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As an analogue of linear group representations, where groups
act on vector spaces by linear transformations, the notion of a
permutation representation refers to groups acting on finite sets
by permuting their elements. There exists a well-developed theory.
of permutation representations which is, however, practically un-
known outside of (but even very little known within) mathematics.
The present paper reviews its basic notions and results, and it
sketches actual and prospective applications in »chemical com-
binatorics«, where this theory promises to be of similar value as
that of linear representation theory in quantum chemistry.

1. INTRODUCTION

Group representations are realizations of more or less »abstract« group s
as subgroups of »concrete« groups. More precisely, a representation of a
group G as a subgroup of another group H is a homomorphism of G into
H, that is: a mapping G 3 g -7 hg € H such that .

~~=~ W
holds for any two elements g, g' e G. The images hg € H of the g € G eon-
stitute a subgroup of H which provides a (not necessarily faithful) reali-
zation of G.

The most important types of »concrete« groups are
i) matrix groups or, equivalently, groups of linear operators such as
H = GL (n, cl.), the group of non-singular complex (nxn)-matrices, or
H = GL (V), the group of invertible linear operators of some vector
space V,

ii) permutation group s such as H = Sym(S), the symmetric group of a finite
set S, i. e. the group of permutations of its elements.
Representations of the first type are called line ar representations; often

the attribute »linear« is simply omitted because of the predominance of
this type throughout mathematics, physics and chemistry. Representations
of the second type are called permutation representations. We take the
opportunity to fix some notation while recalling their definition.

A permutation representation of a group G on a finite set S attributes
to any group element g € G a permutation 77:g € Sym(S) such that
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holds for any g, g' € G. Synonymously, the group G is said to act (as a
permutation group) on the set S, and S is called a G - set. Unless there is
same danger of confusing different action s of the same group on the same
set, we shall write gs as ashort form of 7Cg(S), the image of an element
s € S under the permutation 7Cg by which g e G acts in the representation
in question. Then the homomorphism condition (2) takes the form g (g' s) =
= (gg')s, i. e. there is no need for brackets in this notatian.

A group action induces an equivalence relation on the set in question.
s' - s ~ 3 gEG: s' = gs, (3)

due to which this set decomposes into equivalence classes, its orbits with
respect to the group action

OG (s) := {s' = gs I gEG}. (4)

The most immediate questions about orbits refer to their sizes and their
number. The answers are equally easy: the size of an orbit is given by
the stabilizer index of any element, and the number of orbits equals the
average number of fixed points of the group elements. These results involve
two dual objects which a group action associates with any element of the
set and of the group in question: the stabilizer Gs of an element s € S

Gs := {gEG I gs = s},

and the set Sg of fixed points of a group element g e G

Sg:= {SES I gs = s}.

(5)

(6)

The stabilizer Gs is a subgroup of G. Its left cosets are in one-ta-one cor-
respondence with the elements in the orbit OG(s), hence

IGIIOG (s) I = TG.T' (7)

Turning to the number of orbits, the following observation provides a
convenient starting point. Let E be an equivalence relation on a finite set
S, and let E(s) denote the equivalence class containing s € S. Then, trivially,

~ __ 1_= 1
s'€E (s) I E (s') I

holds, and therefore the number n of equivalence classes is given by

(8)

1~ = n.
se S I E (s) I

This general identity is, however, totally useless - unless we have sufficient
informatian about the sizes of equivalence classes, as we do if they are
orbits under the action of a group. For E (s) = Ods), eq. (7) leads to

(9)

n=_l_ ~ lG I.IG I seS s
(10)

Noting finally that
~ I Gs I = ~ I Sg I,
se S geG

(11.'
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since both these sums enumerate the pairs (g, s) such that gs = s, we arrive at

n == -I ~ 1 ~ I Sg I == <f (g) > a e G (12)
geG

where we have introduced f (g) = I Sg I for the number of fixed points of
a group element g € G and brackets for averaging. This result is commonly
attributed to Burnside - Burnside's lemma-but it is in fact due to Frobenius
and to Cauchy, comp. (1).

Symmetric polyhedra provide immediate illustrations of the notions
introduced above. Any covering operation of a polyhedron induces a permu-
tation of its corners as well as of its edges, its faces and so on, and the
effect of two consecutive operations is the same as that of their product
(by the very definition of that product). So e. g. let S be the set of corners
of a symmetric polyhedron, and let G be its point-symmetry group. Then
G acts on S. The orbits of this action are the subsets of symmetry-equivalent
corners, the stabilizer of a corner accounts for its site symmetry, and fixed
points are points on the rotation axis for proper rotations, and points in
the mirror plane for reflections.

