# On Some Further Classes of Isomers Which Exhibit Topological Effect on Molecular Orbitals* 

Jahi Hoxha<br>Department of Physics, Faculty of Science, University of Kosovo, Trg Maršala Tita bb, 38000 Priština, Kosovo, Serbia, Yugoslavia,<br>Ante Graovac

Rugjer Bošković Instite, P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia
and
Oskar E. Polansky
Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-46, D-4330 Mülheim/Ruhr, F. R. Germany

Received October 21, 1985
Some further classes of isomers exibiting the Topological Effect on Molecular Orbitals (TEMO) are considered. They include two classes of hetero-substituted polyenes and three classes of substituted annulenes. The sixth class contains bridged annulenes where TEIMO is exhibited only for the related matching spectra.

## INTRODUCTION

The regularity of the molecular orbital (MO) energies arising form the different topologies of isomers is called the »Topological Effect on Molecular Orbitals (TEMO) «1. The effect has been confirmed by experimental findings ${ }^{2}$, as well as by quantum-chemical computational procedures of various levels of sophistication ${ }^{3,4}$

The already existing classes of isomers which exhibit TEMO are extended in the present paper by a few further classes. They include two classes of hetero-substituted polyenes and three classes of substituted annulenes. The sixth class contains bridged annulenes where TEMO is exhibited only for the related matching spectra.

The mathematics of TEMO is relatively simple. Different topologies of the isomers $M_{A}$ and $M_{\mathrm{B}}$ under consideration are appropriately described by the graphs A and B associated with the isomers ${ }^{5}$. The corresponding characteristic polynomials $\Phi(A ; x)$ and $\Phi(B ; x)$ are then compared. There are various classes of isomers ${ }^{1-3}$ for which the difference function, $\Delta(B, A ; x)$, satisfies:

$$
\begin{equation*}
\Delta(B, A ; x) \equiv \Phi(B ; x)-\Phi(A ; x) \geq 0 \tag{1}
\end{equation*}
$$

[^0]The above inequality implies ${ }^{1,6,7}$

$$
\begin{gather*}
x_{1}(A) \geq x_{1}(B) \geq x_{2}(B) \geq x_{2}(A) \geq \ldots \\
x_{2 \mathrm{k}-1}(A) \geq x_{2 \mathrm{k}-1}(B) \geq x_{2 \mathrm{k}}(B) \geq x_{2 \mathrm{k}}(A) \geq \ldots \tag{2}
\end{gather*}
$$

where $x_{\mathrm{j}}(A)$ and $x_{\mathrm{j}}(B), j=1,2, \ldots, N$, denote the roots of $\Phi(A ; x)$ and $\Phi(B ; x)$, respectively, i. e. the MO energies of the isomers $M_{\mathrm{A}}$ and $M_{\mathrm{B}}$ as calculated within the simple MO theory. $N$ stands for the number of conjugated centers in the considered isomer and equals the number of vertices in the associated graph.

The interlacing rule (2) is called TEMO ${ }^{1}$ and it enables predictions on the first absorption maxima, ionization potentials, etc., of the isomers $M_{\mathrm{A}}$ and $M_{B}$. In the case where the sign of $\Delta(B, A ; x)$ generally changes along the energy parameter $x$-asis, TEMO with inversion ${ }^{1}$ holds.

## HETERO-SUBSTITUTED POLYENES

A linear polyene, $\mathrm{CH}_{2}(\mathrm{CH})_{\mathrm{N}-2} \mathrm{CH}_{2}$, may be represented by the path graph, $P_{\mathrm{N}}$, with $N$ vertices. Let us introduce two heteroatoms into the polyene at the positions $i$ and $j$. Let $h_{1}$ and $h_{2}$ stand for the values of the Coulomb integral of the first and the second heteroatom, respectively. The corresponding (weighted) graph is denoted by ( $P_{\mathrm{N}} ; i, j ; h_{1}, h_{2}$ ).

