NEKI FAKTORI KOJI UTJEČU NA METABOLIZAM KALCIJA I STRONCIJA

NEVENKA GRUĐEN

Institut za medicinska istraživanja i medicinu rada, Zagreb

(Primljen 24. XI 1965)

U prvom dijelu radove otkriva se prikazana anatomski građa kosti s naročitim osvrtom na najvažnije mineralne koji u njezinoj gradi sudje-
luju, tj. na kalcij i fosfor. Najveći dio članka povećan je izučavanju
dosadašnjih literaturnih podataka o komparativnom metabolizmu kalcij
i stroncija. Analizirano je njihovo ponašanje od ulaska u organiz-
am kroz probavni trakt, u tkivnim tekućinama, placenti, mlječnoj žli-
jezdi i bubrezima. Kao što se iz citirane literature vidi, organizam na
svim membranama s kojima oba ima dolaze u kontakt vrši diskrimina-
ciju Sr u odnosu na Ca. Izneseni su i dosada poznati podaci o utjecaju
nekih prehrambenih i hormonalnih faktora na metabolizam Ca i Sr. Posljednji dio ovog preglednog članka sadrži podatke o smjernoj diskriminativnoj sposobnosti prema stronciju
u odnosu na kalcij kod mladog organizma.

Posljednjih se godina kod mnogih istraživača povećao jako interes za
metabolizam kosti. To je uslijedilo dijelom zbog novih tehnika koje čine
ispitivanje metabolizma kosti sve pristupačnijim, a dijelom i radi sve
većih količina radioaktivnog stroncija u atmosferi. Dok je stabilni stro-
cij, zbog njegovog minimalnog sadržaja u kostima, praktički nevažan,
njegov radioaktivni izotop – stroncij 90 – koji nastaje kao produkt fisije,
je od izvanrednog značaja. Ovaj izotop, name, ima vrlo dugo vrijeme
prilagodbe (oko 28 g) i sposobnost da se u koštanim kristalima ugradi
u kalcij. Nakon što se stroncij jednom inkorporirao u skelet praktič-
ki ga je nemoguće odatle odstraniti. Zbog toga je cilj istraživača bio
spriječiti na bilo koji način inkorporaciju stroncija u skelet, a da se pri
tome što je manje mijenja metabolizam kalcija. Zahvaljujući mnogobroj-
nim istraživanjima sa tog područja sada je dobro poznato da, iako se
kalcij i stroncij ponašaju kvalitativno slično, među njima postoje zna-
čajne kvantitativne razlike, te da se kalcij (u odnosu na stroncij) prefe-
rira kod mnogih životinjskih vrsta pa i kod čovjeka.
Ispitivanje se komparativnog metabolizma kalcija i stroncija možda na prvi pogled čini vrlo uskim, specijaliziranim područjem naučnog rada, ali ono ima, kao što se iz ovog kratkog uvoda vidi, veliki praktički značaj. Nadamo se da neće biti potrebno i praktično korištenje dobivenih rezultata.

FIZIOLOGIJA KOSTI

Struktura kosti

Riječ „kost” znači specijalnu formu vezivnog tkiva, ali i organ koji je uglavnom građen od tog tkiva. Iako je glavna zadaća koštanog sistema podupiranje tijela, doprinosi pokretljivosti i zaštitu nekih važnih mekih tkiva, kost nije statičko tkivo. Naprotiv, ono se u toku cijelog života aktivno mijenja kao odgovor na razne vaskularne, endokrine ili prehrambene utjecaje i remodeliraju procesom u kojem se stari koštani matriks na jednom mjestu odstranjuje, a novi se na drugom deponira. Sigurno je da kost ima aktivni metabolizam, iako mjerenja koštane respiracije daju vrlo niske rezultate u odnosu na druga tkiva. Iako su pokusi s radioaktivnim fosforom (P-32) pokazali da se u epifizama dugih kosti u štakora 29% anorganiskih fosfata obnavlja svakih 50 dana.

Kost je građen od stanica, organskog matriksa i koštanih minerala.

- Koštane se stanice mogu i po strukturi i po funkciji podijeliti u tri vrste: osteocite, osteoblaste i osteoklaste. Dok prve nalazimo u zreloj kosti, osteoblasti su u predjelima aktivnog koštanog formiranja, a osteoklasti tamo gdje se kost razgradnjuje. Razlika u lokalizaciji namćeć mišao da je svaka vrsta stanica vezana uz drugu funkciju: osteociti s održavanjem, osteoblasti s formiranjem, a osteoklasti s destrukcijom kosti. Ova je pravilnost u lokalizaciji tolika da se po njoj može reći da li se kost nalazi u fazi razgradnje ili izgradnje (1).

- Organski matriks kosti sadrži se kod odraslih osoba od 95% kolagena i 5% osnovne supstancije. Kolagen je građen od ukrštenih fibrila, a po vrlo sporoj izmjeni može se uporediti, s neizmjernjom frakcijom koštanih soli (2). Glavni sastojci kolagena su glicin, prolin, hiodroksiprolin i alanim. Osnovna supstancija se sadrži od mukopolisaharida i mukoproteina.

- Koštani kristali imaju oblik tankih iglica ili pločica prislonjenih uz fibrile kolagena (3). Oni su submikroskopske veličine: 25~75 Å debljine i u prosjeku 220 Å duljine. Zbog toga što su mali, površina kristala je velika i oko 20% kalcija iz koštanih kristala apatita pristupačno je brzoj izmjeni in vitro (4).
Kalcifikacija

Iako se zna koji su glavni sastojci koštanih minerala, njihova tačna priroda nije još utvrđena. Dok su Carlström i Engström (5) smatrali da se koštani kristali sastoje uglavnom od hidroksinapatita $3\text{Ca}_3\text{(PO}_4)_2\cdot\text{Ca}{}(\text{OH})_2$, Dallmannge (6) je davao prednost hidriranom trikalcijevu fosfatu $3\text{Ca}_3\text{(PO}_4)_2\cdot\text{H}_2\text{(OH)}_2$. Da li elementi koji se u kostima nalaze u manjim kolичinama, ili čak u tragovima, sudjeluju u građi koštanih kristala nije još sasvim sigurno. Najnovija ispitivanja pokazuju da su karbonati, citrat, magnezij i natrij (7) prisutni na površini kristala. Momentani u kalcifikaciji postoje dva gledišta:

Prema jednom mišljenju, kalcifikacija započinje na molekulama kollagena koje djeluju i kao czni zm i kao supstrat, izvlači fosfat iz molekule ATP. Taj fosfat zatim, dok je još u reaktivnom stanju, izaziva kristalizaciju kalcijevih soli i tako konačno dovodi do formiranja koštanih soli (8). Neuman i Neuman (7) su smatrali da je CaHPO$_4$ prva sol oko koje se nastavlja taloženje.

Drugo se mišljenje razlikuje od prethodnog po tome što se važna uloga pripisuje mukopolisaharidima iz osnovne supstancije i vezivanje kalcija u smanjenoj odsudnini za stvaranje prajezgre okoštavanja (9).

Kao što se vidi, obje ove teorije pretpostavljaju postojanje jedne jezgre oko koje se deponira sekundarni materijal, a to dovodi do rasta kristala. Neka pitanja se ne mogu objasniti ni jednom od ovih teorija. Tako npr. ostaje neobjašnjeno zašto ne dolazi do kalcifikacije u kartilaginoznim tkivu koje je mukopolisaharidima bogatije od kosti. Isto je tako još neznanje kako i zašto na nekim dijelovima u tijelu dolazi, a na drugim, koji se čine strukturno i biokemijski jednaki, ne dolazi do kalcifikacije.

Koštani minerali

Glavni sastojci koštanih minerala su kalcij, fosfati i karbonati. U manjoj količini ima natrija, magnezija i citrata, a u tragovima ima stroncija, barijera, fluora i klor (10).