Example 1: A trigonal bipyramid,

4

2
S = {1, 2, 3, 4, 5, 6}

6
3 (we restrict ourselves to the proper

L~---I--- rotational point-symmetry)

g

5

Figure 1

the permutation representation of G:
e (1) (2) (3) (4) (5) (6)
C3 (123) (4) (5) (6)
C23 (132) (4) (5) (6)
C2 (1) (23) (45) (6)
c/ (13) (2) (45) (6)
c/' (12) (3) (45) (6)

stabilizers: G1 = C2, G2 = C/, G3 = C{, G4 = C3, Gs = C3, G6 = D3•

fixed points: s; = S, SeB = Sel = {4, 5, 6}, Se2 = {I, 6}, Se"' = {2, 6},
Sd' = {3, 6}.

orbits: {1, 2, 3}, {4, 5}, {6}.
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The reader may check that indeed the orbit lengths coincide with the
stabilizer indices in question, and that three is the average fixed point number
of the group elements.

Starting from the notions and results above about groups acting on sets,
which are commonplace today, it is an easy matter to proceed along the
lines of ordinary (i. e. linear) representation theory, developing a theory of
permutation representations. Rowever, these few simple things already have
such a wealth of applications that almost nobody cared(s). Various objects
throughout mathematics and sciences such as molecules and graphs can be
identified with orbits of appropriate groups acting on appropriate sets. Hence
Burnside's lemma applies to their enumeration. The best-known example is
Polya's theory" - certainly the most popular topic in advanced mathematics
among chemists. Today a whole branch of combinatorics is devoted to »enu-
meration under group action«, that is, to the art of applying Burnside's lemma,
compare e. g. Harary and Palmer's monograph" on the enumeration of graphs.

In the next paragraph, we will review the basic notions and results of
the theory of permutation representations, emphasizing analogy with ordinary
representation theory. It was created by Burnside roughly a century ago-,
with modern presentations given by Dress" and Knutson",

2. THE THEORY OF PERMUTATION REPRESENTATIONS

The object of this paragraph is to mimic the linear representation theory
of finite groups. We follow the lines of its traditional presentation, which
we briefly sketch for the convenience of the reader.

A linear representation of a group G on a vector space V attributes to
any group element gEG a linear operator Lg of V such that LgLg' = Lgg'
holds for any g,g' E G. Mimicking the nomenclature of permutation representa-
tion theory for the time being, we may call V a G-vectorspace or aG-space,
for short, and we may say that G acts on V (by linear operators/tr ansfor-
mations). Next, some structure is introduced into the jungle of linear represen-
tations of a given group by means of two classification principles: similarity
and decomposition into elementary building blocks. Two G-spaces V and V'
are called equivalent (i. e. they carry equivalent representations) if they are
isomorphic vector spaces, and if, in addition, the isomorphism between them
is compatible with the actions of G on V and V', that is: if there is an
invertible linear transformation T: V --l> V' such that TLg = L'gT holds for any
gEG. Turning to decomposition, a subspace W of V is called a G-subspace
(invariant subspace) if it is stable under the action of G, that is, if LgWEW for
any gEG, W E W. Hence aG-space is either reducible or irreducible, meaning
that it has some (non-trivial) G-subspace or it hasn't. Due to the fact* that
any G-space can be endowed with a G-invariant scalar product, i. e. such
that the Lg are unitary operators, any G-space decomposes into a direct sum
of irreducible G-subspaces. Synonymously, in any matrix representation, all
the representation matrices can be simultaneously transformed into the same
block-diagonal shape such that the individual diagonal blocks constitute ir-

* True for finite groups and compact Lie groups.
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reducible matrix representations. Skipping the important problem of how to
effectively perform such decomposition (projection operators, symmetry adapted
bases), the notions of equivalence and (ir)reducibility provide an enormous
simplification. In studying the representations of a given group, we may
restrict ourselves to irreducibles, and it turns out that up to equivalence,.
there is only a finite number of them for a finite group. Schur's lemma pro-
vides the key to their further investJgation. Its objects are the G-maps (inter-
twining maps) between two G-spaces V and V'. These are linear transfor-
mations T: V~ V' that are compatible with the actions of G, compare the
definition of equivalence. For given G-spaces V, V', the collection of G-maps
from V to V' forms a vector space, and Schur's lemma states that for ir-
reducibles, this intertwining space has dimension one or zero, depending on
whether V, V' are equivalent or not. This result is then employed in deriving
the »orthogonality relations« among the matrix element functions of irredu-
cible representations, the main computational tool in the calculus of repre-
sentation theory. Up to equivalence a finite group has as many irreducible
representations as conjugacy classes. However, even today, a satisfactory
recipe is missing of how to construct a complete set for an arbitrary finite
group. There is no such gap in character theory, which is the appropriate tool
for studying representations up to equivalence. The character of a represen-
tation (g I~ Lg) is a function that attributes to any group element gEG a
complex number X (g) = trLg, the trace of its representation operator (ma-
trix). Two G-spaces are equivalent if and only if their characters coincide.
Characters are constant on conjugacy classes, X (g) = x (hgh-1), and the irre-
ducible characters constitute an orthonormal basis in the vector space of
functions f: G~ Q; which share this invariance property. As a final ingre-
dient, the character of a reducible representation is the sum of the characters of
its irreducible constituents. Hence the multipli city, up to equivalence again.
of an irreducible representation in a reducible one is given by the correspond-
ing scalar product of characters. This fact makes the analysis of rep resen-
tations amatter of simple numerical computations - once the character table
of the group in question, i. e. the collection of its irreducible characters, is
known. For the point-symmetry groups, the character tables are collected in
almost any book on »Group Theory and Applications«. Moreover, there are
general methods to compute character tables for arbitrary fini te groups, and
special receipes for particular families such as the symmetric groups Sn.

