SPECIFICITY OF JUMPING, ACCELERATION AND QUICK CHANGE-OF-DIRECTION MOTOR ABILITIES IN SOCCER PLAYERS

Asier Los Arcos1, Jurdan Mendiguchia2, and Javier Yanci1

1Faculty of Education and Sport, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
2Zentrum Rehabilitation and Performance Center, Department of Physical Therapy, Barañain, Spain

Abstract:

The purpose of this study was to determine the underlying structure of the stretch-shortening cycle (SSC) jumping, acceleration and change-of-direction (COD) abilities in soccer players using principal component factor analysis (PCA). Based on the results of recent studies on male college athletes, we hypothesized that slow SSC jumping, acceleration and COD represent independent motor abilities in soccer players. Forty two soccer players (23.2±2.36 yr) performed three tests for each group of rapid lower-body movements: a) three vertical slow SSC jumping tests – squat jump (SJ), countermovement jump (CMJ) and arm swing countermovement jump (CMJAS), b) three acceleration tests – 5, 10 and 15 meter sprint times (ACC5, ACC10 and ACC15), and c) three COD tests – modified agility test free (MATF), the 505 agility test (505) and 20 yard agility test (Y20). PCA was applied to establish the relationships among the factors (i.e. motor abilities) underlying the included manifest variables (i.e. performance tests). This procedure reduced all variables to a smaller number of independent latent dimensions. The results indicated three separate factors that may correspond to slow SSC jumping, acceleration and COD abilities. The magnitude of the correlation coefficients among the three motor abilities extracted was r<.56. Therefore, it is suggested that slow SSC jumping, acceleration and COD abilities represent independent motor abilities and consequently these should be trained and evaluated separately to assess soccer players’ physical profiles.

Key words: football, performance, vertical jump, sprint, agility

Introduction

Soccer players are required in an endurance context to turn, sprint and change pace during matches (Stølen, Chamari, Castagna, & Wisløff, 2005). Specifically, during competitive matches, soccer players perform about 1300 changes of activities (Bloomfield, Polman, & O’Donoghue, 2007; Sarmento, et al., 2014; Stølen, et al., 2005), including 220 high-intensity actions (Di Salvo, et al., 2007) and 2-4 s s accelerations approximately every 90 s (Stølen, et al., 2005; Vigne, Gaudino, Rogowsk, Alloatti, & Hautier, 2010) at near maximal intensity. Due to importance of these different rapid movements during a soccer game (Hoff, 2005), jumping, acceleration and changes-of-direction (COD) abilities have been widely tested to evaluate neuromuscular performance. With this aim, numerous types of jumps (Caldwell & Peters, 2009; Casajus & Castagna, 2007; Kalapotharakos, et al., 2006; Lockie, et al., 2014; Stølen, et al., 2005; Wisløff, Castagna, Helgerud, Jones, & Hoff, 2004; Yanci, Los Arcos, Mendiguchia, & Brughelli, 2014), different sprinting distances (Caldwell & Peters, 2009; Gissis, et al., 2006; Lockie, et al., 2014; Magal, Smith, Dyer, & Hofman, 2009; Reilly, Williams, Nevill, & Franks, 2000; Rosch, et al., 2000; Stølen, et al., 2005; Taskin, 2008; Vescovi & McGuigan, 2008; Wisløff, et al., 2004; Yanci, et al., 2014) and different types of CODs (number of CODs, force applications and distances) (Caldwell & Peters, 2009; Lockie, et al., 2014; Magal, et al., 2009; Reilly, et al., 2000; Stølen, et al., 2005; Vescovi & McGuigan, 2008; Yanci et al., 2014) have been applied. However, to date, there is no consensus about which is the best way (i.e. test battery) to test these abilities (Rosch, et al., 2000).

