Asymmetric Chemical Synthesis of (R)- and (S)-Citramalate in High Enantiomeric Purity*

Stephen V. Frye and Ernest L. Eliel*
W. R. Kenan, Jr. Laboratories, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A.

Received July 7, 1985

Both enantiomers of dimethyl 2-acetylcitramalate have been asymmetrically synthesized in over 96% enantiomeric excess and good overall chemical yield (50%) from 2-keto-1,3-oxathianes 1a and 1b.

Citramalic acid, the product of enzymatic addition of water to mesaconic and citraconic acid was discovered, its structure determined, and a method for its preparation described almost one hundred years ago. However, it was not until 1965, when research on the stereochemistry of the tricarboxylic acid cycle was under way, that the absolute configuration was determined by correlation of (+)-citramalic acid with (S)-(+) mevalolactone. Optically active citramalic acid has been available through resolution and enzymatic synthesis for some time and recently a number of asymmetric chemical syntheses have appeared, of which only two have been reported to lead to material of acceptable enantiomeric purity. The recent use of citramalic acid as a chiral synthon in prostaglandin synthesis and the lack of a chemical route to highly enantiomerically pure citramalic acid of either configuration provided the impetus for the present work.

We here report the details of an asymmetric synthesis which produces either isomer of dimethyl 2-acetoxyctiramalate in over 96% enantiomeric excess from optically pure 2-keto-oxathianes 1a and 1b (Scheme 1). The 1,3-oxathiane backbone used as a chiral adjuvant is available in enantiomerically pure form from pulegone and has been used in our laboratories to make a variety of enantiomerically pure compounds. Interestingly, the use of 2a as an intermediate in the synthesis of both isomers of mevalolactone provides a further correlation of the absolute configuration of citramalic acid with that of mevalolactone.

The key step in the present asymmetric synthesis is the highly diastereoselective addition of a Grignard reagent to ketones 1a and 1b. These additions proceed in high yield and ca. 100% diastereomeric excess to give 2a and 2b which were cleaved, oxidized, treated with CH₃N₂, and acetylated to give enantiomers 3a and 3b. It was discovered that under the previously developed acetylation conditions for tertiary alcohols the present compounds underwent

* Dedicated to Professor Mihailo Lj. Mihailović on the occasion of his 60th birthday.
some racemization. This problem was minimized by lowering the reaction temperature and using one equivalent of 4-dimethylaminopyridine (DMAP). The racemization of these alcohols may occur through formation of a resonance stabilized α-ketocarbocation.

With 3a and 3b in hand it was necessary only to oxidize the phenyl ring to -COOH following the method of Sharpless to complete the synthesis. The oxidation required somewhat milder conditions than employed in our synthesis of mevalolactone, presumably because of potential cleavage of the α-acetoxy-carboxy bond at elevated temperatures in the presence of RuO₄. Treatment of the acids produced with CH₂N₂ gave dimethyl (R)-(+) and (S)-(−)-2-acetoxycitramalate in 50% overall yield from ketones 1a and 1b, respectively. A chiral shift experiment using Eu(hfc)₃ showed the citramalates to be of 96.6 and 97.2% e.e. respectively.

EXPERIMENTAL

Proton and carbon-13 NMR spectra were recorded on a Bruker WM-250 (250 MHz or 62.89 MHz) spectrometer equipped with an Aspect 2000 computer. Chemical shifts are expressed as parts per million downfield from internal tetramethylsilane.
ASYMMETRIC SYNTHESIS OF CITRAMALATES

IR spectra were obtained as neat liquid films between sodium chloride plates or as dilute (1–5%) solutions in 0.5 mm sodium chloride cavity cells on a Beckman 4250 spectrometer and were calibrated with the 1601 cm⁻¹ band of polystyrene. Intensities are reported as a s (strong), m (medium), w (weak), and b (broad).

Optical rotations were measured on a Perkin-Elmer 141 polarimeter equipped with sodium and mercury light sources by using a 1 dm thermostated cell; reported temperatures are uncorrected.

Melting points were observed on an Electrothermal melting point apparatus and are uncorrected.

Acyloxathiane 1a

To optically pure oxathiane¹⁴ (1 g, 5 mmol) in absolute THF (10 mL) at −78 °C under N₂ was added, dropwise, 1.6 M n-BuLi (3.25 mL, 5.2 mmol) in hexane. After being stirred 3 min the solution was allowed to warm to 0 °C and was immediately recooled to −78 °C. Acetaldehyde (440 mg, 10 mmol) in THF (5 mL) was then added dropwise over 1 h. Stirring was continued at −78 °C for 2 h, then the solution was allowed to stand overnight at −25 °C. Water (1 mL) and saturated NH₄Cl (1 mL) were added, the layers separated, and the organic layers dried (MgSO₄) and concentrated to give a clear oil (1.21 g, 100% crude). Next, to a cold (−78 °C) solution of dry Me₂SO (450 mg, 5.75 mmol) in dry CH₂Cl₂ (5 mL) under N₂ was added, dropwise, TFAA (1.20 g, 5.70 mmol) in dry CH₂Cl₂ (7 mL) and the resulting solution stirred for 0.5 h. The crude carbinol obtained above was dissolved in dry CH₂Cl₂ (10 mL), added dropwise to the oxidant solution, the reaction stirred for 2 h; then triethylamine (1.21 g, 12 mmol) was added and the solution allowed to warm to 0 °C. It was then poured into 5% aqueous HCl (50 mL), shaken thoroughly, the organic layer washed with saturated NaHCO₃ (20 mL), dried (MgSO₄), concentrated, and flash chromatographed (8% EtOAc/hexane) to give a clear oil (970 mg, 80%) which crystallized on standing. Recrystallization from EtOH/pentane provided an analytical sample: mp 45.0–45.5 °C; [α]⁺₂⁰ + 91.7° (c 3.05, 95% EtOH).

