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An optimal control theory for linear quadratic finite time horizon problem is presented and combined with
distributed parameters model of the BLDC (BrushLess Direct-Current) motor. Method appropriateness for mini-
mization of the phase current control error and energy delivered to the drive is proven. The paper focuses on finding
the best weighting configuration of the objective function. Presented control strategy is performed and presented
employing the numerical computations.
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Upravljanje bezkolektorskim DC motorom s distribuiranim parametrima zasnovano na linearnom
kvadratičnom regulatoru s konačnim horizontom. U ovom radu je predstavljen problem optimalnog upravljanja
modelom bezkolektorskog DC motora s distribuiranim parametrima zasnovan na linearnom kvadratičnom regula-
toru na konačnom horizontu. Metoda je prikladna za minimizaciju regulacijske pogreške fazne struje i utrošene
energije za pokretanje pogona. Fokus rada je na traženju najboljih koeficijenata funkcije cilja. Predstavljena strate-
gija upravljanja je realizirana i validirana u simulacijama.

Ključne riječi: bezkolektorski DC motor, numerička analiza, optimalno upravljanje

1 INTRODUCTION

BLDC (BrushLess Direct-Current) motors are com-
monly used in the industry. The improvement of power
switching electronic elements, especially integrated cir-
cuits, has led to development and improvement in control
strategies [8,14,16,17,19,20]. In literature, there are many
works related to the BLDC motor control including op-
timal control [11,13,18,24,27]. The adaptive control has
been studied in [1], where the current reshaping control al-
gorithm has been developed and applied to reduce torque
ripples. Another work has been proposed in [2], in this ap-
proach the robustness problem of the motor drive has been
evaluated. Significant papers are also related to the deter-
mination of the optimal switching sequence i.e. the deter-
mination of the control parameters such as the turn-on to
turn-off angle or the current amplitude [21,22], the map-
ping of the performance quantities of the interest to a de-
signer or the curve fitting technique to model the flux link-
age curves and obtain the optimal waveform of the exciting
current [23]. Researchers also proposed the control meth-
ods employing algorithms for ripple reduction and precise
speed tracking [9,12], sliding mode control or sensorless
methods [2] and finally the neural networks, fuzzy logic or
other artificial intelligence based techniques [3,7,24- 26].

The paper proposes the application of the well-known
LQR (Linear-Quadratic Regulator) control method for the
BLDC motor. The success of the control methodology
depends on precise modeling of the system, especially
on plant control accuracy. If there is a mismatch due to
the model inaccuracy (model parameters), plant changes
(changes in device, speed or power level) or nonlinearities
then the resulting controller will degrade and the system
may become unstable.

The really good modeling may be performed using a
distributed parameters model, where the state depends not
only on time, but also space configuration. Hence, it is
possible to take the end winding effect, cogging torque or
magnetic saturation into account, for instance. It guar-
antees not only stability of the system but also stability
margins [15]. The LQR control is calculated using a lin-
ear model of the plant under control. Employing the dis-
tributed, FE (Finite Element) based model of the motor, we
obtain an exact plant model and so the controller might be
optimal.

The idea of the presented paper deals with the finite
time linear quadratic based control of the BLDC motor
considering its distributed parameter finite element model
[11,13]. The control problem consists of finding the op-
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timal voltage control subject to minimization of the per-
formance index [18] and motor dynamics. The aim of the
paper is to optimally minimize current control error con-
sidering energy delivered to the motor. Moreover, the rela-
tionship between quadratic forms that describe energy lost
in the motor and energy delivered to the device is analyzed.
The influence of reference current shape on motor dynam-
ics condition is studied as well. Presented methodology is
confirmed with the numerical analysis of the problem.