These are the basic notions and results of line ar representation theory
that we are going to mimic, referring to permutation representations. We will
also briefly discuss analogues of constructions not reviewed here, such as:
subduced/induced representations and tensor products.

Turning to permutation representations now, we begin by introducing
similarity and fragmentation like before. Two G-sets S and S' are called equi-
valent, if there is one-to-one correspondence s (-7 s' between the elements of
S and those of S' such that gs! = S2<==> gs/ = s/o That is, there is a bijection
rp: s I~ s' from S onto S' such that rp (gs) = grp (s) for any gEG, SES. Invariant
subsets take the part of invariant subspaces in line ar representation theory.
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A subset T c S is called a G-subset, if gtET for any gEG, tET. Thus the
action of G may be restricted to T, turning this set into aG-set. AG-set is
called simple, if it has no (proper) G-subsets. Synonynously, G is said to act
transitively on S. Apparently simple G-sets are the analogues of irreducible
G-spaces. There seems to be no standard name for the analogues of reducibles,
so we are free to call them composite G-sets; the group action then is intran-
sitive. Any G-set uniquely decomposes into simple constituents: it is the
disjoint union of its orbits - parallel to any G-space decomposing (almost
uniquely) into a direct sum of irreducibles. Next we look for the analogue of
Schur's lemma. In linear representation theory, this key result is due to the
fact that for any intertwining map, both its image and its kernel are invariant
subspaces of the G-spaces in question. If both these spaces are irreducible, the
result then is that there is essentially one interwining map between equi-
valent spaces and no such map between inequivalent spaces. So our objects
are G-maps between G-sets, that is, mappings that are compatible with the
actions of G. Formally, a mapping ep: S ~ S' from aG-set S into another
G-set S' is called aG-map, if ep (gs) = gep (s) holds for any gEG, S€S. The
image of ep, that is, the collection of images ep (s), SES, constitutes a G-subset of
S'. So, if S' is simple, ep must be »onto«. However, the analogue of the kernel
is missing, and hence the permutation representation version of Schur's lemma
turns out to be not quite as nice as the original one. Unlike in the linear
theory, there are G-maps between inequivalent simple G-sets. But we can
characterize them all and, more important, we can recognize equivalent
simple G-sets.

Lemma: Let S and S' be two simple G-sets. There is aG-map from S
to S' if and only if there are elements SES, s' ES' such that the stabilizer Gs
is contained in Gs" In particular, S and S' are equivalent if and only if there
are elements SES, s' ES' with identical stabilizers, Gs= Gs'.

Elements within an orbit have mutually conjugate stabilizers,

(13)

Rence we may fix two arbitrary elements SES, s' ES' and rephrase the lemma
as follows.

Lemma': There is aG-map from S to S' if and only if Gs is subconju-
gate to Gs', that is, if some conjugate gGsg-l is contained in Gs'. In particular,
S and S' are equivalent if and only if Gs and Gs' are conjugates.

Still another version makes explicit use of the notion of conjugacy classes
of subgroups. Let us introduce the notation H s G as ashort form of "H is a
subgroup of G", and IH for the collection of conjugates of H,

IH := {H' = gHg-11 gEG}. (14)

We also introduce a partial ordering among these conjugacy classes, inherited
from the subgroup relation, as follows: IH s lK if and only if there are H' E IH,
K' E lK such that H' s K', equivalently, if and only if H is subconjugate to K.

If S and S' are simple G-sets, the stabilizers Gs and Gs' of their elements
range over two conjugacy classes of subgroups; let us denote them by Gs
and Gs'. Now we are ready to state
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Lemma": There is aG-map from S to S' if and only if Gs :s; Gs'. In parti-

cular, S and S' are equivalent if and only if Gs = Gs'.
Up to equivalence, simple G-sets are characterized by their conjugacy

classes of stabilizers. Hence there are at most as many of them as there are
conjugacy classes of subgroups of G. In reverse, for any such conjugacy class
IH there is a simple G-set S such that Gs = IH. SO we end up with a one-to-
-one correspondence between equivalence classes of simple G-sets and conju-
gacy classes of subgroups of G.