Anal. C₁₃H₂₂O₂S (242.38) calc'd.: C 64.42; H 9.15; S 13.23%
found: C 64.60; H 9.34; S 13.20%

¹H NMR (CDCl₃): 5.44 (s, 1H), 3.42 (m, 1H), 2.28 (s, CH₃), and others.

¹³C NMR (CDCl₃): 203.4, 82.8, 76.9, 50.4, 43.9, 41.6, 34.7, 31.4, 29.4, 25.6, 24.3, 22.5, 22.1.

IR (CH₂Cl₂) cm⁻¹: 2920, 2860, 1735, 1354, 1146, 1090, 1015.

Carbinol 2a

To magnesium turnings (100 mg, 4 mmol) in absolute ether (2 mL) at 0 °C under N₂ was added, dropwise, benzyl bromide (340 mg, 2 mmol) in ether (3 mL). This mixture was sonicated for 0.5 h and then added via a double-ended needle to a cold (−78 °C) solution of acyloxathiane 1 (100 mg, 0.4 mmol) in absolute THF (10 mL) under N₂. The resulting solution was stirred overnight and allowed to warm to room temperature at which time H₂O (5 mL) and saturated NH₄Cl (5 mL) were added and the mixture stirred until two clear layers formed. The organic layer was washed with brine (15 mL), the combined aqueous layers were extracted with ether (20 mL), and the combined organic solution dried (MgSO₄) and concentrated, giving 2a as an oil, 130 mg (97%). Distillation (Kugelrohr, bp ca. 200 °C/0.1 mm) gave a sample for elemental analysis.

Anal. C₂₀H₃₀O₂S (334.52) calc'd.: C 71.81; H 9.04%
found: C 71.63; H 9.09%

¹H NMR (CDCl₃): 7.23 (m, 5H), 4.61 (s, 1H), 3.28 (dt, J = 4, 11 Hz, 1H), 2.90 (d, J = 13 Hz, 1H), 2.81 (d, J = 13 Hz, 1H), 2.66 (s, 1H), 1.29 (s, CH₃), 1.26 (s, CH₃), 1.23 (s, CH₃), 0.91 (d, J = 6 Hz, 3H), and others.

¹³C NMR (CDCl₃): 136.9, 130.6, 127.6, 126.2, 83.9, 77.3, 74.1, 50.8, 44.3, 43.0, 41.6, 34.6, 31.3, 29.7, 24.2, 23.5, 22.6, 22.0.

Comparison with the spectra (¹³C and ¹H NMR) of the epimeric carbinol 2b indicated no diastereomeric impurities in this compound.
Carbinol 2b

This compound was prepared in similar fashion to 2a starting from 2-lithio-oxathiane and phenylacetaldehyde. Swern oxidation of the resulting carbinols and addition of methylmagnesium bromide to the ketone gave 2b as a clear, viscous oil. This epimer is more polar than 2a (the two diastereomers are easily separable on TLC) and displays somewhat different spectra.

1H NMR (CDCl$_3$): δ 7.36 (m, 5H), 4.75 (s, 1H), 3.37 (dt, $J = 4, 11$ Hz, 1H), 2.97 (d, $J = 13$ Hz, 1H), 2.93 (d, $J = 13$ Hz, 1H), 2.26 (s, 1H), 1.37 (s, CH$_3$), 1.30 (s, CH$_3$), 1.17 (s, CH$_2$), 0.93 (d, $J = 6$ Hz, 3H), and others.

13C NMR (CDCl$_3$): δ 137.3, 130.7, 127.9, 126.3, 85.5, 77.6, 74.3, 50.9, 43.9, 43.2, 41.7, 34.7, 31.5, 29.9, 24.4, 23.4, 22.8, 22.1.

Comparison with the spectra (1C and 1H NMR) of the epimeric carbinol 2a again indicated no diastereomeric impurities in this compound.