2 CONTROL PLANT MODEL

The BLDC motor is modeled in 3D domain by finite el-
ement technique. The magnetic field behavior is described
by the Maxwell equations. The electric circuit equations
are also considered. The Galerkin method is used to obtain
the set of describing equations to be solved numerically.
The Euler backward procedure is applied to solve the cou-
pled field and circuit equations. Field - circuit equations
are strongly coupled by the common variable A – the mag-
netic vector potential. The strong coupling is obtained by
considering 27-node element of discretization with the first
order shape functions [4,5]. The global matrix system of
the field – circuit equations is as follows:

C(µ)A(t) + PI(t) = M(ω(t)) (1)

Q
dA(t)

dt
+ RI(t) = U(t) (2)

where A ∈ Rn, I ∈ Rm is the winding current vec-
tor, U ∈ Rm is the input voltage applied to the wind-
ings, C ∈ Rm×n is the matrix related to the permeabil-
ity, M ∈ Rm denotes the magnetization vector of movable
permanent magnets with speed ω, P ∈ Rm×m is the ma-
trix related to the node currents, Q ∈ Rm×n is the matrix
related to the linkage flux and R ∈ Rm×m is the resistance
matrix. Dimension m denotes the number of motor wind-
ings and n the number of discrete grid nodes describing the
electromagnetic field.

The continuous equation system (1)-(2) includes two
unknown vectors A and I. Using time – space discretiza-
tion in 3D domain, its discrete form is as follows [5,24]:
[

C(µ) P
Q
∆t R

] [
At

It

]
=

[
M(ωt+∆t)

Ut+∆t + Q
∆tA

t+∆t

]
(3)

Presented system of equation (3) is large and sparse. It
is solved iteratively with time step ∆t employing bi-
conjugate gradient algorithm BiCG [28].

The fixed grid technique is applied to consider the
movement during field calculation [11]. The grid of dis-
cretization is independent of rotor position. At each time
step, the electromagnetic torque is computed via Maxwell
stress tensor. The force is evaluated along surface defined

in the airgap between rotor and stator accordingly to the
eggshell approach [6,10].

The new rotor position and speed are computed by so-
lution of the discrete movement equation:
[

1 −∆t
0 1 + ∆t bJ

] [
Θt+∆t

ωt+∆t

]
=

[
Θt

ωt + ∆t 1
J T

t+∆t

]
,

(4)
where Θ is the rotor displacement, J is the rotor inertia, b
is the damping coefficient, T = TE − TL is the difference
between the electromagnetic and the load torque.

3 FINITE TIME HORIZON CONTROL PROBLEM

The aim of the authors is to compute the optimal con-
trol that minimizes the current control error and energy
delivered to the three phase Y-connected electric circuit
[18,27] of the motor. The problem consists of finding a
voltage vector U =

[
u1 u2 u3

]T
which transfers

winding currents I =
[
i1 i2 i3

]T
from initial state

I(0) to the reference current I0 = I(T ) with specified con-
trol time T. The problem is to minimize the objective func-
tion

J(U) =
1

2
ET (T )GE(T ) + . . .

+
1

2

∫ T

0

(
α ·ETE + β ·UTU

)
dt,

(5)

where E ∈ Rm is the current control error vector, U is
a function of the voltage control, α and β are the weight-
ing factors and the form 1

2ET (T )GE(T ) stands for energy
scrap function at time T, where G ∈ Rm×m is a coefficient
matrix defining system energy at the moment T. The form
1
2ET (T )GE(T ) is assumed to be zero because the error
E(T ) is assumed to be zero.

From the circuit equation (2), the matrix of self and mu-
tual inductances is computed. In case of the BLDC motor
for the high-speed operation the inductances are constant
and independent of rotor position. Moreover, the back
electromotive force EMF ∈ Rm is computed considering
total cross sectional areas of the go and return side of the
stator windings. Then, for the control purpose, the circuit
equation (2) is considered in the form:

L
dI

dt
+ RI + EMF = U. (6)

or in the state space form, where I is the state vector, that
inform about kinetic energy change in the plant windings:

dI

dt
= −L−1RI + L−1 (U−EMF) , (7)
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where L ∈ Rm×m is a constant matrix related to the self
and mutual inductance and R is a resistance matrix. As-
suming that the error E = I0 − I is a new state variable,
then equation (7) takes the following form:

dE

dt
= −L−1RE + L−1U∗, (8)

where U∗ = RI0 −U + EMF may be treated as a new
excitation, but only U vector is under control. Employing
the linear quadratic control methodology and considering
objective function (5) subject to (8), the control law is as
follows [29]:

U∗ = β−1L−1Γ (I0 − I) + RI0 + EMF. (9)

Using the calculus of variations, the feedback matrix gain
Γ ∈ Rm×m is computed from Riccati differential equation
[18]:

dΓ

dt
= −

(
L−1R

)T
Γ−ΓL−1R + ΓL−1β−1L−1Γ +αÎ,

(10)
where Î ∈ Rm×m is an identity matrix. The matrix gain
Γ depends on time, its values for all T/∆t steps have to
be calculated. The transversality condition may be stated
that Γ(T ) = G, applying the Euler method for derivative
solution approximation, the Riccati equation can be solved
iteratively using backward procedure from Γ(T) to Γ(0).