Kalcij. – U skeletu se nalazi 90% od ukupnog kalcija u tijelu. Zbog toga nije čudno što se metabolizam skeleta i kalcija često poistovješćuje.

Kalcij se u kostima nalazi u dvjema glavnim frakcijama: u izmenjivoj, iz koje se vrlo brzo izmenjuje s kalcijem iz plazme, i u neizmenjivoj u kojoj se kalcij procesom akrecije inkorporira u kost (11). Izmena s normalno pristupnim ionima je izolonska, dok se heteroiomskom smatra ona u kojoj dolazi do izmjene onih iona koji normalno nisu prisutni u kristalima apatita.

Po Baueru (11) se kinetika skeletnog kalcija može ukratko shematizirati ovako: u pokusima koji traju kraće od „života“ ispitovanog tkiva mogu se zapaziti dva smjera kretanja kalcija:
1. brza izmjena između kalcija u plazmi i njegove frakcije u kostima, i 2. jednomjernom kretanje kalcija od plazme u kost, odnosno akrecija.

Kad je vrijeme promatranja dulje od života ispitivanog tkiva, vidi se i treći proces: gubitak kalcija iz kosti, tj. resorpcija.

Na temelju studija Baevera i suradnika (12) pokazalo se da je akrecija kalcija kod odraslih ljudi oko 0.5 g dnevno, a izmjenljiv dio iznosi oko 5 g kalcija.

Harrison, Kostial i Howells (13) su pokazali da se 25% kalcija u skeletu odraslih, a 6% u skeletu mladih štakora nalazi u labilnoj frakciji. Labilna frakcija je, prema mišljenju autora, sastavljena od jednaka dijelova kosti formirane ranije, ali još labilne, i nove kosti stvorene za perioda rasta.

Ostali aspekti metabolizma kalcija obrađeni su u daljim poglavljima.

Fosfor. Medu mineralima koji se nalaze u kostima pripada, uz kalcij, najvažnije mjesto fosforu. Kretanje fosfora unutar i između tekućih prostora tijela, kao i između tekućina i kosti, događa se neprekidno, i otopljele sastavni dio, kao i kretanje kalcija. Upotrebom radioaktivnog fosfora (P-32) u eksperimentalnoj tehnici napredovalo je upoznavanje metabolizma fosfata. Sav, ili skoro sav fosfor koji se nalazi u tijelu u formi je derivata ortofosforne (H₃PO₄) ili pirosfosforne (H₃P₂O₇) kiseline. Od otopljele 700 g fosfora, koliko ga ima u tijelu odrasle osobe, 600 g fosfora se nalazi u skeletu. Michell (14) je iznio da tijelo sadržava oko 540 g P kod 70 kg teške osobe, a od toga je 90% u skeletu (oko 480 g).

Dnevna potreba fosfora (1 g za odrasle osobe, a nešto više za djecu u razvoju) može se zadovoljiti mljekom i njegovim proizvodima, nekim štitaricama, mesom i jajima. Prvi efektni nedovoljni količine fosfora u organizmu očituje se u nedovoljnoj kalciifikaciji kosti. On je, naime, nepohađan za gradu definitivnih kostnih kristala. Kod životinja u rastu nastaju u slučaju ekstremenog nedostatka fosfora (ili kalcija, ili vitamina D) duboke promjene u mineralizaciji kosti. U Recommended Dietary Allowances (15) je rečeno da hrana koja zadovoljava potrebnu organizmu na kalciju i proteincima sasvim sigurno u dovoljnoj mjeri snabdijeva organizam i fosforom.

Apsorpcija fosfora u tankom crijevu je vrlo brza. Cramer (16) je usporedivao apsorpciju P-32 i Sr-89, i našao da je nakon 30 min. bio fosfor maksimalno apsorbiran, dok je struvac kasnio 20–30 mi. Harrison i Harrison (17) su pokusima in vitro pokazali da se apsorpcija fosfora u tankom crijevu odvija aktivnim transportom, a čini se da je za to potrebno prisustvo kalcija.

Homeostazu fosfora u plazmi je teško objasniti, jer on nije u ravnoteži samo s fosforom iz kosti, nego i s organskim sastojcima koji nastaju kao rezultat stanične aktivnosti. Howard (18) smatra da je za održavanje nivoa fosfora u plazmi važniji fosfor iz stanica nego iz kosti.

Lax sa suradnicima ispitivao je na štakorima prelaz fosfora iz jednog tjelesnog prostora u drugi. On je izračunavao i koliko se vremena atom
fosfora zadržava u pojedinom prostoru. Prema njegovim pretpostavkama, to vrijeme iznosi od 2.8 do 393 sata, a ovisi o metaboličkoj aktivnosti tkiva i dulje je kod manje aktivnih tkiva. Najintenzivniju izmjenu imaju kosti i zubi. Prosječno vrijeme zadržavanja fosfora u tim tkivima je 95.6 sata.

Ostali minerali. U solima kosti nalaze se i ioni magnezija, kalcija, natrija i karbonata. Istraživanja pomoću difrakcije rendgenskih zraka pokazuju da spomenute soli ne stvaraju prave kristale nego se apsorbi raju na površini hidroksapatita.

Koliko je poznato, ne postoji homensatski mehanizam za regulaciju izmjene magnezija između krvi i kosti. U slučaju jakog nedostatka magnezija, jedna trećina njegova sadržaja u skeletu može biti mobilizirana. To je omogućeno prelazom njegovih labilno vezanih iona iz kosti u cirkulirajuće tekućine (21).

U skeletu se nalazi polovica od ukupnog tjelesnog sadržaja natrija. Otpriške jedna trećina natrija iz koštanih minerala je izmjenljiva, dok su dvije trećine neizmjenljive (22). Čini se da kost nije rezervuar natrija za tjelesnu tekućinu, jer je ukupni natrij u kostima toliko koliko ga se normalno u jednom tjednu primi hranom.

Karbonati, kao i prije spomenuti minerali, nalaze se u kostima u izmjenljivoj i neizmjenljivoj frakciji. Buchanan i Naka (23) su našli da se 30% od ukupnih karbonata iz kosti nadomjestici za 12 dana. U istim je pokusima primijećeno da se nakon daljih 78 dana zamijenilo svega 15% C.14 O2.

Barij je, kao i ostale alkalne zemlje koje se nalaze u organizmu, lokaliziran skoro isključivo u skeletu. Bauer (24) je mladim štakorima para leplje davao Ca-145 i Ba-140 i našao da je veličina izmjenljivog prostora jednaka za oba elementa. Kasnije su Bauer i suradnici (25) tačnijim i razumijevanjem akrekcije našli da je ona 1.3 do 2.1 puta veća za barij nego za kalcij.

Stroncij se u organizmu nalazi u minimalnim količinama, ali je od na ročitog značaja jer može u kristalima hidroksapatita nadomjestiti kalcij. Specijalnu pažnju istraživača privukao je Sr-90, koji se nalazi u atmosferi kao jedan od produkata fisije zbog svoga dugog vremena poluraspad. U narednim poglavljima metabolizam stroncija je obrađen detaljnije.
KOMPARATIVNI METABOLIZAM KALCIJA I STRONCIJA

Kalcijs je po količini peti element u ljudskom organizmu, i najvažniji od njegovih strukturnih elemenata (26). Glavni putevi u metabolizmu kalcića su: apsorpcija, transport u tijelu na različita mjesta, depozicija i odstranjivanje iz kosti, zubi i ostalih kalciificirajućih struktura, i ekskrecija urinom i fesesom. Ti putevi obuhvataju tri podsistema: 1. gastrointestinalni trakt, 2. skelet i 3. metalizirana tkiva, i 3. tjelesne tekućine, organske i meke tkive (27).