A simple G-set with stabilizer class IH is readily constructed as follows.
For any subgroup H e IH, take S to be G/H, the collection of left cosets gH,
and let G act by translation, that is, g' e G takes gH into g' gH. This action is
transitive, and H is the stabilizer of the coset s = H, so Gs = IH. Two such
coset spaces G/H and G/K afford equivalent (transitive) permutation repre-
sentations if and only if H and Kare conjugates. Thus, up to equivalence,
simple G-sets are coset spaces, and whenever convenient, we can easily
switch back and forth between arbitrary simple G-sets and coset spaces as
follows. Let S be a simple G-set and H :s; G be the stabilizer of s € S. Then
gs ~ gH provides aG-map between S and G/H.

So some differences in comparison with line ar representation theory begin
to show up. While Schur's lemma turned out to be somewhat weaker in the
case of permutation representations, and there is of course no such thing like
the »orthogonality relations«, we have an easy construction that yields a
complete set of irreducibles for any finite group, while there exists nothing
the like in the line ar case.

Our next task is to mimic character theory. Characters of permutation
representations turn out to be functions defined on the subgroups of the
group in question instead of the group elements themselves. They are con-
stant on conjugacy classes of subgroups, and they indeed characterize G-sets
up to equivalence. Hence we will stick to the name "character", while they are
called "marks" by Burnside and "supercharacters" by Knutson.

Definition: Let S be aG-set. The character XS of S attributes to any
subgroup H :s; G the number of joint fixed points of its elements,

XS(H) : = 1SR I, where

SR: = {S€S 1 hs = s for any h€H}.

Equivalently, XS (H) is the number of elements in S with stabilizers eon-
taining H, since

SH = {S€S 1 H ~ Gs}. (15)

The following properties of characters are obvious.
la) Characters are invariant under conjugation, that is, XS (gHg 1) = XS (H).
2a) Equivalent G-sets have identical characters.

3) If aG-set S is the union of disjoint G-subsets T, U, V, ... , then XS =XT +
+ XU + XV + ....

Stronger in fact, both the first two statements admit inversion as follows:
lb) If XS (K) = XS (H) for any G-set S, then K and H are conjugates.
2b) G-sets with identical characters are equivalent.
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The last result readily follows from the fact that the simple characters
(i. e. the characters of simple G-sets) are linearly independent functions on
the subgroups of G. Within the vector space of conjugacy-invariant functions
they constitute a basis. Hence any compound character has a unique resolution
into simple characters. As a consequence, two G-sets S, S' with identical cha-
racters have the same resolution into simple constituents. By glueing together
G-maps between equivalent orbits, S and S' are then demonstrated to be
equivalent, in turn.

Unlike in linear representation theory, there are simple explicit expres-
sions for all the simple characters of any finite group G. In fact, its character
table is nothing else but a condensed version of the matrix that records the
structure of the subgroup lattice of G - which would be a square matrix with
the subgroups of G as row and column labels, and with (H, K)-entry zero ar
one, depending on whether H is a subgroup of K or not.

So let us turn to simple characters now. Coset spaces GIK are simple
G-sets, and, up to equivalence, any simple G-set is of this type. Since gKg-l
is the stabilizer of acoset gK, eq. (15) is readily applied:

xGjK (Ii) = no. of cosets gK such that Ii:S;; gKg-l,

1TKT no. of gEG such that Ii:S;; gKg-l, (16)

I G I [Ii:S;; lK]
IKI [lK]

where [H ::; lK] and [iK] denote the number of conjugates of K containing H,
and the total number of conjugates, respectively. Now let 7: be a transversal
of the conjugacy classes of subgroups of G, that is, a collection of subgroups,
one from each conjugacy class. Then {XGlK IKE 'd is the complete set of
simple characters of G, and the square array of numbers

Ii, KEr: (17)

constitutes the (super) character table of G, Burnside's table of marks of the
group in question.

Example 2: For our favourite group D3 again, we compute its (super)
character table. Later we are going to apply it to resolve the permutation
representation from the previous example into simple constituents.
G = D3 = {e, C3,cl, C2,cz', cz"} has altogether six subgroups (including the tri-
vialones): D3, C3={e,c3,c32}, C2={e,c2}, C2'={e,c2'}, C/'={e,c{}, and
E = {el.
They fall into four conjugacy classes: ID3= {D3}, C3= {C3}, C2 = {C2, C2', C{},
lE = {E}. .

The figure below and the table present the sub group lattice of D3 and
its character table, where the columns make up the simple characters (while
the irreducible characters of linear representations are usually tabulated
row-wise).
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D3 C3 C2 E

D3 1 O O OC3
C3 1 2 O Opc~' C2 1 O 1 O
E 1 2 3 6

Figure 2

ID31 [D3:::;:; lK] 6 1
MD3K == T-K"f - for K == D3, Ootherwise

[lK] 6 1

ID31 [C3:::;:;lK] 6 1 6 1
MC•K == for K =D3, - - for K =C3' Oow.fKT [lK] 6 1 3 1

ID31 [C2:::;:; lK] 6 1 6 1
M - - - for K =D3 - - for K = C2, Oow.