4 NUMERICAL EXPERIMENT

The applicability of the proposed control theory is in-
vestigated on a numerical 3D finite element based dis-
tributed parameter model of the real BLDC motor, which
parameters are presented in Tab. 1. The motor cross sec-
tional diagram is presented in Fig. 1. It has 6 stator slots
and 4 rotor poles [24].

The motor numerical model is simplified in a way that
the eddy current problem and material magnetic nonlinear-
ities are neglected. In addition, the motor is free of the load
torque. However, for the sake of control law accuracy, the
back electromotive force originated from rotating perma-
nent magnets is taken into account. The back electromo-
tive force EMF has sinusoidal course dependent on rotor
pole position and its amplitude in steady state for the motor
speed of 300 rad/s equals 289 mV. The mesh of the motor
includes the rotor and the stator discretization, the thin coil
system, the air gap and includes 16 290 nodes (Figure 2).
The model has 32760 unknown variables, where 9720 are
unknown Ar, 8640 are unknown Aϕ, 14400 are unknown
Az . The BiCG accuracy is set to 1,0·10−3.

In this numerical experiment, the outlined control tech-
nique is applied to the above-described motor model. The
proposed linear quadratic current regulator aims at mini-
mization of the current control error and energy delivered

Table 1. Motor parameters
Nominal voltage 36 V
Rated speed 4000 RPM
Rated torque 0,43 Nm
Rated power 180 W
Outer diameter of sta-
tor

27,5 mm

Inner diameter of stator 16,25 mm
Diameter of rotor 15 mm
Motor length 90 mm
Resistance/phase 1,0 Ω
Self-inductance/phase 0,4 mH
Mutual inductance 0,14 mH
Rotor inertia 1,098e-6

kgm2
Damping 3e-5 Nms

Fig. 1. Geometry of the BLDC motor

to the motor without loss of the motor dynamics. Desired
minimization of the objective function (5) is achieved by
selecting accurate {α,β} configuration and time horizon
T of the control. Choice of the time horizon is dependent
on the electric circuit time constant. Hence, it is possible to
obtain the control that the reference current may be reached
faster than at time related to the electric time constant.

To obtain the control law, firstly the time dependent
Riccati equation (10) is solved for Γ. This is achieved by
backward iterative procedure in T/∆t steps starting from
Γ(T)= G to Γ(0) of the discrete Riccati equation:

Γt−∆t = Γt −∆t
[
−
(
L−1R

)T
Γt − ΓtL−1R+ . . .

+ΓtL−1β−1L−1Γt + αÎ
]

(11)

The matrix Γ has equal diagonal coefficients values and
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Fig. 2. Discrete model of the BLDC motor

equal non-diagonal coefficients values, which courses in
time horizon T presents Fig. 3. These values are used to
calculate control law at time t.

Fig. 3. Solution of the Riccati equation

The relevance of the optimal control approach is
demonstrated by a computation assuming the reference
current equals to 3,6A. For the purpose, three sets of {α,β}
weighting factors are investigated aiming to explain how
the performance index configuration influences the control
objectives. These sample sets are {0,999; 0,001}, {0,99;
0,01} and {0,9; 0,1}, giving ratio α/β equal 1000, 100 and
10, respectively. The control time is assumed T=0,2 ms, as
a half of the electric time constant (0,4 ms).

Figures 4.-9. present phase voltages and currents for
the different factors α and β defined in the objective func-
tion (5).

To demonstrate the influence of proposed control tech-
nique, i.e. control parameters on rotor speed and torque,
figures 10.-11. present speed trajectory and torque trajec-
tory (including cogging torque) for all configurations of
weighting factors α and β.