(R)-(+)−Methyl-2-acetoxy-2-methyl-3-phenylpropanoate 3a

Carbinol 2a (450 mg, 1.35 mmol) in ether (5 mL) was added to 80% CH$_3$CN/H$_2$O (20 mL) which contained AgNO$_3$ (460 mg, 2.7 mmol) and N-chlorosuccinimide (360 mg, 2.7 mmol). A grey-white precipitate (AgCl) formed immediately. The mixture was stirred for 5 min and quenched by successive addition of Na$_2$SO$_3$, Na$_2$CO$_3$, and NaCl (1.8 mL each, all saturated aqueous solutions) at ca. 2 min intervals. The material was then filtered, the filter cake washed with ether (20 mL), the layers separated, the aqueous layer extracted with ether (3 X 10 mL) and the combined organics concentrated to an oil. The solution turned light yellow initially, but the color quickly faded. The reaction was stirred overnight, then 3 M NaOH was added until the pH reached 10 and the material was concentrated to a wet solid via rotary evaporation. The solid was dissolved in H$_2$O (20 mL), the H$_2$O washed with hexane/ether (50%, 20 mL, extracts contain the oxathiane backbone as a sultine!), acidified and extracted with ethel' (3 X 25 mL). The combined ether extracts were dried (MgSO$_4$), filtered, cooled to 0°C and diazomethane in ether added (15 mL, ca. 0.3 M). The excess diazomethane was allowed to evaporate as the solution warmed to room temperature. The material was then concentrated, dissolved in Ac$_2$O (6 mL) containing 4-dimethylaminopyridine (DMAP, 110 mg, 0.88 mmol) and stirred overnight in a flask with a drying tube attached. The solution was poured into ice cold H$_2$O (20 mL) and NaHCO$_3$ (10 g, 0.12 mol) was added over 30 min. The resulting mixture was extracted with ether (3 X 30 mL), the ether extracts dried (MgSO$_4$), concentrated and flash chromatographed (15010 EtOAc/hexane) to give 205 mg (65% of 3a as a clear oil, $[\alpha]_D^{28.4} + 28.4^\circ$ (c 1.176, CHCl$_3$).

1H NMR (CD$_3$COCD$_3$): δ 172.3, 169.9, 135.8, 131.1, 128.6, 127.5, 80.9, 52.0, 43.7, 21.2, 20.8.

(S)-(−)−Methyl-2-acetoxy-2-methyl-3-phenylpropanoate 3b

Compound 3b was prepared in analogous fashion from carbinol 2b. All physical properties were identical to 3a except for the rotation, $[\alpha]_D^{27.2} = +27.2^\circ$ (c 1.518, CHCl$_3$).

Dimethyl (R)-(−)-2-acetylcitramalate

Acetate 3a (165 mg, 0.7 mmol) was dissolved in CH$_3$CN—CCl$_4$ (3.3 mL each) and H$_2$O (6.7 mL) and NaIO$_4$ (2.8 g, 18 eq) and a catalytic amount of RuCl$_3$ (ca. 10 mg) were added. The resulting triphasic (liquid/liquid/solid) mixture was stirred at room temperature for three days and then filtered through a silica pad, the
pad washed with ether and CHCl₃ (25 mL each), the filtrate concentrated, cooled to 0°C, and diazomethane in ether added (10 mL, ca. 0.3 M). The excess diazomethane was allowed to evaporate, the solution dried (MgSO₄) concentrated and purified by preparative scale TLC (30%/EtOAc/hexanes) to give 125 mg (81% of a clear oil, [α]D₂₀ +36.4° (c 1.191, CHCl₃). A chiral shift experiment [Eu(hfc)₆] revealed 1.7% of the S isomer in this material (98.3% e.e.). The signal of the methoxy group adjacent to the chiral center is clearly doubled in the IH NMR of the racemic material.

Anal. C₉H₁₄O₆ (218.21) calc'd.: C 49.54; H 6.47% found.: C 49.19; H 6.25%

IH NMR (CDCl₃): δ 3.77 (s, 3H), 3.71 (s, 3H), 3.15 (d, J = 16 Hz, IH), 2.90 (d, J = 16 Hz, 1H), 2.09 (s, 3H), 1.68 (s, 3H).

13C NMR (CDCl₃): 15171.5, 169.8, 169.4, 77.8, 52.6, 51.8, 40.8, 22.5, 20.9.

Dimethyl (S)-(-)-2-acetylcitramalate

The S isomer was prepared in analogous fashion to its enantiomer and a chiral shift experiment (vide supra) showed 1.4% of the R isomer (97.2% e.e.).

Acknowledgement is made to the National Science Foundation (grant CHE-8206402) for the support of this research, to Dr. Ernesto Brunet and Mr. Edward Olefirowicz for recording the NMR spectra, and to Mr. Masaki Ohwa and Ms. Teresa Alvarez for the preparation of starting material.

REFERENCES AND FOOTNOTES

5. H. A. Barker, Biochem. prep. 9 (1965) 25.

22. After 5 h at 65°C the material showed 6% of the enantiomer by a chiral shift experiment with Eu(hfc)₆.

ASYMMETRIC SYNTHESIS OF CITRAMALATES

651
Asimetrična kemijska sinteza (R)- i (S)-citramalata sa visokom enantiomernom čistoćom

S. V. Frye i E. L. Eliel

Oba enantiomera dimetil 2-acetoksicitramalata su asimetrično sintetizirana iz 2-keto-1,3-oksatiana 1a i 1b, s više od 96% enantiomernim i s dobrim kemij-skim iskorištenjem (50%).