C2K -lKT [lK] - 6 '1 ' 2 3

ID31 [E:::;:; lK] ID31
MEK =-- [lK] =lK! for any K :::;:;D3

IKI

In the previous example, the character table turned out to be (lower) tri an-
gular; moreover all its diagonal elements were nonzero. These properties hold
in general, provided that the subgroups in 7: are ordered according to their
cardinalities as we did above: ! D31 = 6 ;::: I C31 = 3 ;::: I C21 = 2 ;::: I E I = 1. In
fact, this is evident from the expression

[H:::;:;IK]

[lK]
(18)

since [H:::; lK] must be zero for I HI> IK I as well as for I H I = IK I but
IH ~ lK; and [H:::; IH] = 1, so MHH ~ O. Square triangular matrices with non-
zero diagonals are ivertible. Equivalently, their colums (as well as their rows)
are linearly independent. These facts establish the linear independence of
simple characters, and they simultaneously indicate how to resolve a com-
pound character into its (unique) simple components. Let S be a composite
G-set with nK orbits of the type GIK (i. e. with stabilizers in lK). Accordingly

XS = ~ nK xG/K,
K€t"

that is,

(19)

XS (H) = ~ MHKnK
K€t"

for any HET.

Eq. (19) constitutes a system of linear equations for the multiplicities nK,
where the matrix of coefficients is non-singular. Rence it admits a unique
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solution by matrix inversion. In our case the matrix is triangular, indicating a
recursive procedure. In linear representation theory, life is still easier. Irre-
ducible characters are orthonormal, hence the character tables (matrices) are
unitary, that is, their inverses are obtained by taking adjoints.

Example 3: For G = D3 again, we resolve its permutation representation
from the first example into its simple constituents. Eq. (15) tells us that
X (H) = no. of sites with symmetry ;::::H, so

Hence the multiplicities nH of GIH, that is, the numbers of orbits with
stabilizers in !H, obey the system of equations

o
2

O
2

O

O

1

3

O

O

O
6

which is readily solved, resulting in

Indeed, three is one orbit {6} of sites with symmetry 1D3, another orbit
{4, 5} of C3-symmetric sites, and the sites in the third orbit {I, 2, 3} have
symmetry c,

Though simple in principle, the computation of a (super) character table
can be quite a formidable task in practice, since it requires complete survey
of the subgroup lattice of the group in question. A computer program that
will perform this job for arbitrary fini te groups is currently developed by
Kerber". For particular types of subgroups there are other expressions for
the values of simple characters that are more easily evaluated than formula
(16). So e. g. if H = (h) is a cyclic subgroup, generated by an element h E G,
then gHg-l :::;K ~ ghg-1 E K, which immediately leads to

(20)

Here eh = {h' = ghg-1 I gEG} is the conjugacy class of G containing h.
(20) is in fact the character of the line ar representation of G induced from
the identity representation of K, evaluated at h E G. This is a hint towards
connections between line ar and permutation representations that we do not
follow here, however. Another useful interpretation of characters results from
the fact that there are as many G-maps rp: S' ~ S between two simple
G-sets as there are elements s E S that are fixed by the stabilizer Gs' of an
arbitrary element s' E S'. This is in fact true for composite S as well. With
the choice of S' = GIH, the number of G-maps from GIH to S equals the
number of joint fixed points in S of the h E H. This number is just the
character of S, evaluated at H :::;G. So we end up with

XS (H) = no. of G-maps G/H -+ S. (21)
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Let us close this paragraph with a couple of remarks concerning the analogues
of certain constructions from linear representation theory such as subduced/
/induced representations and tensor products. By restricting the action to a
subgroup H of G, and G-set S is turned into an H-set, that we will denote
by S ~H. Clear1y this permutation representation of H is the analogue of the
linear representation of a subgroup subduced from that of a group. It is
enough to consider simple G-sets S, since composite ones may be decomposed
into simple G-sets first which then are restricted to H and decomposed in
turn. The resolution of restrictions to subgroup s of simple G-sets has an
algebraic analogue" in terms of double cosets: rf S is a simple G-set, the
H-orbits of S (i. e. the simple constituents of S ~H) are in one-to-one cor-
respondence with the double cosets HgGs in G, where Gs is the stabilizer of
an arbitrary element s E S. In terms of coset spaces, we may state more
precisely

G = U HgK {::::=:} (GIK) ~ H ~ U H!H n gKg-t,
geT geT

(22)

Here T is a transversal (system of representatives) of the (H, K)-double
cosets in G.