Class 1. - Let $N$ be an odd number, $N=2 n-1$. Let consider the hetero--substituted polyene $M_{A}$ with the first heteroatom at the position $n$ in the middle of the polyene and with the second heteroatom at the position 1 , $1>n$. The related graph $A=\left(P_{2 n-1} ; n, 1 ; h_{1}, h_{2}\right)$ is shown in Figure 1. Here and in the further figures black a circle represents a heteroatom. Let us further consider the isomers of $M_{\mathrm{A}}$ in which the first to heteroatom is moved out of the middle position to the new position $1+p$ while the second heteroatom remains at its position 1. These isomers are represented by $B_{\mathrm{p}}=$ $=\left(P_{2 \mathrm{n}-1} ; n+p, 1 ; h_{1}, h_{2}\right), p=1,2, \ldots, 1-n-1$, and a representative is depicted in Figure 1.


The third factor on the right-hand side of eq. (3) is a nonnegative quantity. However, the parity of the second factor changes along $x$-axis and TEMO with inversions holds. The inversion points are easily calculated after the values of $1, p$ and $h_{2}$ are given and they don't depend on the length, $2 n-1$, of the considered hetero-substituted polyenes.

If the heteroatom $h_{2}$ is moved to the left side, $p<0$, of the middle position, an equation analogous to eq. (3) can be derived by using the following well-known identity:

$$
\begin{equation*}
\left(P_{-\mathrm{k}} ; x\right)=-\left(P_{\mathrm{k}-2} ; x\right) \tag{4}
\end{equation*}
$$

The same comment applies to the rest of this paper as well.
Class 2. - Let us now consider the situation where both heteroatoms are moved simultaneously by the same amount, $p$.

Let $N$ be an even number, $N=2 n$. Let us consider the hetero-substituted isomer $M_{\mathrm{A}}$ whose graph is $A=\left(P_{2 \mathrm{n}} ; n, 1 ; h_{1}, h_{2}\right)$. Let us further consider the isomers $M_{B_{\mathrm{p}}}$ of $M_{\mathrm{A}}$ which are represented by the graphs $B_{\mathrm{p}}=\left(P_{2 \mathrm{n}} ; n+p\right.$, $1+p ; h_{1}, h_{2}$ ). The difference function is rather complicated. In the special case $1=n+1$, i. e. where two heteroatoms are neighbours in $M_{\mathrm{A}}$ and $M_{\mathrm{B}_{\mathrm{p}}}$, and for both heteroatoms being of the same kind, $h_{1}=h_{2}=h$, the difference function is simplified to the following form:

$$
\begin{gather*}
\Phi\left(B_{\mathrm{p}} ; x\right)-\Phi(A ; x)=h(x-h)\left[\Phi\left(P_{\mathrm{p}-1} ; x\right)\right]^{2}  \tag{5}\\
p=1,2, \ldots, n-1
\end{gather*}
$$

The corresponding graphs are depicted in Figure 2.


Figure 2.
Eq. (5) implies that TEMO with only one inversion point $x_{\text {inversion }}=\mathrm{h}$, holds.

In the case of electron attracting heteroatoms, $h>0$, the inversion point lies in the region of the bonding MO's. Up to the inversion point the regularity (2) holds where $B$ stands for any of $B_{p}$ 's.

In the case of heteroatoms with $h<0$, the inversion point lies in the region of the anti-bonding MO's. The regularity (2) holds in the whole region of bonding MO's but the symbols $A$ and $B$ have to interchange their places because $\Delta\left(A, B_{\mathrm{p}} ; x\right) \leq 0$ for $x \geq 0$.

## SUBSTITUTED ANNULENES

An annulene, $C_{N} H_{N}$, may be represented by the cycle graph, $C_{N}$, with $N$ vertices.

Further, we consider three classes of substituted annulenes.
Class 3. - Let us represent the graph attached to the annulene $\mathrm{C}_{\mathrm{N}} \mathrm{H}_{\mathrm{N}}$ by graph $F$. The linking site of the attached graph is represented by the vertex $f$. The graph obtained by deletion of $f$ out from $F$ is denoted by $F$-f.

Let us consider a substituted annulene where two graphs $F_{1}$ and $F_{2}$ are attached at the positions $i$ and $j$, respectively. The corresponding graph is denoted by ( $C_{N} ; i, j ; F_{1}, F_{2}$ ).