Despite numerous studies that have examined the relationship between jumping, sprinting and
agility/change-of-direction abilities in different soccer codes and players (Buttifant, Graham, & Cross, 2009; Gorostiaga, et al., 2009; Little & Williams, 2005; Lockie, et al., 2014; McCurdy, et al., 2010; Sheppard, Young, Doyle, Sheppard, & Newton, 2006; Vescovi & McGuigan, 2008; Wisloff, et al., 2004; Yanci, et al., 2014), the association among these abilities remains unclear. Several studies have found weak associations in professional (Little & Williams, 2005), junior (Buttifant, et al., 2009) and amateur (Yanci, et al., 2014) soccer players. In addition, the association magnitude between jumping and sprinting tests varied considerably with regard to sprint distance and jump type (i.e. unilateral vs. bilateral and horizontal vs. vertical) in elite soccer players (Gorostiaga, et al., 2009; Wisloff, et al., 2004). Finally, in relation to COD-jumping associations, the correlation magnitudes ranged from .09 to .69 in amateur soccer players (Yanci, et al., 2014), and considerable differences in the correlation coefficients were found in other papers (Brughelli, Cronin, Levin, & Chaouachi, 2008; Chaouachi, et al., 2012), showing evidence of the controversy among the studies that have assessed the association among these three abilities.

Together with other factors (i.e. soccer code, competitive level), the use of different jumping, sprinting and agility/COD tests further complicates the comparison of the studies. However, this problem can be avoided through factorial analysis using principal component factor analysis (PCA) (Nunnally & Bernstein, 1994), and the limitations of the correlation use (Vescovi & McGuigan, 2008) can be overcome. Multivariate statistical techniques have been proposed to advance our knowledge regarding the mentioned structure of motor abilities (Salaj & Markovic, 2011). These authors proposed PCA and calculated the relationships among several factors (change-of-direction speed, slow and fast stretch-shortening cycle [SSC], jumping ability and sprinting ability) in male college athletes. Similarly, other studies have linked agility and strength qualities (Marković, Sekulić, & Marković, 2007) or agility and leg extensor strength and power (Marković, 2007) in male physical education students. However, to date, we have not found any studies that have conducted this type of analysis among jumping, acceleration and COD abilities of soccer players using different types of tests.

Therefore, the main aim of the study was to analyse the specificity of jumping, acceleration and quick change-of-direction abilities in soccer players. We also proposed the use of PCA to determine the underlying structure of slow SSC jumping, acceleration and COD abilities. Based on the results of recent studies on male college athletes (Salaj & Markovic, 2011), we hypothesized that slow SSC jumping, acceleration and COD represent independent motor abilities in soccer players.

Methods

Participants

Forty two male soccer players (age: 23.2±2.4 years; body mass: 76.6±8.2 kg; body height: 179.6±5.8 cm; body fat: 13.2±4.2%) participated in this study. They competed in the Spanish 2nd B and 3rd division championships and trained 3-5 times per week during the study: a) 2nd B division team: Monday - recovery or compensatory session; Wednesday - strength training and small-sided games, Thursday - technical drills and large-sided games; Friday - technical and tactical drills, Saturday - tactical training; b) 3rd division team: Tuesday - continuous running or interval training and technical-tactical exercises, Wednesday - small-sided games; Friday - speed drills and tactical training. The players had at least 13 years of soccer training experience. The study was conducted according to the Declaration of Helsinki and was approved by the local ethics committee.

Procedure

We examined the relationship among slow SSC jumping, acceleration and COD abilities in soccer players using PCA to establish the relationships among the factors (i.e. motor abilities) underlying the included manifest variables (i.e. performance tests). The applied tests were: a) vertical SSC jumping tests (squat jump [SJ], countermovement jump [CMJ], and arm swing countermovement jump [CMJAS]), b) acceleration tests (5-, 10- and 15-meter sprint times [ACC5, ACC10 and ACC15]), and c) COD tests (modified agility test free [MATF], the 505 agility test [505], and 20-yard agility test [Y20]).

