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The conjugated circuits model is used to predict the aromatic
stabilities of polyacenes and helicenes. Helicenes are predicted to
be always more stable than the corresponding polyacenes. This is
supported by the available experimental findings.

INTRODUCTION

Polyacenes and helicenes represent two distinct c1asses of isomeric
benzenoid hydrocarbons with a common molecular formula CNH(N+6)/2'Stru-
cturally they differ in the mode of annelation: polyacenes are linearly (para)
annelated benzenoids which possess translational symmetry, whilst helicenes
are angularly (ortho) annelated benzenoids which possess helical symmetry.
Consequently, they differ considerably in their physical, chemical, and bio-
logical properties.l-š Chemistry of polyacenes and helicenes is still very
much of interest to synthetic chemists, environmental chemists, cancer
research chemists, theoretical chemists, analytical chemists, structural che-
mists, etc.3-22

We wish to rep ort the application of the conjugated circuits mode123,24
to polyacenes and helicenes, and to predict their aromatic stabilities. The
conjugated circuits model has been rather successfully applied to a variety
of conjugated hydrocarbons,23,2S-28 their ions,29-31 and even to heterocyclic
systems.32,33 This model has already been applied to the first four poly-
acenes." Here we will rep ort results for the higher polyacenes. In addition,
the polyacenes will be used in this work for the comparison with helicenes.
Besides we will produce some general results valid for both c1asses, and
some of these results will also be novel for polyacenes.

* Part of this work has been reported at Symposium on Chemical Applications
of Topology and Graph Theory (Columbia, SC, March 25-26, 1985).

+ Permanent address: The Rugjer Bošković Institute, P.O.B. 1016, 41001 Zagreb,
Croatia, Yugoslavia
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THE CONJUGATED CIRCUITS MODEL

The conjugated circuits model has been introduced for studying conjugation
and aromaticity in polycyc1ic conjugated molecules. Graph theoretical ana-
lysis of Kekulć valence structures revealed that each Kekule structure can
be parti tioned into several conjugated circuits.š" Conjugated circuits have
been defined as those circuits within individual Kekule valence structure
in which there is a regular alternation of a formal carbon-carbon single
and double bonds. Thus, conjugated circuits are necessarily of even length.

The circuit decomposition of individual Kekule structures of polyacenes
and helicenes leads to (4n + 2) (n = integer) linearly independent, linearly
đependent, and disconnected conjugated circuits. Linearly independent cir-

cuits are those that cannot be represented by a superposition of conjugated
circuits of smaller size. As has been discussed elsewhere'" the total number
of all conjugated circuits with in asingle Kekule valence structure is
exactly K-l, where K is the number of Kekule valence structures. There-
fore, the total count of all conjugated circuits belonging to a given benzenoid
hydrocarbon is given by K . (K - 1). The symbols Rn (n = I, 2, ... ) are used
for conjugated circuits (rings) of size 4n + 2.

We will illustrate the above by an example. In Figure 1 we present
the Kekule structures of 3,4-benzophenanthrene.

WWw
ABCWww

Figure 1. Kekule valence structures of 3,4-benzophenanthrene.

In Table I we give the count of all conjugated circuits for the corre-
sponding Kekulć structures of 3,4-benzophenanthrene.
In Figure 2 are depicted all conjugated circuits belonging to the Kekule
structure F of 3,4-benzophenanthrene (see Figure 1).

For calculating the resonance energies, RE, of polyacenes and helicenes
we will use linearly independent and linearly dependent conjugated circuits.
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TABLE I

The Conjugated Circuits Count for 3,4-Benzophenanthrene. The Corresponding
Kekule Structures are Given in Figure 1.

Kekule
structures Conjugated circuits count

A

B
C
D

E

F
G
H

4Rl + 3 (R1 . R1)
3R1 + R2 + 2 (R1Rl) + (R1R2)
3R1 + R2 + 2 (R1R1) + (RIR2)
2R1 + 2R2 + ER1Rt) + 2(R1R2)
2R1 + 2R2 + R3 + (R1R1) + (R1R2)
2R1 + R2 + R3 + R4 + (R1R1) + (R1R2)
2R1 + R2 + R3 + R4 + (R1R1) + (R1R2)
2R1 + 2R2 + R3 + (R1R1) + (R1R2)

Total count:

"3 R4 R1Rl

W
R1R2

Figure 2. Conjugated circuits of the Kekule structure F of 3,4-benzophenanthrene
(see Figure 1.).