Od 1955. god. do danas napravljeno je dosta eksperimentalnih razistivanja metabolizma kalcića i stroncija i određivanja fizioloških procesa koji uzrokuju različite ponašanja obaju elemenata u organizmu. Iako se stroncij prati u ljudskom organizmu vlada kvalitativno slično kalciću, postoje među njima velika kvantitativne razlike u apsorpciji i ekskrciji, koje određuju koliko će se pojedinog elementa deponirati u skeletu. U konst stroncij prati metabolizam kalcića, ali to nije tako u svim organima. Biološke membrane u intestinalnom traktu, bubrezima, mlječnoj žlijezdi i placenti očito mogu razlikovati kalcić od stroncija. Mnogobrojni i temeljni radovi s tog područja doveli su do zaključka da se kalcić (u odnosu na stroncij) preferira kod mnogih životinjskih vrsta pu i kod čovjeka.

Comar, koji se mnogo bavio ispitivanjem komparativnog metabolizma ovih dvaju iona, smatrao je da njihov međusobni omjer (Sr/Ca) u tijelu ovisi o tom omjeru u hrani i ukupnoj diskriminaciji organizma prема stronciju. Radi bržeg i lakšeg uočavanja razlika između metabolizma kalcića i stroncija Comar je s Wassermanom i Noldom (28) uveo termin »Strontium-Calciuni Observed Ratio« odnosno »OR«. Taj termin obuhvata sve fiziološke procese u organizmu, koji uzrokuju diskriminaciju prema stronciju; naime, u odnosu na stroncij, više se kalcić apsorbira iz probavnog trakta, više se kalcića luci iz krvi u mljece i prelazi placentarno barjeru, a manje se eliminira urinom. Prema tome, OR, koji se u principu izražava kao Sr/Ca određenog uzorka,

\[
\text{Sr/Ca}_{\text{probrena}}
\]

možemo prema potrebi prikazati npr. ovako:

\[
\text{OR}_{\text{hridna}} = \frac{\text{Sr/Ca}_{\text{hridna}}}{\text{Sr/Ca}_{\text{probrena}}}
\]

Da bi označili dio opće diskriminacije prema Sr koja je rezultat jednog određenog fiziološkog procesa, predložio je Comar, sa suradnicima termin »Srontium-Calciuni Discrimination Factor« (DF). Npr. DF$_{\text{hridna}}$ pokazuje koliko od ukupne diskriminacije organizma prema stronciju, u odnosu na kalcić, nastaje kao rezultat različitog ponašanja obaju iona u bubrezima.
Usprkos nesumnjivoj koristi takvih indeksa, potrebno je, prema mišljenju većine autora, pored izražavanja rezultata u obliku OR i DF, kad je god to moguće te podatke izrazi i u apsolutnim količinama stabilnih ili radioaktivnih izotopa tih elemenata.

Kornberg (29) je npr. pružio eksperimentalne dokaze za kritiku OR kao baze u procjenama opasnosti od radioaktivnih padavina. OR po definiciji treba da je konstanta. Pokusi, međutim, pokazuju da OR zavisi od koncentracije jednog od elemenata određenog para u prkusoru, a mijenja se i u vremenu. Do takvih promjena dolazi ako se mijenja količina samo jednog elementa (npr. u hrani), dok se drugi drže konstantnim.

Kornberg se kritički odnosi naročito na mogućnost primjene OR, ako se radi o jedinkama ili malim populacijama. Za velike populacije korisnost OR vrijedi uz izvršnu opreznost u primjeni.

Nasuprot tome, Kornberg smatra da je OR veličina korisna u fundamentalnoj biologiji. Npr., jedno od tumačenja promjena OR jeste da u biološkom ciklusu postoje dva ili više različitih transportnih mehanizama za elemente određenog para.

Apsorpcija kalcija i stroncija iz probavnog trakta

Poznato je da se dvovaljani kationi koji dospiju u organizam, većim dijelom u probavnom traktu ne apsorbiraju. Samo jedan manji dio prolazi kroz crijevnu stijenu.

Od svih mjesta u organizmu, na kojima se viši diskriminacija prema Sr u odnosu na Ca, najvažniji je gastromtestinalni trakt. Zahvaljujući podacima iz pokusa na izoliranoj crijevnoj vrećici, dobili smo točniji uvid u mehanizam apsorpcije kalcija i stroncija.

Iz eksperimentalnih podataka (30) se vidi da od ukupne diskriminacije organizma prema stronciju otpada na crijevo 90%/o. DF apsorpcije pokazuje da apsorpcija Sr u intestinalnom traktu iznosi svega 0.4–0.7 vijednosti apsorbiranog Ca [0.4 koze, Jones i Mackie (31); 0.7 – ljudi, Spencer i sur. (32)].

Schachter i Rosen (33) su demonstrirali da se kalcij kroz stijenku duodenalnog segrega šlakovskog i začepenog crijeva promišlo aktivno, tj. protiv gradijenta koncentracije i elektropotencijala. Stroncij se, za razliku od kalcija, ne prenosi protiv gradijenta koncentracije i njegovo je kretanje od lumena crijeva prema plazmi rezultat pasivne difuzije (34).

Jones i Cowd (35) su pokazali da je i prelaženje Sr iz krvi u lumen tankog crijeva direktno proporcionalno njegovoj koncentraciji u krvi. Naime, neposredno nakon i. v. aplikacije radioaktivnog stroncija, tj. kad mu je koncentracija u krvi najviša, i prelaž u lumen crijeva je najintenzivniji. Da je kretanje Sr kroz intestinalnu membranu pasivno, potvrđuju i rezultati Dumonta i suradnika (36).
Zanimljivi su rezultati *Wassermann* (37) koji je u pokusima s radioaktivnim stroncijem i kalcijem pokazao da Sr-85 ne prati aktivni transport Ca-45 od mukoze do stročja duodenuma. Naprotiv, u lucerni je primijetio da se Sr-85, a ne Ca-45, transportira aktivno (protiv gradijenta koncentracije), ali u obratnom smjeru, tj. od stročje k mukozi crijeva.

Vrlo se vjerojatno kalcij apsorbira iz crijeva i aktivnim i pasivnim transportnim mehanizmom, dok stroncij prelazi pasivno.

Transport Ca i Sr u tjelesnim tekućinama

Kad se kalcij i stroncij apsorbiraju iz gastrointestinalnog trakta i došu u krvotok, započinje njihova filtracija kroz kapilare.

Samachson i Lederer (38) su pod raznim okolnostima ispitivali ultrafiltrabilnost kalcija i stroncijca u serumu. U svim se uvjetima (različit pH, veće ili manje količine prisutnog stabilnog stroncijca, sobna ili tjelesna temperatura) u ultrafiltratu nalazilo više stroncijca nego kalcija; kod temperature od 37,5°C filtriralo se 0% stroncijca i svega 40% kalcija. Autori su iz toga zaključili da je kalcij vezan za serumne proteine čvrće nego stroncij, odnosno da stroncij ostaje više u slobodnoj formi.

Samachson je sa suradnicima (39) ispitivao prelaz kalcija i stroncijca iz ljudske plazme u peritonealnu, pleuralnu i interstijalnu tekućinu. Odmjer radioaktivnog kalcija i stroncijca u peritonealnoj tekućini odgovarao je ultrafiltratu, iako je visoki sadržaj proteina pokazivao da se ne radi o ultrafiltratu. U interstijalnu tekućinu oba su iona prelazila jednako brzinom, a u pleuralnu tekućinu bio je prelaz Sr-85 brži. Godinu dana prije (1959) primijetili su *Samachson* i suradnici (40) da je prelaz kalcija i stroncijca iz plazme u cerebrospinalnu tekućinu jednak. S obzirom na to da je manje stroncijca vezano za plazmatske proteine, može se zaključiti da ova membrana vrši diskriminaciju prema stroncijcu u korist kalciju.