In order to assess neuromuscular performance, the players completed the same physical testing battery at the end of the season (i.e. in June). Players were familiarized with the testing procedures during the in-season testing and training sessions. The test procedure consisted of one session with the following test order: jump tests (i.e. SJ, CMJ, CMJAS), COD tests (i.e. MATF, Y20, 505) and sprint tests. All players performed the tests at the same time of the day (7-9 p.m.) and on an indoor surface. During the testing session, the subjects wore T-shirts, shorts and standard athletic shoes. Subjects completed a standardized warm-up consisting of 3 minutes jogging followed by a skipping and scapling exercise, stride length and three accelerations with change of direction. Before each test, the subjects had the opportunity to perform a non-registered trial. The study was supervised by the researchers, and the best result of the three trials of each test was used for further analysis. The subjects were requested not to perform strenuous exercise 48 hours before the testing session.
Jumping.

The players performed three jumps of each type of vertical jump test (i.e. SJ, CMJ, CMJAS). In all tests, the recovery time between jumps was 20 seconds and emphasis was placed on performing the exercise correctly. Any jump that did not meet the considered requirements was excluded from calculations and repeated. All jumps were assessed using an optical measurement system (Optojump-next, Microgate, Bolzano, Italy).

SJ: Subjects squatted down until the knees were bent at 90 degrees, keeping the trunk straight, and jumped from this semi squatting position without any countermovement. The participants kept their hands on the hips throughout the test. The athlete jumped vertically as high as possible. Both the take-off and landing had to be from and on both feet, with no initial steps or shuffling (Komi & Bosco, 1978). The intraclass correlation coefficient (ICC) was .952.

CMJ: For CMJ, as proposed by Bosco and Komi (1979), the vertical-jump standardization was achieved by requiring a 90º knee bend, keeping hands on the waist throughout the jump, avoiding undue lateral and frontal movements and landing on straight legs after each jump. The ICC was .976.

CMJAS: Like the CMJ jump protocol, but allowing an arm swing. The ICC was .973.

Change-of-direction ability (CODA).

The players performed of each type of COD test three times (i.e. MATF, Y20 and 505). In all the tests recovery time between repetitions lasted at least 3 minutes and emphasis was placed on performing the exercise correctly. Any trial that did not meet the considered requirements was excluded from calculations and repeated. All COD tests were assessed using the same timing gates (Powertimer, Newtest® Oy, Oulu, Finland).

MATF (Figure 1A): The soccer players began with both feet together 0.5 m away from cone A, and completed the protocol according to Sassi et al. (2009). The players performed the test using the same directives, but were not required to move laterally or face forward. The players had to touch the top of the cone instead of its base. A-B distance (5 m): At his own discretion, each subject sprinted forward to cone B and touched the top of the cone with the right hand. B-C distance (2.5 m): Facing forward the participant shuffled to the left to cone C and touched the top of the cone with the left hand. C-D distance (5 m): The soccer player then shuffled to the right to cone D and touched its top. D-B distance (2.5 m): The participant shuffled back to the left to cone B and touched its top. B-A distance (5 m): Finally, the soccer player moved as quickly as possible and returned to line A. The total distance covered was 20 m, and the height of the cones was 0.3 m. Time measurement started and finished when the subject crossed the line between the tripods. The ICC was .799.

Y20 (Figure 1B): A 2-ft piece of tape was placed on an indoor surface to mark the center line. Five yards (i.e. 4.57 m) were measured from the center line in both directions and these spots were also marked with the tape. Each subject was instructed to straddle the center line with his feet on the line. On the given command, the subject ran towards the line of his choice and touched it with his foot, changed direction and ran past the center line to the opposite line and touched it with his foot. The subject again changed direction by pivoting and ran through the center line. The drill was over when the subject’s body crossed the center line. The ICC was .715.

505 (Figure 1C): The athlete sprinted forward to a line 5 m ahead and pivoted 180º before returning to the start position (Sheppard & Young, 2006). Time measurement started and finished when the subject crossed the line between the tripods. The ICC was .874.
Acceleration.
The sprint test consisted of three maximum accelerations of 15 m with a 3-minute rest between each one (Los Arcos et al., 2014). Subjects were placed at 0.5 m in front of the timing gate (Micro-gate® Polifemo, Bolzano, Italy) placed 0.4 m above the ground and with an accuracy of 1 ms. Split times were recorded at 5 m, 10 m and 15 m (ACC5, ACC10, and ACC15). ICC values were .873, .927 and .957 for 5 m, 10 m and 15 m times, respectively.