Numerical analysis reveals the impact of the α/β rela-
tionship which has on control objective accomplishment:

Fig. 4. Motor controls for α=0,999 β=0,001

Fig. 5. Motor controls for α=0,99 β=0,01

Fig. 6. Motor controls for α=0,9 β=0,1

Fig. 7. Motor phase currents for α=0,999 β=0,001
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Fig. 8. Motor phase currents for α=0,99 β=0,01

Fig. 9. Motor phase currents for α=0,9 β=0,1

the higher value of the relationship, the smaller the control
error. The advantage of α over β directs the performance
index to control error minimization, since the weighting
factor α stands by α · ETE quadratic form. On the other
hand, with bigger β values, then the energy delivered to
the system is reduced and voltage peaks at phase com-
mutations are reasonably diminished, leading however to
larger settling times and control steady state errors. Table
2. presents the quantitative comparison of system perfor-
mance subject to different objectives configuration.

Table 2. Comparison of average control error, average
value of phase voltage and current rising time

{α,β}
configuration

Average
control
error by
Iref = 3, 6A

Average
value of
phase
voltage

Current
rising
time

{0,9;0,1} 0,391 A 3,91 V 0,29 ms
{0,99;0,01} 0,107 A 4,20 V 0,06 ms
{0,999;0,001} 0,034 A 4,31 V 0,03 ms

The average control error falls down with higher α /
β as expected, thanks to bigger amount of energy fed on
windings - the average value of phase voltage rises. This,
as well, has an impact on the current rising time which

Fig. 10. Rotor speed

Fig. 11. Electromagnetic torque

drops down when the objective function is oriented on tran-
sient state shortening. The time horizon of 0,2 ms for the
optimal control is met for {0,999; 0,001} and {0,99; 0,01}.
When α is only one order larger than β, the time constant is
larger than assumed. In comparison to infinite time horizon
optimal control, the finite horizon control gives the same or
improved quality indicators in all considered cases.

Lastly, the influence of the reference current shape on
motor dynamics is studied. Reference current of 3,6 A is
compared to 1,6 A and 5,2 A. Table 3. presents the aver-
age control error and Tab. 4. outlines average values of
the voltage fed on windings for different {α, β} weighting
configurations of the performance index.

Table 3. Comparison of average control error for different
reference currents

{α,β}
configuration

Iref =
1,6A

Iref =
3,6A

Iref =
5,2A

{0,9;0,1} 0,095 A 0,391 A 0,774 A
{0,99;0,01} 0,035 A 0,107 A 0,208 A
{0,999;0,001} 0,011 A 0,034 A 0,059 A

The above results show that the smallest control error
is achieved by small reference current and rises linearly
with an increase of the set point. Again, the weighting

AUTOMATIKA 57(2016) 2, 372–378 376



Finite time linear quadratic based optimal control of BLDC motor employing distributed parameters modeling Bernat et al.

Table 4. Comparison of average value of voltage controls
for different reference currents

{α,β}
configuration

Iref =
1,6A

Iref =
3,6A

Iref =
5,2A

{0,9;0,1} 1,70 V 3,91 V 5,74 V
{0,99;0,01} 1,78 V 4,20 V 6,31 V
{0,999;0,001} 1,82 V 4,31 V 6,49 V

configuration of {0,999;0,001} provides the best objective
achievement in terms of control error reduction. The finite
time optimal control system’s stability for different refer-
ence current values is proofed.

5 CONCLUSION
The paper presents a finite time linear quadratic optimal

controller, which minimizes the adopted objective func-
tion. Obtained optimal voltage control leads to the mini-
mization of the current control error subject to electric en-
ergy delivery reduction. The researchers focused on find-
ing the best weighting configuration of the performance
index and examined the influence of the reference current
shape on system dynamics and stability. Presented control
applicability is confirmed on distributed parameter finite
element model of the existing BLDC drive.

It might be concluded that the higher the value of the
α / β relationship, the better the system performs. The
best configuration seems to be {0,99; 0,01) by which
the control error was reasonably small and control time
horizon constraint fulfilled. Additionally, the phase volt-
age peaks at commutation change equal 35V by 3,6A set
point which is achievable with the market available power
stages, contrary to 155 V peaks present by the configura-
tion of {0,999; 0,001}. The finite time optimal current con-
trol proves, hereby, its applicability for the BLDC drives
applications.
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