Kara, Samachson i Spencer (43) su također smatrali da veća ultrafiltrabilnost radioaktivnog stroncijca pokazuje da se on slabije veže za proteine u plazmi od radiokalcijca. U njihovim su pokušima kod normalne osobe prosječne vrijednosti ultrafiltriranog Ca-45 bile 55.1%, a Sr-85 67.1%, dok je omjer Sr-85/Ca-45 bio 1.22.
Na temelju dosadašnjih podataka može se smatraći da diskriminacija stronicja u odnosu na kalcij, koja u tkivnim tekućinama nesumnjivo postoji, nastaje zbog čvršćeg vezivanja kalcija za proteine.

Bubrežna diskriminacija stronicja

Bubrežima pripada, uz gastrointestinalni trakt, najvažnija uloga u diskriminaciji organizma prema stroniciju u odnosu na kalcij.

MacDonald, Noyes i Lorich (44) su primijetili da nakon oštećenja bbrega živinim kloridom ili totalne nefrektomije nestaje ranije primijetena razlika u količini depomiranog radioaktivnog stronicija i kalcijja u skeletu štakora. Prema podacima *Jonesa i Mackiea* (31) bubrežna selekcija između Ca i Sr iznosi 6:1. DF u urinarnoj je kod krave i koze 0.7 (Comar i sur. (45)), kod ovce 0.6 (Jones i Mackie (31)), a 0.8 kod štakora (Comar i sur. (28)).

Malo je vjerovatno da se diskriminacija prema stroniciju vrši uглавном u bubrežnim glomerulima. Glomerularna je filtracija, naime, fizički proces u kojem nije moguće razlikovati one po veličini među sobom toliko slične kako su to Ca i Sr (46). Smatra se da je razlika u tubularnoj reabsorpciji kalcijja i stronicija glavni uzrok renalne diskriminacije prema Sr. Tome u prilog govore rezultati Samachsona (47) i Spencer-Lasla (47). Oni su kod 15 pacijenata ispitivali urinarnu ekskrciju Sr-85 i stabilnog kalcija (nakon p. o. i. v. aplikacije). Kod svih su pacijenata primijetili da je veća tubularna reabsorpcija Ca nego Sr.

Zapažanja Mackenzie, Ualsera i Brian Robinsona (48), međutim, govore u prilog glomerularnoj diskriminaciji. Oni su pokazali da je količina reabsorbnog kalcijja i stronicija proporcionalna njihovoj koncentraciji u tubularnoj tekućini; prema tome se Sr diskriminira već prije tubula.

Diskriminacija stronicija u kosti

Većina se autora slaže u tome da je kod štakora skeletna diskriminacija prema stroniciju minimalna ili da nije čak nikakva (49, 28).

Lenzmann (50, 51) je diskriminaciju prema stroniciju proučavao na kostima plećeg i štakorskog embrija uzgajanim u tkivnoj kulturi, kojoj je dodao radioaktivni stronicij i kalcij. On je upozorio da se kost ne ponaša jednako u krakotrajnim i dugotrajnim pokusima. Nakon dvosatnog stajanja u radioaktivnoj otopini bio je, naime, omjer Sr/Ca u ispitivanoj kosti 1.08, dok je nakon nekoliko dana taj omjer bio svega 0.80. *Lenzmann* je smatrao da Ca i Sr akumuliraju u labilnoj frakciji kosti bez ikakve diskriminacije, a kasnije se inkorporiraju u stabilniji dio kosti; tek u tom drugom procesu vrši se diskriminacija prema stroniciju. U prilog mišljenju da i u costi postoji diskriminacija prema stron-
ciju govore i rezultati Samachsona i Lederera (52). Oni su koštano tkivo ekvilibrirali radioaktivnom otopinom i primijetili da se u kosti deponira više Ca nego Sr s faktorom 1.2−1.4. Likins i suradnici (53) su selekciju prema Sr dovodili u vezu s veličinom koštanih kristala. Primijetili su, naime, da kristali hidroksiplapatita što su veći jače diskriminiraju stroncij.

Prema podacima Lengemann (51) i Talmagea (54) iz kosti izlazi 1.2−1.3 puta više Sr nego Ca. Talmage, međutim, smatra da u kost i ulazi više Sr nego Ca (faktor 1.3−1.6).

Bez obzira na iznesene rezultate i mišljenja, može se reći da je dopri- nos skeletu diskriminacije stroncija u komparaciji s drugim diskri- minatornim procesima u organizmu minimalan.

Diskriminacija prema Sr u placenti i mliječnoj žlijezdi

Zahvaljujući diskriminatorskoj barieri u placenti i mliječnoj žlijezdi, omjer Sr/Ca u fetusu, odnosno dojenčetu, mnogo je povoljniji nego u kriju majke. Tu je uticaj važan, jer mladi organizam ima znatno manju sposobnost selekcije između kalcija i stroncija nego odrasli.

Da se u placenti Sr, u odnosu na Ca, diskriminira pokazuju vrijednosti OR (retencija), koje se kreću od 0.4 kod ovce (55) do 0.7 kod štakora (56).

Wasserman (57) je dokazao da se u placenti diskriminacija prema stronciju vrši u jednome smjeru, tj. od majke do fetusa. Nakon injiciranja radioaktivnog stroncija i kalcija u fetusu štakora, njihov je omjer u ženi iznosio oko 1:2; naprotiv, kad su se isti izotopi aplicirali ženki omjer Sr/Ca u fetusu bio je svega 0.55. Kao što se vidi, količina Sr koja prođe kroz placentu od majke do fetusa za polovicu je manja od vrijednosti kalcija.

Interesantni su pokusi koji su Mac Donald i suradnici (58) vršili na ma- garcima. Oni su istovremeno koristili dvije vrste radioaktivnog stroncija. Sr-90 su injicirali u venu femoralis ženke, a Sr-85 u fetalni krvotok. Na temelju tih pokusa oni su zaključili da, iako stroncij prolazi kroz placentu u oba smjera, ipak je njegova depozicija u fetusu manja kad se injicira u krvotok majke. U fetusu je, naime, ostalo 27% radioaktivnosti nakon njegove aplikacije u fetalni krvotok, a svega 5% kad su ga injicirali u majčin krvotok.

Zanimljivi su i rezultati J. Rivera (59). On je, uzimajući krv s obje strane ljudske placente, našao da je omjer

\[
\frac{Sr \text{ u dojenčkoj strani}}{Sr \text{ u majčinoj strani}} = 0.82
\]

Taj podatak govori da postoje placentarna diskriminacija prema stron- ciju kod ljudi, ali da je nešto manja nego kod životinja (kod štakorskog je fetusa Sr/Ca omjer 0.55−0.65 majčine vrijednosti, a kod zeca čak 0.49).
U mliječnoj žlijezdi diskriminacija prema stronciju izražena je kao OR mliječno-plasman, varira od 0.4–0.5 kod koza pa do 0.8 kod krava (15).

Do sada je mehanizam diskriminacije prema stronciju u mliječnoj žlijezdi nepoznan. Moguće je da se i tu, kao i na drugim membranama, kalciij za razliku od stroncija, kreće aktivnim transportom. Vezivanje na proteine ne može biti razlog diskriminaciji prema Sr u mliječnoj žlijezdi, jer je kalciij znatno čvršće vezan za krvne helenčevine nego stroncij (38).

Proma podaci su Twardock i sudinika (60), proteini u mlijeku imaju znatno veći afinitet prema stronciju nego prema kalciiju.

Da je barijera u mliječnoj žlijezdi jednosmjerne (od krv prema mli- jeku) pokazali su Twardock i Comar (61). Kad su, naime, radioaktivni stroncij i kalciij injicirali u krv našli su u mlijeku više Ca, dok isti radioizotopi injicirani u mliječnu žlijezdu dospjevaju u krv u jednakoim količinama.