The expression for the molecular resonance energy may be obtained
by adding the results for individual Kekulć valence structures and dividing
the total by K,

1
RE= -~IR IRK n n

n
(1)

where IRn I represents the number of Rn circuits for a given value of n. Only
the first four members of the Rn series were previously considered.P The
following values (based on the work by Dewar and de Llano'" who carried
out SCF "lt-MORE calculations for a number of polycyclic conjugated hydro-
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carbons making thus possible to determine the values of Rn)23 are adopted
for the parameters Rn:

Rl = 0.869 eV

R2 = 0.246 eV

R3 = 0.100 eV

R4 = 0.041 eV

With these values RE of 3,4-benzophenanthrene is given by,

1
RE(3,4-benzophenanthrene)= - (20R1 + 10R2 + 4R3 + 2R4) = 2.09 eV (2)

8

In the order to avoid the size effect, the RE is normalized,

RE
NRE=N (3)

where NRE stands for RE per 1t electron, whilst N is the number of 1t

electrons in the conjugated molecule.
We will also give for each molecule studied the percentage of its

benzene character, which may be estimated by means of the following
formula,

NRE (molecule)
ofo = ·100NRE (benzene)

This is done so because some people'" believe that the only truly aromatic
compound is benz ene. The above is a measure of the benzene character
of a given polyacene or helicene. It may also serve as a finer classification
within an isomeric class of aromatic molecules.

We will calculate REs of polyacenes and helicenes according to the
following general scheme consisting of four steps:

(1) Enumeration and generation of Kekule structures
(2) Enumeration of conjugated circuits
(3) Setting up the RE expression
(4) Numerical work.

(4)

ENUMERATION OF KEKULE STRUCTURES FOR POLYACENES AND HELI CENES

Since both polyacenes and helicenes possess regular structures with the
same repeating unit, explicit formulae for the enumeration of their Kekule
structures may be given.

(a) Polyacenes
K=H+l ~

where K and H are, respectively, the number of Kekule structures and the
number of rings of a given polyacene. Therefore, the Kekulć numbers for
polyacenes represent a set of natural numbers starting with K = 1 for a
hypothetical benzenoid hydrocarbon with H = O. The above formula was
first obtained by Gordon and Davison.š?
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(b) Helicenes
H = 2,3,4, ... (6)

(7,

(8)

Ko = 1 (by definition)

Kl = K (benzene) = 2

where K and H are, respectively, the number of Kekule structures and the
number of rings of a given helicene.

The inspection of Kekule numbers for helicenes (2, 3, 5, 8, 13, 21, 34,
55, ... ) reveals that these numbers belong to the Fibonacci series (1, 1, 2, 3.
5, 8, 13, 21, 34, 55, 89, 144, ... ).38 The Fibonacci numbers Fj can be generated
by the formula Fj = Fj_1 + Fj_2• Thus, formula (6) may serve formally as a
generator for the Fibonacci numbers assuming (7) and K-l = 1. Similar
observations for phenanthrene series have been made by Randić'? and
Cyvin'", and by Balaban and Tomescu'" for any isoarithmic catafusene system.

Generation of individual Kekule structures may be carried out by
several procedures.w" In the present work we generated the Kekulć stru-
ctures of polyacenes and helicenes by hand starting from the simplest mole-
cule in the set and gradually deriving Kekule structures of more :complex
molecules from the known set of Kekule structures of simpler molecules.
However, we needed Kekule structures explicitly only for the first few
molecules in the series in order to check the regularity of the pattern which
also emerges in the conjugated circuits count.

THE CONJUGATED CIRCUITS COUNT FOR POLYACENES AND HELICENES

The canjugated circuits for polyacenes may be enumerated by means:
of the following counting formula,"

IRn 1= 2 [H-(n-l)]; n = 1,2,3,4 (7}

where the symbols have their previous meaning. The above formula reveals
that the number of conjugated clrcuits in the line ar polyacenes is dependent
only on the number of the rings in the molecule. As an example we will
apply the above formula to pentacene (see Figure 3).

H o 5

pentacene

I Rl I = 25 = 10, I R21 = 2 (5 -1) = 8, I Rsl = 2 (5 - 2) = 9, I R41 = 2 (5 - 3) = 4
Total count: 10 Rl + 8 R2 + 6 Rs + 4 R4

RE = (1/8) (10 Rl + 8 R2 + 6 R3 + 4 R4) = 1.43 eV
Figure 3. Application of the polyacene circuits counting formula to pentacene.