Unlike in linear representation theory, induced permutation representa-
tions do not give rise to any appealing problems. Simple H-sets induce simple
G-sets in a trivial manner: HfK t G == GfK.

Finally, the analogue of the tensor product of G-vectorspaces - associa-
ted with what is often called the direct product of representations and the
Kronecker product of matrices - is related to double cosets as well. Again
we may restrict ourselves to simple G-sets, say S and U. Letting G operate
on pairs (s, u) by separately transforming their components, g: (s, u) I~ (gs, gu),
the cartesian product S X U is turned into aG-set, and we ask for its
resolution into simple constituents. It turns out" that they are in one-to-one-
-correspondence with the double cosets GsgGu in G, where Gs and Gu are
the stabilizers of arbitrary elements s E S, u E U. In terms of cotes spaces
again, we may state

G = U HgK {::::=:} (GIH) X (GIK) ~ U GIH n gKg-l.
geT geT

(23)

The isomorphisms expressed by (22) and (23) clarify the interrelation between
the current two, seemingly disjoint, approaches to the enumeration of
isomers and isomerizations: the method of generating functions a la Polya
and the double coset formalism, as established e. g. in2,9,10and,11-13respectively.

The table below presents a kind of dictionary, referring to the vocabulary
of linear and permutation representations; moreover a few basic results are
contrasted.

vector space
line ar transformation
linear representation
representation space
invariant subspace
irreducible representation
irred. inv. subspace

- finite set
- permutation

permutation representation
G-set
G-subset
simple G-set, transitivity
orbit
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direct sum
equivalence
Schur's lemma
orthogonality relations
no analogue
character
conjugacy class
of group elements
character theory
subduced representation
induced representation
tensor product

W. HASSELBARTH

- disjoint union
- equivalence
- weak analogue
- no analogue
- simple G-sets are coset spaces

mark, supercharacter

conjugacy class of subgroups
- full analogue, except for orthogonality
- fuU analogue
- trivial analogue
- cartesian product.

3. SPECIFIC PROBLEMS AND APPLICATIONS

As mentioned in the introduction, many familiar objects throughout
mathematics and sciences are conveniently described in terrris of orbits
of an appropriate group acting on an appropriate set, in particular of a
group acting on a set of mappings by acting on their domain and, possibly,
on their range as well. These actions may be traced back to the products
of G-sets, discussed at the end of the preceding paragraph, as follows.

Let P = {I, 2, ... , i, ... } and L = {A, B, ... , X, ... } be finite sets. Any
mapping rp from P to L can be identified with a subset of the cartesian
product set P X L, its graph {(i, rp (i)) I i EP}. Now let a group G act on
both, P and L. Then G acts on P X L, as before, by gEG taking any pair
(i, X) E P X L into the pair of images (gi, gX). Analogously, gEG takes
any collection of pairs into the collection of image pairs. Hence, the graph
of a mapping rp,{(i, rp (i))} is transformed into another subset of P X L,
{(gi, g rp (i))}, which is in fact the graph of another mapping rp'. So we have

(**) g:rp-+rp' where rp' (gi) = grp (i), ar
equivalently rp' (i) = grp (g-l i),

and this defines an action of G on LP the set of all mappings from P to L.
Most applications refer to the particular case where G acts trivially or,
more plainly, not at all on L: gX = X for any gEG, X E L. Then the
action of G on LP reduces to
I;:~

(*) . ,where
g . rp -+ rp equivalently

rp' (gi) = rp (i), ar
rp' (i) = rp (g-l i).

As the most prominent example of this type, familiar from chemical
applications of Polyas enumeration theory, we have

i) Derivatives of a Symmetrical Parent Compound
Rere P denumerates the positions where substitution may take place

in the parent compound, and L is a collection of ligand types. Mappings
from P to L obviously represent distributions of ligands with types in L
over the sites of the molecular skeleton in question, if rp (i) = X is taken
to say that there is an X at site i. Now suppose that the skeleton has a
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non-trivial symmetry, and denote by R its (proper rotational) symmetry
group. In this setting, one readily identifies symmetry-equivalent distribu-
tions., i. e. such that are mutually transformed by proper rotations r E R,
to represent the same derivative. Evidently, symmetry operations of the
(spatially fixed) skeleton permute the distributions. Moreover both, rotations
and permutations multiply alike. So R properly acts on LP, and the orbits
of this action are in one-to-one correspondence with the derivatives of the
given parent compound, with ligands restricted to the types in L. Similarly,
the orbits of G, the full (rotation/reflection) point-symmetry group of an
achiral skeleton, correspond to either achiral derivatives or mirror image
pairs of chiral ones.