Osim spomenutih organa, neki su autori primijetili i na drugim mjesta u organizmu sposobnost selekcije izuzetku kalciija i stroncija. Tako su Eisenber i Gordon (62) našli da ljudske žlijezde znajnice diskriminiraju stroncij, a Dreisbach (63) je primijetio da su slinovnice retinare više Ca-45 nego Sr-85 (s faktorom 4:6:1). U slini je diskriminacija bila manja nego u žlijezdanom tkivu.

Važnost diskriminacije Sr u tim organima od sasvim je sporednog značaja za opću diskriminaciju organizma prema stronciju.

FAKTORI KOJI UTJEČU NA METABOLIZAM CA I Sr

Prehrambeni faktori

U literaturi ima mnogo podataka o pokušajima da se kojekakvim prehrambenim krmstvima djeluje na metabolizam kalciija i stroncija. Cilj većine tih rada bio je naći sredstvo kojim bi se smanjila depozicija radioaktivnog stroncija u skeletu a da se pri tome što manje mijenja normalni metabolizam kalciija. Nastajalo se naći sredstvo kojim bi se selektivno smanjila njegov depozicija iz probavnog trakta, dok bi kalciij neometano prolazio kroz crijevnu stijenku. Iz daljeg će se izlaganja vidjeti da većina upotrijebljenih prehrambenih mjera nije dovela do željenih rezultata.

Waterman, Comar i Nold (64) (1956) su ispitivali djelovanje raznih tvari na adsorpciju Ca-45 i Sr-89 iz probavnog trakta štakora. Našli su da L-lysin i L-arginin najjače pospešuju mineralnu adsorpciju, ali da lakoza djeluje znatno jače od aminokiselina. Oni su, analizirajući omjer Sr/Ca u čizmurima ispitivanih štakora, našli da sve ove supstancije jače stimuliraju adsorpciju stroncija nego kalciija. Isto tako druge vrste karbohidrata (npr. rafinoza, celuloza, riboza) nhrzavaju crijevnu adsorpciju
radiostroncjia (65). Vjerojatno je to razlog nižoj diskriminaciji prema stronicu, ako su štakori hranjeni mlječnom hranom (OR = 0.57) nego ako su isključivo na nemliječnoj prahini (OR = 0.27) (64).

Ispitivanja na pojedinim segmentima tankog crijeva su pokazala da se injekcijama lakoze, lizana ili glukoze u ileumu povećava ukupna apsorpcija radioaktivnog kalija i stroniuma. Cijenjena da u duodenumu i jejunumu to nije zapaženo, nameće m'sao da u pojedinim dijelovima tankog crijeva postoje razlike u mehanizmu apsorpcije (66).

Poznato je da je crijevna apsorpcija kalija zavisna od prehrambenog stanja životinje. Bruce (67) je dokazao da izgladnjeni štakori apsorbiraju i štuta veće količine radiostroncjia nego kontrolne životinje.

Osim spomenutih sastojaka hrane, ispitivalo se i djelovanje nekih iona na metabolizam kalija, odnosno stroniuma. O sulfatima kao sredstvu za smanjenje ulaska radioaktivnog Sr iz probavnog trakta postoje suprotne mišljenja. Mac Donald i suradnici (44) su u svih supstanci koje su istraživali smatraли magnezijev ili natrijev sulfat kao najuspješnije sredstvo za smanjenje apsorpcije radioaktivnog stroniuma iz probavnog trakta. Rubanovska i Ushakova (68, 69) su štakornar da vode sondom Sr-89 i magnezijev sulfat. Ni nakon jednokratne, a ni nakon višekratne primjene sulfata nisu primitivile značajnu efekt na crijevnu apsorpciju stroniuma. Iz rezultata pokusa koji su napravljeni u Institutu za medicinska istraživanja i medicinu rada u Zagrebu vidi se da sulfati ne snizu znatan apsorpciju stroniuma iz probavnog trakta u slučaju kronične oralne kontaminacije štakora (70).

Wolf (71), na temelju svojih iskustava s ljudima, smatra da je barijev sulfat sredstvo izbora za sprčavanje crijevne apsorpcije radiostroncjia nakon jednokratne, peroralne (akcidentalne) kontaminacije.

Bilo je pokušaja da se dodavanjem stabilnog stroniuma u hranu eksperimentalnih životinja djeluje na apsorpciju radiostroncjia u organizmu. Međutim, rezultati pokazuju da se na taj način ne smanjuje bitno depoziciju radioaktivnog stroniuma u skletu (72, 68, 73, 74).

Hegsted i Brennan (75) su ispitivali djelovanje hrane s različitim količinama kalija i stroniuma na depuniranje radiostroncjia u skletu mladih štakora. Prema njihovim zapažanjima, male količine stabilnog stroniuma nemaju djelovanja, dok su veće smanjivale depoziciju radioaktivnog stroniuma u skletu.

Zbog kemijske i metaboličke sličnosti kalija i stroniuma, i naročito zbog toga što oba iona imaju jednak put u biološkom ciklusu, mnogi su autori ispitivali mogućnost smanjenja retencije radiostroncjia u organizmu povećanjem nivoa kalija u hrani [(Wasser man, Conor i Papadopoulou (76), i Wasserman i Conar (77)]. Nade koje su polagane na tu metodou pokazale su se opravdanima, jer se, dolista, dizanjem nivoa kalija u hrani smanjuje retencija radiostroncjia u organizmu ekperimentalnih životinja. Palmer i Thompson (78) su tehnikom intestinalne perfuzije proučavali apsorpciju Ca-45 i Sr-85 kod štakora. Dodatkom sta-
bilnog kalcija perfuzionoj otopini smanjio se procenat apsorbiranog radiostroncija i radiokalcija. Oni su te rezultate 1964. god. potvrdili (79), Četverostrukim povišenjem dijetnog kalcija (0.5 do 2.0% /o) u 200 dana hranjenja smanjio se, naime, nivo stroncija-90 u kostima na polovicu.

Ti su rezultati naišli na opće priznanje i ishrana s povišenim sadržajem kalcija preporučuje se kao jedna od mjera za prevenciju apsorpcije radioaktivnog strontija iz probavnog trakta štakora.

Kod ljudi sa Cohen i suradnici (8) primijetili da se djelovanje kalcija razlikuje, dodatkom kalcijeva glukonata hranjeno se, naime, ekskrecija Sr-85.

Pokuši napravljeni u Institutu za medicinska istraživanja i medicinu rada u Zagrebu potvrđuju slijedljivost povišenog sadržaja kalcija u hrani eksperimentalnih životinja. Povišenjem nivoa kalcija u dijete od 0.4 na 2.4% postiže se, naime, smanjenje sadržaja radioaktivnog strontija u skeletu od otprilike 40 50% /o. U isto je vrijeme sadržaj radioaktivnog kalcija u skeletu snizio znatno više, tj. gotovo 4 puta. Potvrđeni su i radovi Nelsona (81): povišeni sadržaj Ca u dijeti ne utječe, naime, na elimina
ciji već apsorbiranog radioaktivnog strontija u organizmu (82).

U literaturi ima podataka i o pokušajima da se variranjem količine fosfora u hrani djeluje na metabolizam kalcija i stroncija eksperimentalnih životinja. Međutim, većina tih podataka govori o djelovanju dra
stičnog sniženja fosfora u hrani na eliminaciju radioaktivnog strontija iz organizma (83, 84, 85, 86). To je sniženje sadržaja fosfora u hrani dovelo do manje skeletne retencije radiostroncija, ali ujedno i do denci
minalizacion kostiju, i kadak je trebalo prekinuti takvu dijetu da bi životinja mogle ostati žive (84).