Results
Table 1 shows the results in all acceleration, COD and jump tests.

<table>
<thead>
<tr>
<th></th>
<th>M±SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ (cm)</td>
<td>35.30±4.76</td>
<td>25.30–44.70</td>
</tr>
<tr>
<td>CMJ (cm)</td>
<td>40.94±4.93</td>
<td>33.00–51.80</td>
</tr>
<tr>
<td>CMJAS (cm)</td>
<td>49.10±5.92</td>
<td>37.80–62.50</td>
</tr>
<tr>
<td>MATF (s)</td>
<td>4.91±1.6</td>
<td>4.57–5.29</td>
</tr>
<tr>
<td>Y20 (s)</td>
<td>4.84±1.7</td>
<td>4.52–5.26</td>
</tr>
<tr>
<td>505 (s)</td>
<td>2.51±0.9</td>
<td>2.32–2.77</td>
</tr>
<tr>
<td>ACC15 (s)</td>
<td>2.35±0.9</td>
<td>2.15–2.53</td>
</tr>
<tr>
<td>ACC5 (s)</td>
<td>.99±.05</td>
<td>.88–1.08</td>
</tr>
<tr>
<td>ACC10 (s)</td>
<td>1.70±0.7</td>
<td>1.55–1.87</td>
</tr>
<tr>
<td>ACC15 (s)</td>
<td>2.35±0.9</td>
<td>2.15–2.53</td>
</tr>
</tbody>
</table>

The correlation magnitudes among acceleration, COD and jumping tests varied considerably depending on the test used (from small to large) (Table 2).

The PCA reduced nine manifest variables to three principal components (i.e. factors), which explained 84.68% of the variance of all variables (Table 3). Acceleration tests had the highest factor loadings (correlations) with the first principal component; the second principal component was highly correlated with the three COD tests, and the third principal component was highly correlated with the three jumping tests.

Finally, the correlation coefficient (r) among the three extracted principal components was in all cases lower than .55, pointing to the relative independence (i.e. specificity) of each principal component (Table 4).
The main aim of the study was to analyse the specificity of jumping, acceleration and quick change-of-direction abilities in soccer players. We hypothesized that slow SSC jumping, acceleration and COD abilities represent independent motor abilities in soccer players. In order to address the limita-

tion of correlation analysis, a multivariate statistical technique was used to understand the relationship among the slow SSC jumping, acceleration and COD abilities. Taking into account that the simple and interpretable factor structure of the nine performance tests used was obtained and that the association between the extracted three motor abilities was, at most, .55, we suggest that slow SSC jumping ability tests using correlation analysis, a multivariate statistical technique was used to understand the relationship among the slow SSC jumping, acceleration and COD abilities. Taking into account that the simple and interpretable factor structure of the nine performance tests used was obtained and that the association between the extracted three motor abilities was, at most, .55, we suggest that slow SSC jumping ability tests using correlation analysis, a multivariate statistical technique was used to understand the relationship among the slow SSC jumping, acceleration and COD abilities. Taking into account that the simple and interpretable factor structure of the nine performance tests used was obtained and that the association between the extracted three motor abilities was, at most, .55, we suggest that slow SSC jumping ability tests using correlation analysis, a multivariate statistical technique was used to understand the relationship among the slow SSC jumping, acceleration and COD abilities. Taking into account that

Discussion and conclusions

The main aim of the study was to analyse the specificity of jumping, acceleration and quick change-of-direction abilities in soccer players. We hypothesized that slow SSC jumping, acceleration and COD represent independent motor abilities in soccer players. In order to address the limita-

<table>
<thead>
<tr>
<th>ACC5</th>
<th>ACC10</th>
<th>ACC15</th>
<th>MATF</th>
<th>505</th>
<th>Y20</th>
<th>SJ</th>
<th>CMJAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>.90</td>
<td></td>
<td></td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. ACC5=5 m sprint; ACC10=10 m sprint; ACC15=15 m sprint; MATF=Modified agility test free; 505=505 agility test; Y20=20-yd agility test; SJ=squat jump test; CMJAS=Arm swing countermovement jump test; CMJ=Countermovement jump test.