Depending on the structure of the ligands involved, there are several
possibili ties of how this group action on distributions looks like in detail.
First and foremost, a symmetry operation s acts by removing the ligands from
their original positions to other sites, that is, by permuting the positions of
the ligands: gEG takes to site gi whatever X E L originally was at site i.
H the ligands are sufficiently symmetric, this rearrangement will be the
only effect. So we have g: (i, X) I~ (gi, X), that is, an action of type (*).
Otherwise it may happen that a symmetry operation, besides moving the
ligands, also permutes their types. Improper rotations and reflections e. g.
take any chiral ligand into its mirror image - independently of its position.
So gEG takes to site gi whatever X E L originally was at site i, while
simultaneously transforming it into gX, g: (i, X) [~ (gi, gX), which is an
action of type (**). Finally, the fate of a ligand may depend on its position,
as would be the case if some ligand type had to be considered a chiral one
at certain sites and an achiral one at others. Ref.14 presents a detailed
mathematical discussion of this type of group action, based on the notion
of wreath products of permutation groups.

Another important example, perhaps, a bit less familiar within the
present context, is provided by the

ii) Graphs with a Given Number of Vertices
Here P is the collection of (unordered) pairs {i, j} of vertices i 7"= j E V,

and L = {O, I}. Mappings from P to L are readily interpreted as labeled
graphs, ii rp ({ i, j}) = 0/1 is taken to say there isn't/is an edge, connecting the
vertices i and j. Now two such labeled graphs rp, rp' are isomorphic if and
only if there is a one-to-one correspondence i ~ i' between their vertices
such that rp({i,j})=rp'({i',f}), that is, if and only ii they are mutually
transformed by a vertex permutation 11: E Sym (V) according to rp ({i, j}) =
= rp' ({ 11: (i), 11: (j)}. Thus there is a type (*)-action of the symmetric group
Sym (V) on LP, and the orbits of this action correspond to the different
unlabeled graphs on v = IV I vertices, that is, to the isomorphism classes of
labeled graphs.

This approach to describing graphs admits numerous variations. Re-
placing e. g. unordered pairs by ordered ones leads to directed graphs, with
or without loops, depending on whether the diagonal pairs (i, i) are inc1uded.
Multigraphs allow for multiple edges, hence they are obtained by enlarging
the range to L = {O, 1, 2, ... }. As a final example, graphs with coloured
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vertices correspond to the orbits of appropriate Young-subgroups of Sym (V):
the direct products of symmetric groups, living on the subsets of identically
coloured vertices in question. A comprehensive discussion of this line of
description can be found in15. The monograph" by Harary and Palmer
presents an impressive survey of the state of the art in the field of enume-
rating graphs of various types, based on the description in terms of orbits
of mappings and the artistry of the generating function method.

Despite their far-reaching similarity, both the theories of permutation
representations and of linear representations give rise to distinct characte-
ristic problems, due to their different fields of application, and of course
due to the different spaces wherein their objects live: fini te sets versus
finite-dimensional vector spaces. As far as chemistry is concerned, the theory
of groups acting as fini te sets apparently has its main applications in the
description of molecular structure. So suppose that, quite in general, we
have come up with a description in term s of orbits for the objects in some
c1ass of our interest. That is, we have established a one-to-one correspondence
between the elements of an object set O and the orbits of a group G, acting
on a set D of »descriptors«.

D
~

O

~
.~O.. .. .•

"iqure 3

Any such description gives rise to three types of problems.

i) Enumeration Problems

As the most obvious application, the number of objects in O is the same
as the number of G-orbits in D. So how many orbits are there? This question
may be refined by imposing someconstraints on the objects which have
to be transferable to the descriptors, of course.

ii) Removal of Redundancy
Evidently, any such descriptions in terms of orbits is' redundant unl ess

all the orbits are singletons. But any transversal, that is, any system of
representatives, one from each orbit, provides a redundancy-free description.
So how to construct transversals?

iii) Characterization Problems

The problem adressed here is that of characterizing the objects by means
of invariants, the latter meaning properties of descriptors that are invariant
under the group action, that is, they are constant on any orbit. The ultimate
goal here is a complete set of invariants which altogether provide distinction
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of any two orbits - analogous to collections of symptoms (hopefully) cha-
racterizing diseases.

So far, almost all applications of permutation group theory in chemistry
have been restricted to enumeration problems. The classical problem here
is to count isomers*, and the standard solution employs Polya's method or-
some variation of ito I should like to point out the refined problem of
counting isomers of fixed symmetry, comp.!" and earlier work in the mathe-
matical literature cited there.

Apparently, heterosubstitution of a symmetrical parent compound wilI
in general destroy some of its symmetry elements, thus resulting in a sub-
symmetry of the pa rent symmetry. This fact gives rise to a number of
questions, referring to a given parent compound, such as

which subsymmetries can be reached at all by substitution?
which is the number of derivatives, with ligands of given types A, B~
C, ... , and with some specified subsymmetry?
how many isomers are there, for a given gross formula AkB1Cm ... ,.
and with some specified subsymmetry?