In the case of the circuit s count for helicenes we found that it is enough
to know the number of R1-circuits, the others (R2, R3, R4) are related ta
them according to the following set of rules,

I R2 (H) I := I Rl (H - 1) I
! R3 (H) I = I R2 (H - 1) I = I Rl (H - 2) I

I R4 (H) I = I R3 (H - 1) I = I R2 (H - 2) I = I Rl (H - 3) I

(9)

(10)

(11)
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where H is the number of hexagons in the [H]-helicene. The RI-circuits
may be enumerated according the following recursive formulae,

IRI (H) I == IRI (H - 1) I + IRI (H- 2) I + 2K (H- 2); H == 2, 3,... (12)

where IRI (H - 1) I and IRI (H - 2) I are, respectively, the RI-circuits counts
for [H - 1] helicene and [H - 2] helicene, whilst K (H - 2) is the Kekule
.structure count for the [H - 2] helicene. Formally the RI for the [O]helicene
is 1 by definition and for [l]helicene (benzene) is 2. R2, R3 and R4 for
[O]helicene and [l]helicene are all zero, R3 and R4 are zero for [2]helicene,
whilst R4 is zero for [3]helicene, respectively. Similar formulae for the
-circuits count in helicenes have also been derived by Balaban and 'I'omescu.t=

In Table II we give the circuits counts for [N]helicenes up to N = 8.

TABLE II

The Conjugated Circuits Count for HeLicenes

[H]-helicene K IR11 IR21

1 2 2
2 3 4 2
3 5 10 4
4 8 20 10
5 13 40 20
6 21 76 40
7 34 142 76
8 55 260 142

RESULTS AND DISCUSSlPN

2
4 2

10 4
20 10
40 20
76 40

Diagrams of studied polyacenes and helicenes are given in Figure 4.
RE, of polyacenes, except for the first four which were used to obtain the
'parametric valu es for Rh R2, R3, and R4, are calculated by means of the
-simple formula,

1RE ([H] polyacene) == -- {2.512H - 1.138}
H+ 1

where H is the number of hexagons in the polyacene.
The REs of helicenes have been calculated using the following formula:

(13)

'1
RE ([H]helicene) == {1.115Rl (H -1) +

K(H-1) + K(H-2)

+ 0.9691Rl (H- 2) 1+ 0.0411Rl (H- 3) 1+ 1.738K(H-2)} (14)

where the symbols have their previous meaning. Both expressions (13)
and (14) have been derived from (1) by introducing the appropriate terms
for K (H), IRn (H) I, and Rn(H).

Calculated resonance energies of polyacenes and helicenes are given
.in Table III.
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Figure 4. Diagrams of considered helicenes and polyacenes.
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TABLE III

Resonance Energies of Some Helicenes and Polyacenes

Reference
Compound" Resonance energy express ion RE NRE

% to the
(eV) (eV) preparative

work

1 2R1/2 0.869 0.145 100 b
2 (4R1 + 2R2)/3 1.323 0.133 91 c
3 (10R1 + 4R2 + Rs)/5 1.975 0.141 97 d
4 (6Rt + 4R2 + 2Rs)/4 1.600 0.114 79 e
5 (20R1 + 10R2 + 4Rs + 2R4)/8 2.54 0.141 80 f
6 (8R1 + 6R2 + 4Rs + 2R4)/5 1.78 0.099 68 g
7 (40R1 + 20R2 + 8Rs + 4R4)/13 3.126 0.142 98 h
8 (10R1 + 8~2 + 6Rs + 4R4)/6 1.904 0.087 60 i
9 (76R1 + 40R2 + 20R3 + lOR4)/21 3.728 0.143 99 j
10 (12R1 + 10R2 + 8R3 + 6R4)/7 1.991 0.076 53 k
11 (142R1 + 76R2 + 40R3 + 20R4)/34 4.321 0.144 99 1
12 (14R1 + 12R2 + 10R3 + 8R4)/8 2.056 0.069 47 m
13 (260R1 + 142R2 + 76R3 + 40R4)/55 4.911 0.144 99 n
14 (16R1 + 14R2 + 12Rs + 10R4)/9 2.106 0.062 43 o

a. Numbers correspond to diagrams in Figure 4. Odd numbered compounds 3 and
higher are the helicenes.