Table 3. Results of principal component factor analysis

<table>
<thead>
<tr>
<th>Factor loadings</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Commonalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC5</td>
<td>.953</td>
<td>.436</td>
<td>.372</td>
<td></td>
</tr>
<tr>
<td>ACC10</td>
<td>.973</td>
<td>.472</td>
<td>.498</td>
<td></td>
</tr>
<tr>
<td>ACC15</td>
<td>.967</td>
<td>.568</td>
<td>.519</td>
<td></td>
</tr>
<tr>
<td>MATF</td>
<td>.577</td>
<td>.449</td>
<td>.813</td>
<td>.708</td>
</tr>
<tr>
<td>505</td>
<td>.349</td>
<td>.544</td>
<td>.829</td>
<td>.711</td>
</tr>
<tr>
<td>Y20</td>
<td>.375</td>
<td>.424</td>
<td>.917</td>
<td>.851</td>
</tr>
<tr>
<td>SJ</td>
<td>.341</td>
<td>.913</td>
<td>.427</td>
<td>.856</td>
</tr>
<tr>
<td>CMJAS</td>
<td>.570</td>
<td>.899</td>
<td>.569</td>
<td>.829</td>
</tr>
<tr>
<td>CMJ</td>
<td>.583</td>
<td>.952</td>
<td>.543</td>
<td>.920</td>
</tr>
</tbody>
</table>

Note. Factor 1=Acceleration; Factor 2=Jumping; Factor 3=Change of Direction; ACC5=5 m sprint; ACC10=10 m sprint; ACC15=15 m sprint; MATF=Modified free agility test; 505=505 agility test; Y20=20-yd agility test; SJ=squat jump test; CMJAS=Arm swing countermovement jump test; CMJ=Countermovement jump test.

* The highest correlations with principal components are bolded.

Table 4. Correlations (90% confidence interval) among the extracted principal components

<table>
<thead>
<tr>
<th>Principal components</th>
<th>Acceleration</th>
<th>Jumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumping</td>
<td>- .51; ±.19**</td>
<td>-</td>
</tr>
<tr>
<td>Change of direction</td>
<td>.49; ±.20**</td>
<td>- .54; ±.19**</td>
</tr>
</tbody>
</table>

Note. **Correlation is significant at the .01 level.
studies have shown in several team sports (Buttifant, et al., 2009; Little & Williams, 2005; Sheppard, et al., 2006; Vescovi & McGuigan, 2008; Yanci, et al., 2014). Similarly and in concordance with other studies (Gorostiaga, et al., 2009; McCurdy, et al., 2010; Wisloff, et al., 2004; Yanci, et al., 2014), the association magnitudes between jumping and sprinting tests varied considerably depending on sprint distance and jump type (from -.33 to -.64). The greater correlation according to the bilateral jumps used was between ACC15 and CMJ (r=-.64), similar to the results of other studies performed with elite (Gorostiaga, et al., 2009; Wisloff, et al., 2004) and amateur (Yanci, et al., 2014) soccer players. In addition, the association between slow SSC jumping and COD tests never exceeded a correlation coefficient of r=-.55. Among other factors, the characteristics of the tests (i.e. time to complete the test, No. of CODs, and primary application of force throughout the entire test) (Brughelli, et al., 2008; Chauoachi, et al., 2012) could explain contradictory results found in this and other studies (Yanci, et al., 2014). For example, tests of different durations may be subject to the influence of energetics rather than just assessing COD ability. Namely, each COD requires a braking force followed by a propulsive force, which in turn may increase the importance of eccentric-concentric muscle force capability and endurance as the number of turns increases (Brughelli, et al., 2008). Therefore, the association among COD, jump and acceleration tests in soccer players remains unclear.