These problems are readily translated into permutation representation
theory, starting from the description of derivatives as R-orbits of distrl-
butions. The stabilizer R; of a distribution tp is its symmetry group, and the
conjugacy class of subgroups, !Rq>, represents the symmetry of the corre-
sponding derivative. Asking for numbers of derivatives with some prescribed
symmetry thus amounts to asking for numbers of orbits with stabilizers
in some prescribed conjugacy class of subgroups. This is, however, nothing
else but the permutation representation analogue of the well-known reso-
lution problem for linear representations, that we discussed at length in the
preceding paragraph.

Turning from enumeration problems (which serve as tests as well as'
rewards for finding good translations of notions from chemistry into mathe-
matics rather than being of relevance in chemistry on their own right) to'
practical problems, we are immediately faced with the redundancy problem.
In view of computer implementation a mathematical description should'
ideally be meaningful as well as redundancy-free at the same time. Tran-
sversals of orbits meet both these conditions. As an example, following
the approach Ofll where double cosets were introduced as mathematical
analogues of isomers instead of orbits, transversals of double cosets have·
been employed in algorithmic graph constructiori'". So, given a group action
on a finite set, the problem is how to construct a transversal of the orbits.
More precisely, the problem is how to perform this in an economical manner,
because any straight forward exhaustion method (Le. selecting a transversal
while running through a complete list of elements of the set in question):
will always work, of course. This problem is currently under investigation.
There is, of course, no general answer to be expected, but some nice results,.
referring toparticular action types, are already available such as the method'
of stabilizer chains that appears to be due to Sims.l" It is a mathematical,

* In the restricted sense of substitution isomers, that is, of derivatives with.
the same Iigand occurrences.
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.adaption of the procedure that any chemist would intuitively employ, e. g.
in constructing a set of figures, representing the benzene derivatives with
some fixed gross formula. Let us e. g. take C6H3XYZ. Since all the positions
in the benzene ring are equivalent, the X may be taken to be located at
site 1, in any derivative. This choice renders 2 and 6 as well as 3 and 5
-equivalent; so there are essentially only three different choices for the
position of Y, say 2, 3 and 4. In the resulting ortho-pattern, the remaining
four positions are mutually inequivalent, thus leaving us with four different
,choices of where to put Z. The same applies to the intermediate meta-
--pattern. Finally, in the para-pattern, the pairs 2, 6 and 3, 5 keep being

-equivalent. So we may select 2 or 3 for the position of Z, thus finishing
the list of derivatives.

Turning to iii), the problem of characterizing orbits of mappings by
means of invariants appears to be new. A preliminary discussion was given
'in!". Instead of explicating the general scheme - which amounts to refining
the gross formula of derivatives to record the »contents« of various orbits
of subconfigurations of sites -- we restrict ourselves to the benzene deri-
vatives as an illustrative example, again.

Starting from the familiar three types of double substitution, the idea
is to transfer this characterization to multiple substitution by recording,
for any (unordered) pair of substituents, how often it occurs as an ortho-pair,
as a meta-pair, and as a para-pair, respectively. Thus e. g. the left hand
.compound below gives rise to the right hand collection of numbers.

TABLE II

X XX yy XY

vO: O 1 O 3
m 1 O il

X P 1 1 O
Figure 5
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It turns out that these arrays are enough to distinguish any two isomers.

So they provide a complete set of descriptors for benzene derivatives. Now
ortho/meta/para label the symmetry types of pairs of positions, that is: the
orbits of the dihedral group D6, acting on the collection of pairs {i, j} of
sites. The benzene scheme is therefore readily generalized to recording, for
n = 1, 2, ... , the contents of G-orbits of subconfigurations consisting of n
sites. These numbers constitute invariants for type (*)-actions. Immediate
questions then are whether completeness can be achieved, and for which
value of the size n. So e. g. n = 2 is enough for benzene derivatives but not
for those of (planar) cyclooctatetraene. However n = 3, i. e. the contents of
triangles, does the job in that particular case, and this appears to be true
in general for planar systems, provided that the full point-symmetry is
taken in to account. So, reaching the end of this paragraph, let us rephrase
these observations as follows.

Conjecture: The contents of triangles distinguish any two derivatives
of a planar parent compound.
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SAZETAK

Poziv na permutacijsku reprezentaciju grupa

W. HiisseLbarth

Permutacijska reprezentacija grupa odnose se na grupe koje djeluju na ko-
načne skupove permutirajući njihove elemente. Postoji vrlo razvijena teorija permu-
tacijskih reprezentacija, koja je gotovo posve nepoznata izvan matematike. Ovaj
rad donosi pregled temeljnih definicija i rezultata i pokazuje perspektivu primjena
u »kemijskoj kombinatorici«, gdje ta teorija obećava da će biti od slične upotre-
bljivosti, kao što je teorija linearnih reprezentacija u kvantnoj kemiji.