Postoje malo podataka o učincu manjih varijacija sadržaja fosfora u hrani na apsorpciju stroncija iz probavnog trakta (77, 87). Stoga su to zasuniljiviji rezultati do kojih se došlo u Institutu za medicinska istraži
vanja u Zagrebu (88). Ova je građa uspjela povišenjem sadržaja fosfora u hrani od 0.5 do 1.3% (što je još u fiziološkim granicama) znatno snižiti gastrointestinalnu apsorpciju stroncija, to se očitovalo u sniženju retencije radioaktivnog strontija u skeletu štakora za oko 40%. Pokuši u kojima se varirao sadržaj fosfata u hrani gradive ženke štakora, od
nosna dojilje, pokazuju da se povišenjem fosfata u hrani od 0.5 na 1.5% smanjuje retencija radioaktivnog strontija u skeletu tek okoćenog i do
jenog štakora za oko 30% (89).

Radi ocjenjivanja vrijednosti ovih rezultata, dobro ih je usporediti s rezultatima prije navedenih američkih autora, koji su uspjeli apsorpciju radioaktivnog stroncija i probavnog trakta smanjiti povišenjem sadržaja Ca u dijeti.

Povišenje nivoa Ca u dijeti (u fiziološkim granicama) izaziva smanje
njenje retencije radioaktivnog Sr u skeletu, ali u isto vrijeme zbog jačeg djelovanja na Ca (u komparaciji sa Sr) snizuje se diskriminacija organi
zma prema stronciju (Sr/Ca omjer rastc) (90). Naprotiv, povišenjem ko
ličine fosfora u hrani postiže se povoljniji efekt, tj. povećava se diskri-
minacija prema stronciju u odnosu na kalcij. Osim toga, primijećeno je da je potreban vrlo dugi period ishrane određenom količinom kalcija prije ingestije radioaktivnog stroncija, da bi došlo do njegova povoljnog djelovanja (91). Ali u slučaju dijete s povišenim sadržajem fosfata nije bitno trajanje perioda ishrane, jer se efekt fosfora postiže već nakon jednodnevnog primanja eksperimentalne hrane (88).

Rezultati najnovijih pokusa koji su napravljeni u Institutu za med.
istraživanja u Zagrebu (92) pokazuju da se optimalno sniženje apsorpcije radioaktivnog stroncija u probavnom traktu postiže istovremenim povišenjem kalcija i fosfora u hrani. Ovo je djelovanje ovisno o apsolutnim količinama kalcija i fosfora, a nije ovisno o međusobnom omjeru kalcija i fosfora u hrani. Životinje hranjene dijetom koja je sadržavala 2,4% kalcija i 29% fosfora pokazuju sniženje skeletne retencije Sr-85 četiri puta u odnosu na životinje koje su bili na dijетi koja je sadržavala 1% kalcija i 0,5% fosfora.

Vitamin D

Čini se da je aktivna komponenta apsorpcije kalcija ovisna o prisutnosti D vitamina u tkivima organizma. Schachter i Rosen (33) i Schachter i suradnici (93) su u pokusima in vitro pokazali da se prisutnošću vitaminima D značajno povećava transport kalcija kroz stijenku proksimalnog dijela tankog crijeva. Iste su rezultate dobili Williams i suradnici (91) na stakorima, a Wasserman (95) na pilićima. Wasserman je, osim toga, svojim pokusima pokazao da efekt vitaminima D nije specifičan za kalcij; taj vitamin pospešuje, naime, apsorpciju niza drugih elemenata (naročito dovoljanih kationa). O načinu djelovanja vitaminima D na apsorpciju kalcija postoji nekoliko mišljenja. Schachter i suradnici (96) smatraju da on djeluje kao nosilac za kalcij, dok prema mišljenju Harrisona i Harrisona (97) vitamin D olakšava prolaz kroz staničnu membranu, odnosno difuzibilnost kalcija je u tankom crijevu povećana pod djelovanjem D vitamina. Ispitivanja Harrisona pokazuju također da se efekt D vitamina ne mijenja sniženjem oksidativnih procesa (djelovanjem cijanida, anaerobnih uvjeta ili niske temperature).

Osim opisanog djelovanja na apsorpciju kalcija u gastrointestinalnom traktu, čini se da postoji i direktno djelovanje vitaminima D na kost. Već je 1932 Harris (98) iznio svoje zapažanje da se u slučaju D hipervitaminoze, a uz normalno primanje kalcija hranom, primjećuju resorptivne promjene na kostima.

Mellanby (99) je, na temelju pokusa koje je vršio na rabićnim psima, iznio da djelovanje D vitamina ovisi o primljenoj dozi. Dok je 20 i. j. na dan dovoljno da se izazove maksimalna intestinalna apsorpcija kalcija, mnogo su veće doze potrebne za restituciju koštanih lezija. Te su rezultate potvrdili Carlsson i Lindquist (100). Oni su našli da 10 i 1000
i. j. D vitamina pospešuje jednako apsorpciju kalca, ali je ona veća doza (tj. 1000 i. j.) bila znatno efikasnija u normaliziranju nivoa serumskog kalca. Na temelju ovih rezultata čini se malo vjerojatnim da se nivo serumskog kalca može normalizirati vitaminom D jedino zbog poboljšane apsorpcije kalca.

Migicoosky (101) je iz pokusa s kalcem 15 na pilićima zaključio da vitamin D stimulira i akrekciju i resorpciju koštanog kalca. Smatrao je da vitamin D ipak jače djeluje na akrekciju nego na resorpciju. To je, svakako, teško uskladiti s eksperimentima napravljени citiranim autorima, u kojima je vitamin D bi lu kadar povisiti nivo kalca i fosfura u krvi direktnim djelovanjem na kost.

Postoji mogućnost da povišenje nivoa kalca u serumu nastaje sekvurno nakon djelovanja vitamina D na metabolizam citrata. Carlson i Hollinger (102), koji su ispitivali djelovanje D vitamina na kost i citrata u serumu, našli su, naime, da se djelovanjem tog vitamina u serumu paralelno povisuje u kalci i nivo citrata. Ta povezanost može pokazuje neku uzročnu vezu. Neuman i suradnici (103) su smatrali da D vitamin stimulira stvaranje citronske kiseline u kosti; ona pak, zbog snizenja lokalnog pH izaziva mobilizaciju koštanih soli. I in vitro se kod radičnih hrvakica povećava produkcija citrata nakon pretretmana životinja vitaminom D (104). Ali, kao što su Nicolaysen i Egg-Larsen (105) pretpostavili, efekt citrata može biti i rezultat poboljšane apsorpcije kalca i fosfora zbog formiranja kompleksa kalcejeva citrata, koji se apsorbiše lakše nego kalcejev fosfat.

Iz svega do sada izloženog vidi se da vitamin D ne igra samo važnu ulogu u pospešivanju apsorpcije kalca u tankom crijevu nego i u cjelokupnom metabolizmu toga minerala.

U literaturi ima dostanje podataka o utjecaju vitamina D na metabolizam stroncija. Većina se autora slaže u tome da vitamin D ne pospešuje samo apsorpciju kalca nego i apsorpciju stroncija u tankom crijevu. Tako su Mraz i Bacon (106), koji su dodavali 7500 do 2.500.000 i. j. D₃ /1 kg štakorske hrane, zapazili da se povećanjem primjene doze D₃ vitamina povisuje količina apsorbiranog radioaktivnog stroncija (Sr 89) iz probavnog trakta. Paralelno s tim, povećava se urinarna, a smanjuje fekalna ekskrecija radiostronica. Oni su primijetili da je djelovanje vitamina ovisno o njegovoj koncentraciji, ali i o duljini aplikacije. Naime, trodnevni period prijašnjeg D vitamina priorje administracije radio-nuklida bio je efikasniji nego istovremeno davanje vitamina i stroncija.