The associations between the first principal factor and the three acceleration tests were the highest (r=.95-.97), while the correlation among the rest of the tests ranged from .34 to .58. These results suggest that the first obtained principal component could represent acceleration ability in soccer players. In the same way, the second principal component correlated highly with the jumping tests (r=.90-.95), but this did not occur with the test addressing other motor abilities. Therefore, the second principal component could represent slow SSC jumping ability in soccer players. The last principal component correlated with the three COD tests (r=.81-.92) better than with the other tests (r=.37-.57). The third component could represent COD ability in soccer players. Our results agree with those of Salaj and Markovic (2011) despite these authors used two different COD tests (i.e. lateral stepping, LS, and figure-of-eight run, FIG8), different sprint distances (i.e. maximal sprint from a crouch start over distances of 20 m, SPR20, and maximal sprint from a ‘flying’ start over a 20 m distance, FLY20) for acceleration and a standing long jump (i.e. SLJ) in testing male college athletes. Therefore, the same motor abilities can be determined through different but similar types of tests and with different populations.

We found that performance in some COD, jumping or acceleration tests correlated better with the scores obtained in other tests of the same component with their corresponding components (i.e. motor abilities) (Table 3). In line with Salaj and Markovic (2011), the correlation between performance in different jump tests and jumping ability was higher with the CMJ test (r=.952) than with the rest of jump tests. In addition, performance in CMJ correlated very highly with the jumping component in U-15 (r=.96), U-18 (r=.93) and adult (r=.97) soccer players (Rodriguez-Rosell, Mora-Custodio, Franco-Márquez, Yañez-Garcia, & González-Badillo, 2017), which suggests the use of this generic jump test to assess jump ability. Also, in agreement with the study carried out with male college athletes (Salaj & Markovic, 2011), performance in the Y20 test presented a higher correlation (r=.917) with the COD component than others test (i.e. MATF and 505; r=.829). Even though the rest of the COD tests can be used, the Y20 seems to be an interesting option to assess COD in adult males. The magnitude of the associations between performances in all sprint tests (i.e. 5, 10 and 15 m) and the acceleration component was very similar (r=.953 – .973), and higher than the magnitudes described by Salaj and Markovic (2011) for 5 (r=.87) and 10 m (r=.92) sprints tests, but very similar in comparison to the association found with performance in the 20 m sprint test (r=.96), suggesting the use of distances of 10-20 meters to assess the acceleration component in male adults.

The associations among the extracted three motor abilities (i.e. acceleration, slow SSC jumping and COD abilities) were from moderate to large, but the correlation coefficient never exceeded the value of .54 (Table 4): from .49 to .54. These values were similar to the results observed in another study with male college athletes (Salaj & Markovic, 2011) with respect to acceleration-COD (r=.37) and acceleration-jumping (r=-.48) associations, but not regarding the jumping-COD relationship (r=-.25). The characteristics of the participants, as well as acceleration, jumping and change-of-direction demands of sporting activities in question (soccer vs. several team, racquet or combat sports) could explain the differences in the magnitude of the correlations between the studies. Even so, collectively, the results suggest that slow SSC jumping, acceleration and COD abilities are independent also in male adult soccer players.

Therefore, slow SSC jumping, acceleration and COD abilities should be evaluated separately in order to determine neuromuscular performance of soccer players. In addition, this suggests that each motor ability needs to be trained specifically, that is, the design of strength and conditioning programs should consider the independence of these three abilities.
References

Submitted: December 16, 2015
Accepted: August 18, 2016

Correspondence to:
Asier Los Arcos Larumbe, Ph.D
University of the Basque Country
Faculty of Education and Sport
Lasarte 71, 01007 Vitoria-Gasteiz, Spain
Phone: 0034 945 01 35 29
E-mail: asier.losarcos@gmail.com