Let $N$ be an even number, $N=2 n$. Let us further take: $F_{1}=F_{2}=F$. Let us consider the substituted annulene $M_{B}$ which is represented by graph $B=\left(C_{2 n} ; n, 2 n ; F, F\right)$ of Figure 3. If the graphs are attached at arbitrary positions, a series of isomers $M_{A_{1}}$ is obtained which are represented by graphs $A_{1}=\left(C_{2 \mathrm{n}} ; 1,2 n ; F, F\right), \quad l=1,2, \ldots, n-1$. A representative of the series is depicted in Figure 3.


$$
B=\left(C_{2 n} ; n, 2 n ; F, F\right)
$$

$$
A_{1}=\left(C_{2 n} ; n, 2 n ; F, F\right)
$$

Figure 3.
The difference function is non-negative for the whole series:

$$
\begin{align*}
\Phi(B ; x)-\Phi\left(A_{1} ; x\right) & =3[\Phi(F-f ; x)]^{2} \cdot\left[\Phi\left(P_{\mathrm{n}-1} ; x\right)\right]^{2}>0  \tag{6}\\
l & =1,2, \ldots, n-1
\end{align*}
$$

Consequently, TEMO without inversions (2) applies if MO energies of any of isomers $M_{A_{1}}$ are compared with MO energies of the starting isomer $M_{B}$.

Let us note that $B$ and $A_{1}$ 's together represent $n$ isomers. By using the terminology of TEIMO ${ }^{1} A_{1}, A_{3}, \ldots$, represent S-isomers of Model $2^{3}$ as they possess the planes of symmetry $\Sigma_{1}, \Sigma_{2}, \ldots$. Similarly, $A_{2}, A_{4}, \ldots$, represent S-isomers of Model $3^{3}$ as they possess the planes of symmetry $\sigma_{1}, \sigma_{2}, \ldots$, which
pass through a pair of vertices. Altogether, there are ( $n-1$ ) S-isomers, [ $n / 2$ ] of them are of $\Sigma$-type and $\left[\frac{n-1}{2}\right]$ of $\sigma$-type. B represents T-isomer ${ }^{1}$ with regard to any of $(n-1)$ S-isomers. The situation is clarified in Figure 4.


B

$A_{1}$

$A_{2}$

Figure 4.
Class 4. - Let us consider substituted annulenes whose graphs are shown in Figure 5. Let further $N$ be an even number, $N=2 n$.


Figure 5.
The difference function for the isomer represented by B and for S isomer represented by some of $A_{1}$ 's is given by:

$$
\begin{gather*}
\Phi(B ; x)-\Phi\left(A_{1} ; x\right)=h \cdot \Phi(F-f ; x) \cdot\left[\Phi\left(P_{\mathrm{n}-1} ; x\right)\right]^{2}  \tag{7}\\
l=1,2, \ldots, n-1
\end{gather*}
$$

Consequently, TEMO with inversions holds where the inversion points are the roots of $\Phi(F-f ; x)$ which is easy to calculate after the attached graph represented by $F$ is specified.

Class 5. - The isomers of this class can be understood as a special case of Class 3 isomers. They contain two, generally different, heteroatoms with the values $h_{1}$ and $h_{2}$ associated with them. $N$ is as before an even number, $N=2 n$. The isomers are represented by graphs which are depicted in Figure 6.


Figure 6.
The difference function is easy to calculate and is given by

$$
\begin{gather*}
\Phi(B ; x)-\Phi\left(A_{1} ; x\right)=h_{1} h_{2}\left[\Phi\left(P_{\mathrm{n}-1} ; x\right)\right]^{2}  \tag{8}\\
l=1,2, \ldots, n-1
\end{gather*}
$$

As a result, TEMO as is given by (2) holds if both $h_{1}$ and $h_{2}$ are of the same parity. If $h_{1}$ and $h_{2}$ are of opposite parity, TEMO again holds but in (2) one has to interchange the symbols $B$ and $A$. Obviously, $A$ stands for any of $A_{1}$ 's.

## MATCHING SPECTRA OF BRIDGED ANNULENES

The matching polynomial $\alpha(G ; x)$ of graph $G$ is a well studied combinatorial object ${ }^{8}$. The collection of its roots, $x_{1}{ }^{(\mathrm{m})}(G), x_{2}{ }^{(\mathrm{m})}(G), \ldots, x_{\mathrm{N}}{ }^{(\mathrm{M})}(G)$, where $N$ is the number of vertices in $G$, defines the matching spectrum of $G$. The matching spectra of molecular graphs have found applications in the theory of aromaticity ${ }^{9,10}$.