Zapažanja Workera i Migicooskoga (107) su ista. Oni su upotrijebili više radioizotopa i primijetili da se djelovanje vitamina D ne ograničuje samo na Ca i Sr, već da on pospešuje i intestinalnu apsorpciju Zn-65, Cd-115, Mg-28 i Be-7.

Wasserman (95) je potvrdio nalaze navedenih autorima. On je smatrao da spomenuti efekt nastaje zbog toga što vitamin D pospešuje prelaz nckih iona (među njima i Sr-85) kroz intestinalnu membranu.
Cini se da se i Ca i Sr bolje apsorbiraju u prisustvu vitamina D, dok se onjer apsorpcije ovih minerala ne mijenja. (108).
Za razliku od do sada citiranih, postoji i podatak od Greenberga (109), prema kojem vitamin D (10.000 j. U. S. P/1 g težine štakora) nema nikakvo stimulirajuće djelovanje na apsorpciju stroncija iz probavnog trakta.
Mraz (110) je našao da se s porastom vitamina D u hrani povećava depozicija oralnog aplikiranog Sr-85 u tijelima plića. Nakon intraperitonealne aplikacije radiostroncija dobilo je upravo ohranat rezultat. On je dozu od 20 200.000 i. j/kg D vitamina dao životinjama 3 tjedna prije aplikacije izotopa.
Rezultati pokusa u kojima se D vitamin dodavao štakorskoj hrani u količinama od 200-800 i. j./100 g hrane, pokazuju da D vitamin u toj dozi ne utječe na skeleton retenciju kalciija ni stroncija (111).
Iz svega do sada izloženog o djelovanju vitamina D očito je da on nije važan samo za apsorpciju stroncija u gastrointestinalnom traktu, nego da mu pripada određena uloga i u metabolizmu stroncija u skeletu.

Paratiroidna žlijezda

Količina kalciija u krvi, a prema tome i u ostalim tjelesnim tekucinama, kompleksna je funkcija mnogih faktora, od kojih su od naročitog značaja ravnootcja između kosti i krvi i funkcija paratiroidne žlijezde.
Postoje dvije teorije koje nastoje objasniti način djelovanja parathormona. Jedna, čiji je glavni nosilac Albright (112) smatra da je bubreg organ na koji paratiroidneja primarno djeluje. Prema toj bi teoriji pojačana ekskrecija fosfora kroz bubreg dovela do sniženja sadržaja fosfata u serumu, a to izaziva intenzivnu prelazačenje kalcijskog fosfata iz kosti i time povišenije serumskog kalciija. Mnogi su autori kasnije pozmjeljali o ispravnosti ove teorije. Tako su Stewart i Bowen (113) uspjeli kod nefrektomiranih pasa parathormonom izazivati povišenije serumskog kalciija, a Talmage (114) je sa suradnicima 1953. godine uspio nefrektomiranim i paratiroidektomiranim štakorima održavati konstantnu koncentraciju kalciija u serumu dodavanjem parathormona.

Prema shvaćanju druge grupe autora, parathormon djeluje direktno na kost otapajući je. McLean (110) također misli da se radilo o primarnom djelovanju na kost, a tek sekundarno na bubreg. Prema njegovoj bi teoriji cijeli proces održavanja serumskog kalciija na konstantnom nivou bio ovakav: ako količina kalciija u serumu padne, nužitetinjaju pojačano luči svoj hormon, a to dovodi do aktivnog otapanja količinu kristala pa time i do prelaza kalciija i fosfora u ekstracelularnu tekuci. U tom momentu stupaju u akciju bubrezni, koji nastoje da se po pratno otupljeni fosfor izluči kroz urin. Pod djelovanjem parathormona,
naime, smatruje se tubularna recapsorpcija fosfata (117, 118). Albright je svoju teoriju kasnije nešto modificirao prihvativši da parathormon u izvesnim okolnostima djeluje direktno na kost, ali je u osnovi ostao pri mišljenju da je glavna aktivnost parathormona u reguliranju metabolizma kalcija i fosfora i da su koštane promjene, ako se one jave, rezultat pasivnih fizičko-kemijskih procesa.

U održavanju crumskog kalcija na konstantnom nivou pripada važna uloga i nov po opisanom, hipokalcemičnom hormonu glandule paratiroide – kalcitoninu. On snižuje količinu kalcija u krv, a do njegovog lučenja dolazi kad se vrijednost crumskog kalcija povisi za otprilike 3% (120, 121). Prema mišljenju nekih autora, međutim, kalcitonin je hormon štitne štićenje i njegova je produkcija neovisna o nuštitinju (122, 123).

Istraživanjem utjecaja parathormona na metabolizam stroncija bavio se Tweedy (126) još 1915. god. (na štokorima). On je našao da 500 H ansunovih jediničica toga hormona (uplriranog jednokratno) ne djeluje na retenciju i ekskrekciju radioaktivnog stroncija. Ponavljajući istu doz parathormona nakon 24 sata, primijetio je dosta značajne promjene. U odnosu na kontrolne životinje smanjila se retencija stroncija u femurima i njegova fekalna ekskrcija, a povećala se eliminacija stroncija urinom i deponiran je tog minerala u bubreznom tkivu.

Da se ekstraktom paratiroideja povećava urinarna ekskrcija stroncija, pokazali su 1956. i Bacon, Patrick i Hansard (127). Oni su kod štokora tretiranih parathormonom zapazili i povećano deponiranje, radioaktivnog stroncija u bubrezima.

Wasserman i Comar (125) tvrde da odstranjenje nuštitinječe ne možnja stupanj capsorpcije Sr-85 i Ca-45 5 i 24 dana iza operacije. Du tih su rezultata došli i pokusima in vivo (sa štokorima) i in vitro (s izoliranim segmentom tankoga crijeva).

Utjecajem hormona paratiroideje na metabolizam stroncija i kalcija bavio se dosta Lengeman (128) koji je koristio kosti pilećeg embrija. Ustanovio je da i mala količina ekstrakta paratiroideje (0.01, 0.1, 1.0 i 10 i. j./ml) smanjuje količinu stroncija-85 u kosti. On je smatrao da parathormon djeluje na snizenje sadržaja Sr-85 u kostima tako da povećava njegovo kretanje od kosti u tekućinu. Za cijelog njegova pokusa se pokazalo da proučavanje parathormona, u neku ruku, smanjuje diskriminaciju prema stronciju. U Institutu za medicinska istraživanja u Zagrebu vršeni su pokusi u kojima je jednoj grupi štokora operativno ostranjena nuštitinja, a drugoj je grupi životinja injiciran i. m. parathom svakodnevno tokom 3 sedmice (ukupno 525 i. j.). Rezultati pokazuju jednako veliku skeletnu retenciju radiaktivnog kalcija i stroncija u obje grupe životinja (89).
MINERALNI METABOLIZAM Ca I Sr U MLADOM ORGANIZMU

Skelet je obično u stanju dinamičke ravnoteže, a to znači da su analoški procesi u balansu s katabolikima. To, međutim, ne vrijedi za organizam u rastu. Iada stvaranje kosti prevladava nad resorpcijom kosti. Ispitivanje mineralnog metabolizma kod mladog organizma i promjene koje nastaju ovisno o dobi bile su predmet mnogo istraživanja.

Rast skeleta obuhvata akrekciju i remodeliranje mineraal kosti, a to konačno rezultira u definitivnom obliku i veličini kosti. (Pod akrekcijom razumijevamo ugrađivanje kostnih soli u neizmjenljivu frakciju kosti.) Carlson (129) je pokusima na kostima štakora pokazao da je akrekcija proporcionalna porastu tjelesne težine u cijelini, a da se starenjem akrekcija smanjuje. Carlson je našao da je akrekcija u tijelima mladih štakora 2,4%, dok je po Baweru (130) ona kod odraslih štakora svega 0,7% od ukupnog sadržaja kalcijja na dan.

