase the models performance. AU-ROC values 
for training and L1O-CV processes were 0.953 and 0.928 
(rules of order 3) and 0.928 and 0.921 (rules of order 4). The 
number of total definable rules for each case were 672 and 
2016, whereas the number of significant ones entering into 
the models were 41 and 37, respectively. No significant 
rules of order 5 were found (the p-value threshold was set 
to 10−10 in all the cases). The relevance of the rules of order 
2 seems to corroborate the affirmation of Young and 

Hawkins: synergic interactions involving two molecular 
sites are the most relevant ones in this set. This feature can 
be attached to the pharmacophore concept: SSIR rules can 
help to elucidate the relevant sites and proper moieties 
they have to accommodate in a void scaffold. 
 

CONCLUSIONS 
It has been described SSIR, a systematic procedure useful 
to rank series of congeners and based on the simple 
superposition of rules which are obtained systematically. A 
multiple binary sites combinatorial example dataset has 
been explored in order to reveal the main features of SSIR. 
The results concerning the relevance of interactions of two 
molecular sites conform with previous literature 
conclusions, but using SSIR it has been shown that the 
finding is systematic. The Balanced Leave-two-out (BL2O) 
procedure has been also defined and applied in this context 
showing how the AU-ROC values can be estimated by the 
number of correct and incorrect pair classifications. This 
procedure, among other cross-validation tests, allowed 
concluding that the obtained ranking models are stable. 
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