The recursive formula ${ }^{8,9}$ for the evaluation of $\alpha(G ; x)$ is of a simpler structure than the recursive formula ${ }^{5}$ for the evaluation of $\Phi(G ; x)$. Therefore, the matching spectra exhibit an analogon of TEMO for wider classes of isomers than the MO energies. We present now such a class.
Class 6. - The isomers of this class are bridged annulenes. Let $N$ be an even number, $N=2 n$. If the bridge is established between positions $n$ and $l$ we denote the corresponding graph by $B_{1}, l=1,2, \ldots, n-1$. For $l=2 n$, we write $A=B_{1}$. Graph $A$ and a representative of the series of $B_{1}$ 's are depicted in Figure 7.


Figure 7.
By comparing the matching polynomial of $A$ with the matching polynomial of any of $B_{1}$ 's the following result is obtained:

$$
\begin{equation*}
\alpha\left(B_{1} ; x\right)-\alpha(A ; x)=\left[\alpha\left(P_{1-1} ; x\right)\right]^{2} \geq 0 \tag{9}
\end{equation*}
$$

where: $\alpha\left(P_{\mathrm{k}} ; x\right) \equiv \Phi\left(P_{\mathrm{k}} ; x\right)$. Inequality (9) implies that the following analogon of TEMO (2):

$$
\begin{gather*}
x_{1}^{(m)}(A) \geq x_{1}^{(m)}(B) \geq x_{2}^{(m)}(B) \geq x_{2}^{(m)}(A) \geq \ldots \geq \\
\geq x_{2 \mathrm{k}-1}{ }^{(\mathrm{m})}(A) \geq x_{2 \mathrm{k}-1}{ }^{(\mathrm{m})}(B) \geq x_{2 \mathrm{k}}{ }^{(\mathrm{m})}(B) \geq x_{2 \mathrm{k}}{ }^{(\mathrm{m})}(A) \geq \ldots \tag{10}
\end{gather*}
$$

holds where $B$ stands for any of $B_{1}, l=1,2, \ldots, n-1$.
Acknowledgement. - The work was supported in part by Self-Managing Authority for Science of Croatia, Yugoslavia, and also by the National Science Foundation (Grant No F6F 006Y).

## REFERENCES

1. O. E. Polansky and M. Zander, J. Mol. Struct. 84 (1982) 361.
2. O. E. Polansky, J. Mol. Struct. 113 (1984) 281.
3. A. Graovac and O. E. Polansky, Croat. Chem. Acta 57 (1984) 1595.
4. I. Motoc, J. N. Silvermann, O. E. Polansky, and Y. Olbrich, Theoret. Chim. Acta 67 (1985) 63.
5. For the use of graph theory in chemistry see, e.g. A. Graovac, I. Gutman, and N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Springer-Verlag, Berlin, 1977.
6. I. Gutman, A. Graovac, and O. E. Polansky, Chem. Phys. Lett. 116 (1985) 206.
7. A. Graovac, I. Gutman, and O. E. Polansky, J. Chem. Soc., Faraday Trans. 2, 81 (1985).
8. C. D. Godsil and I. Gutman, J. Graph Theory 5 (1981) 137.
9. J. Aihara, J. Am. Chem. Soc. 98 (1976) 2750.
10. I. Gutman, M. Milun, and N. Trinajstić, J. Am. Chem. Soc. 99 (1977) 1692.

## SAZ̆ETAK

O nekim daljnim klasama izomera koji pokazuju topološki efekt na molekularne orbitale

## J. Hoxha, A. Graovac i O. E. Polansky

Razmatrane su neke daljnje klase izomera koji pokazuju topološki efekt na molekularne orbitale (TEMO). One se sastoje od dviju klasa heterosupstituiranih poliena i tri klase supstituiranih anulena. Šestu klasu čine premošteni anuleni kod kojih TEMO vrijedi samo za spektre sparivanja.


[^0]:    * Presented at The International Symposium on Applications of Mathematical Concepts in Chemistry, Dubrovnik, September 2-5, 1985.