Copp (131) je, također 1951. god., ispitivao utjecaj dobi i hrane s niskim sadržajem fosfora na kalcifikaciju i depoziciju nekih radioaktivnih metala u kost. Primijetno je da skelet odraslih štakora prima radioizotope neprekidno prvi i drugi sat i maksimum postiže u četvrтом satu, dok skelet mladih štakora prihvata izotope mnogo brže i maksimum postiže u roku od 30 do 60 min.

Hansard je sa suradnicima (132) u pokusima na teladi zapazio da je apsorpcija radiokalcija najintenzivnija kod teladi najmlađi dobi, a smanjuje se sa starošću životinje. Svoje je rezultate Hansard potvrdio pokusima što ih je 1957. izvršio zajedno s Crowderom (133). I u tim je eksperimentima bila apsorpcija, retencija i ekskretacija kalcija najveća kod najmlađih štakora, a potom se smanjivala u različitoj zrelosti, a od onda se do starosti smanjivala postepeno. Ti rezultati potvrđuju i zaključke Freyderberga-Lukasena i Verrar (134).

Pickering je sa suradnicima (135) ispitivao dinamiku rasta na skeletu mladih štakora. On je u svojim pokusima koristio čitave skelete ili duge kosti mladih, muških štakora u dobi od 1 do 75 dana. Primijetio je da je taj period života karakterističan po učvršću u luksuznom kemijskom sastavu kosti. Zapazio je porast u mineralnim sastojcima kosti i relativno smanjenje u organskom matriksu. Količina kalcija (i magnezija) se u skeletu izmjenjuje u toku rasta. U skeletu svage 12 mg kalcija, u 75. danu bilo ga je 1700 mg. U doba rasta, 65% kalcija prilagodljen je u skelet, dok je porast vod voda u skeletu svega 12 mg kalcija, u 75. danu bilo ga je 1700 mg. U doba rasta, 65% kalcija prilagodljen je u skelet, a 95% inkorporiranog kalcija-45 je bilo retinirano u skeletu usprkos intenzivnoj izmjeni koja u to doba u skeletu odigrava. Na temelju svojih eksperimenta Pickering je zaključio da količina kalcija u skeletu nije jednaka u dugim kostima i cijelom skeletu.

Zbog karakteristika koje pokazuje mladi organizam (veća apsorpcija, brža i trajnija fiksacija kalcija u kostima) zanimljivo je znati kako se
takav organizam ponaša prema stronciju koji je u mnogočemu sličan kalciju. Tutt i Vaughan (136) su (još 1949) ispitivali ovisnost retencije i eliminacije Sr-89 i Sr-90 o dobi životinja (žečeva). I oni su našli da i retencija i eliminacija radioaktivnog stroncija ovise o starosti eksperimentalnih životinja. Kod žečeva od 6 tjedana retencija je iznosila 55%, od 6 mjeseća 20%, a kod odraslih svega 10% doze primljene intravencno. Eskreracija je varirala od 40% kod najmlađih do 70 ili 80% kod starijih životinja.

Isti su autori došli do zanimljivih zapažanja na temelju ispitivanja retencije i eliminacije stroncija kod dojilja i nedojilja. Pokazalo se da nedojilje retiniraju više od dojilja iste dobi. Kod dojilja od 6 mjeseci nađeno je svega 10% retiniranu dozu, dok je kod njihovih mladih količina radioaktivnog materijala iznosila 20% majčine doze.

Postoji dosta studija o kretanju stroncija i kalcija između majke i feta. Tako je E. M. Widdowson (137) 1962 g. objavila sa suradnicima radnju o metabolizmu kalcija, stroncija i nekih drugih minerala u perinatalnom dobu. Primijetili su da je u amnionskoj tekućini viša koncentracija većine minerala nego u fetalnom urine, jedino su stroncij i odnos Sr/Ca pokazivali više vrijednosti u obratnom smislu. Diskriminacija stroncija u odnosu na kalcij zapačiće već 24 sata iza rođenja većom reapsorpcijom kalcija u bubrežnim tabulima. Činjenica da mekonijum sadržava veće količine većeg procenta minerala nego fetalni urine i da je uvijek Sr/Ca u njemu mnogo veći nego u amnionskoj tekućini pokazuje da se reapsorpcija kalcija preferira u fetalnom gastrointestinalnom traktu.

Budući da je mljecko glavna hrana dojenčadi, u praksi je od naroditog značaja prvo: odnos stroncija (eventualno stroncija-90) i kalcija u mlječku, i drugo: taj odnos u kostima dojenčadi. Takvim se ispitivanjima bavio Loutit (139) iz Zavoda za radiološka istraživanja u Harwellu. On je (1964) na temelju svojih pokusa pretpostavio da se u dostojnostignosti može pretpostaviti da je odnos Sr-90/Ca u kostima dojenčadi (u prvoj godini njihova života) jednak onoliko velikom kao u mlječku. On je našao da se ukupna diskriminacija prema stronciju, od mlječka koje dojenče prima do njegovog skeleta (faktor »kost/mlječko«) može izraziti vrijednošću 0.25. Upozorio je da se faktor »kost/mlječko« (Sr/Ca u kosti : Sr/Ca u mlječku) ne smije zamijeniti sa OR faktorom (Sr/Ca u kosti : Sr/Ca u ukupno primljenoj hrani).

Da retencija radioizotopa i diskriminacija prema stronciju ovise o dobi eksperimentalnih životinja pokazao je i McClellan (139) svojim pokusima koje je vršio na mladim svinjama. Životinje od 15 do 240 dana primile su jednakotratno kalcij-45 i stroncij-90. Kod najmlađih prašćica bila je primijećena najveća retencija obaju izotopa. S povećavanjem dobi smanjivala se retencija. Diskriminacija Sr-90 (u odnosu na kalcij) također se povećavala s dobi eksperimentalnih životinja, a najintenzivnije promjene nastajale su u prvih 6 tjedana. On je time potvrdio svoje
ranije rezultate u kojima je OR za životinje od 6 tjedana iznosio 0.7 do 0.8; za one od 6 tjedana do 3 mjeseca 0.4, a za najstariju grupu životinja (iznad 3 mjeseca) 0.29.

Lough (140) je našao da je kod ljudske dojencadi OR (observed ratio) 0.9. i to je znatno veća vrijednost od one kod odraslih osoba koja iznosi oko 0.3.

Cini se da se tako velika frakcija peroralno primljenog radioaktivnog stroncija i kalcija nalazi u skeletu mladih životinja zbog promjena u apsorpcivnom mehanizmu gastrointestinalnog trakta sa skoro kompletnom apsorpcijom stroncija i kalcija. To je, po svojoj prilici, i glavni uzrok promjenjene diskriminacije. McClellan (139) smatra da različitoj diskriminaciji stroncija kod mladih i odraslih životinja može biti uzrok i drukčija skeletna izmjena stroncija i kalcija, koja nastaje starenjem životinja.

Literatura

Summary

SOME FACTORS INFLUENCING THE METABOLISM OF CALCIUM AND STRONTIUM

In the first section the structure of the bone is shortly described with special regard to calcium and phosphorus as its most important inorganic constituents.

The paper is mainly devoted to the reviewing of the literature on the comparative metabolism of calcium and strontium. The behaviour of calcium and strontium is analyzed from their entry into the organism by way of the gastrointestinal tract, in tissue fluids, placenta, mammary glands and kidneys. The literature quoted shows that in all membranes in which the two ions come into contact the organism makes discrimination against strontium.

Data on the effect of some nutritional factors, vitamin D and parathormone on calcium and strontium metabolism are reviewed.

The last section deals with reduced for discriminating ability of the young organism.

Institute for Medical Research
incorporating the Institute of
Industrial Higiene, Zagreb

Received for publication November 24, 1965.