b. R. W i Il s t ii t ter and D. Ha t t, Ber. 45 (1912) 1464.
c. B. Rad z i s z e w s k i, Ber. 9 (1878) 261.
d. C. G 1ase r, Ber. 5 (1872) 982.
e. H. Lim p ric h t, Liebigs Ann. 139 (1866) 308.
f. C. L. He w e t t, J. Chem. Soc. (1936) 596.
g. S. Ga b rie 1 and A. Mi c h a e 1, Ber. 10 (1877) 1559; ibid 10 (1877) 2207; ibicl

11 (1878) 1682.
h. R. W e i t zen b ii c k and A. K 1i n g e r, Monat. Chem. 39 (1918) 315.
i. E. Cl a r and F. J o h n, Ber. 62 (1929) 3027; ibid 63 (1930) 2967; ibid 64 (1931)

981.
j. M. S. New man and D. Led n i cer, J. Amer. Chem. Soc. 78 (1956) 4765.
k. E. Cl a r, Ber. 72 (1939) 1817.
1. M. F 1 a m man g - Bar b i e u x, J. N a s i e 1 s k i, and R. H. Mar t i n, Te-

trahedron Lett. (1967) 743.
m. E. Cl a r, Ber, 75 (1942) 1330.
n. R. H. Martin, M. Flammang-Barbieux, J. P. Cosyn, and M.

G e 1b c k e, Tetrahedron Lett. (1968) 3507.
o. unknown.

RE values for polyacenes increase with the size of the molecule. This
result is in agreement with REs obtained from other theoretical models of
aromaticity.v"?" However, the increase of RE values with the size of poly-
ac enes gradually slows down and will eventually reach the asymptotic value
of =2.512. This value was obtained in the following way,

lim RE = lim (2.512H - 1.138)/H + 1 (15)
H-+oo ~OO

Since at H ~ 00, 2.512 H » 1.138 and H » 1,
lim RE == 2.512
H...•.co

(16)

The NRE valu es of polyacenes steadily decrease from benzene to octa-
cene. The asymptotic expression for NRE is,

lim NRE == 2.512 .
N...•.co N

(17)
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It is obtained by considering the RE expression (13) and the relationship
between N and H,

1
H = "4 (N-2) (18)

The RE of (13) expressed in terms of number of atoms N instead of the
number of rings H in a polyacene is given by,

1
RE = N + 2 {2.512 N - 9.576}. (19)

The percentage of the benzene character rapidly decreases and thus
follows the decrease in the stability of polyacenes with the increase in the
size.'

Higher polyacenes easily undergo addition reactions for example with
maleic anhydride.V" Thus, pentacene undergoes addition reactions at the 6
and 13 positions to yield 6,13-dihydropentacene derivatives which now eon-
tain two naphthalene subunits:

~I~ ~ 6""", ""'" ""'" _a_d_di_ti_on_•.•••._ ~

~ reaction ~~
13 15

It appears that the formation of two new o" bonds in addition to the increased
NRE (from 0.087 in pentacene to 0.266 in 6,13-dihydropentacene) of the
remaining 7t electrons is more than enough to offset the loss of two 7t bonds

In diagrams 15-18 we give single Kekulć structures for the subunits
but the calculations are based on all Kekule valence structures of the cor-
responding polyacenes.

Hexacene is the most reactive benzenoid which can be obtained in a pure
state.' It must be kept in vacuum. Hexacene easily undergoes additional
reactions producing 6,15-dihydrohexacene derivatives which contain as subu-
nits naphthalene (NRE = 0.133) and anthracene (NRE = 0.114):

~additiOn •• ~

~reaction ~

15 16

6,15-dihydrohexacene derivative should be considerably more stable than
the parent structure judging from the comparison of their NRE values: 0.076
(10) vs. 0.133+ 0.114 (16).

The next member of the polyacene family heptacene is so reactive that
is not possible to obtain it in a pure state.' The 7,16-dihydroheptacene deri-
vative is much more stable structure than the parent compound.

Comparison of NRE valu es (0.069 (12) vs. 0.114+ 0.114 (17)) again favours
the 7,16-dihydroheptacene derivative.
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The last polyacene considered here is octacene. This benzenoid hydro-
carbon is unknown. All synthetic efforts to make it have failed, presumably
because of its extreme reactivity. In this case again NRE valu es favour the
8,17-dihydrooctacene derivative over the parent hydrocarbon: (0.062 (9) vs.
0.114+ 0.099 (18))

The higher members of the polyacene series: nonacene, decacene, unde-
cacene etc. would have the corresponding dihydro-derivatives so reactive
that even these structures could not be obtained. From all the evidence
.that exists in the literature it follows that the polyacenes represent a class
of aromatic molecules for which the thermodynamic stability gradually
diminishes with increasing size while reactivity (e. g., addition reactions)
increases dramatically. This is so because the aromaticity does not neces-
sarily also enforce a great inertness to reactivity. Thus, the NRE value
of octacene is equal to 430/0of the NRE value of benzene, whilst the frontier
orbitals (HOMO-LUMO = tl) separation in octacene equals only 11010of that
in be"'~.ene (see Figure 5).

0.10

04

06 1.00

02

(a) ! (b)

NRE
6.

0.15 2.00 01
OI

02

04
OB

06
010

012
014

OB
010012

014

0.05L--'--'---'_-'----'---'-_'--'- o.ooL--'---'---.J'--'--'---'--'----'----

H- H-

Figure 5. (a) NRE vs. H and (b) t1 = HOMO - LUMO VS. H for polyacenes. Num-
bers correspond to diagrams in Figure 4.

The preparative problems with polyacenes are evidently due to high reacti-
vity of these compounds.

The structure-resonance theory of Herndon.šš- which is equivalent to
the conjugated circuits approach,50b,50chas already been carried out for the
polyacenes.w- the results obtained are, of course, comparable to ours.

The situation is quite different with helicenes. Helicenes are predicted
to be of high aromatic stability. The aromatic stability is so high in heli-
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cenes (almost, according to the NRE criterion, equal to that of benzene)
that the considerable steric interactions pushing the overlapping terminal
rings apart" cannot harm the molecule (although in the higher systems this
may become an important destabilizing contribution to the energetics of
the helicene system). A given helicene in comparison with the corresponding
isomeric polyacene is always amore stable system (see Table IV).

TABLE IV

Difference in RE and NRE Valu es Between Isomeric Polyacenes and Helicenes

Helicene - polyacene !'>.RE !'>.NRE

3-4 0.375 0.027
5-6 0.76 0.042
7-8 1.222 0.055
9-10 1.737 0.067

11-12 2.265 0.075
13-14 2.805 0.082

More generally, the benzenoid systems with ortho-annelated rings are always
more stable than the corresponding systems with para-annelated rings. Thus,
it is experimentally established! that phenanthrene is more stable than
anthracene, 3.4-benzophenanthrene than tetracene, and 3.4,5.6-dibenzophe-
nanthrene than pentacene, respectively. The conjugated circuits model is
fully in accordance with this observation.

NRE valu es (and the percentage of the benzene character) indicate that the
helicenes remain rather highly aromatic with the increase in the size. Since
the polyacenes become less and less aromatic with the increase in the size,
the difference in RE (and NRE) between helicenes and polyacenes becomes
larger and larger (see Table IV). The complete series of helicenes through
[14]helicene has been synthesized. Further progress appears to be .limited by
the patience of the investigators rather than the stability of the product.

Several double helicenes are known.51,52 Two examples of double helice-
nes are given below.

19 20

We can immediately assign to both of them their Kekule number, which is
377. The total count of conjugated circuits for them is enormous, i. e. 141,752.
This count includes Rn circuits with n> 4 and all other possibilities. Howe-
ver, we ca1culated their. REs by expression (14). Since both structures have
the same circuits count and they have the same (and very high) value of RE'
(7.27) and NRE (0.145), respectively.
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Finally we point out that there is some similarity between this study
and the work by Seitz et al.53 where there is included a comparison of poly-
acenes and »polyphenanthrenes«. (This later family is that of the sin gle-
-chain catafusenes with phenanthrene twists in alternating directions, rather
than in the same directions as for helicenes.) With in the approximations
used the helicenes and polyphenanthrenes have the same RE's. The quali-
tative conclusions concerning the RE's per electron are much the same,
though in place of the conjugated circuits approach the related Pauling-
-Wheland resonance theory is used.54,55
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SAZETAK

o aromatiekoj stabilnosti poliacena i helicena

M. Randic, B. M. Gimarc i N. Trinajstic

Model konjugiranih krugova upotrijebljen je za predvidanje aromaticke stabil-
nosti poliacena i helicena. Predvideno je da su heliceni uvijek stabilniji od odgovara-
[ucih policena. To je predvidanje poduprto postojecim eksperimentalnim rezultatima,




