

An ECA-based Semantic Architecture for IoT

Building Automation Systems

Paolo Lillo, Luca Mainetti, Vincenzo Mighali, Luigi Patrono, and Piercosimo Rametta

Abstract - The Internet of Things (IoT), with its plethora of smart

objects and technologies, allows to realize smart environments in

several scenarios. However, the existing solutions are strictly

intended for specific applications and their customization is often

limited to what developers have considered at the design and

implementation time. So, the integration of new functionalities

requires significant changes by developers, while common users

cannot make personalizations by themselves. For these reasons,

this work deals with the definition of a novel rule-based semantic

architecture for the easy implementation of building automation

applications in an IoT context. Applications are structured as an

Event-Condition-Action (ECA) rule and the layered architecture

separates high-level semantic reasoning aspects from low-level

execution details. The proposed architecture is also compared

with main state-of-the-art solutions and a standard-based

implementation framework is suggested. The last aspect is

treated by referring to standardized guidelines and widely-

accepted platforms, in order to make the proposal more

attractive and robust.

Index terms - IoT, semantic technologies, ECA rule, ontologies,

building automation, oneM2M


I. INTRODUCTION

The current trend in the development of building automation

applications in an Internet of Things (IoT) context is to provide

users with simple Integrated Development Environments

(IDE), giving them low-level control of sensor and actuator

devices located in the real environment [1, 2]. Indeed, since the

low-level issues around smart objects, first of all the power

consumption problem, could be solved by exploiting several

solutions already in the literature [3, 4, 5], the high-level

accessibility of users to the smart environment is still an open

issue. Currently, by leveraging simplified IDEs, users can

express their preferences without worrying about hardware and

programming languages details. Unfortunately, these

preferences are limited to those implemented by system

developers, so common users have to give up the opportunity

to define new system behaviors by themselves. Since the IoT

world evolves rapidly thanks to the development of new

devices, an ideal IoT-oriented system should provide end-

users with the possibility to define new software behaviors in

declarative way. Indeed, during the interaction with the

surrounding environment, user is only interested in the final

Manuscript received October 30, 2015. Revised February 28, 2016.

P. Lillo, L. Mainetti, V. Mighali, L. Patrono and P. Rametta are with the
Department of Innovation Engineering, University of Salento, Lecce 73100,

Italy (E-mails: {paolo.lillo, luca.mainetti, vincenzo.mighali, luigi.patrono,

piercosimo.rametta}@unisalento.it).

high-level effect of his/her actions. These actions, related to

certain physical or abstract properties, should expose only the

final goal they are able to achieve and should be in charge of

the interaction with physical devices. To reach this result, the

system should follow some design principles. First of all, the

applications to be created should have a well-defined and

modular structure. In particular, the rule-based Event-

Condition-Action (ECA) pattern could be a proper candidate.

The structure of an ECA rule is: on EVENT if CONDITIONs

then ACTIONs. It means that one or more actions can be

performed on a system when certain events occur under

certain conditions. Often, both conditions and events of an

ECA rule could refer to the users’ position in the environment,

i.e. they could be based on location-aware concept [6, 7]. In

addition, in order to make the rule processing and execution

more autonomous and efficient, the system should be based on

semantic technologies, so that all information is in a machine-

understandable format. By modeling all concepts in the

domain of interest with a semantic language, i.e. by defining

one or more ontologies, a semantic reasoner can infer new

information based on that already contained in the system. In

this perspective, it is worth noting that, in order to run their

rules, traditional Rule-based Engines (e.g. Drools Expert) need

a Working Memory containing the Facts [8], i.e. items of

information involved in the reasoning process during rule

execution. For this reason, a key step is to map information

contained in the ontology with Facts in a suitable format, and

to re-map the generated information to ontology after rule

execution. Avoiding this two-way mapping between Working

Memory and Ontologies formats has been one of the main

goals of the proposed rule-based semantic architecture.

Another issue in this context is the implementation of custom

SWRL Built-ins, which varies depending on the chosen

semantic reasoner, such as Pellet [9].

This work is a natural extension of the work presented in

[10], whereof it recalls the logical architecture and proposes an

implementation framework, based on the oneM2M

specifications (explained in section V.B), aimed to foster

autonomous communications in a M2M context. In more

details, the main goal of this work is to follow standardized

guidelines in the development of the proposed architecture, in

order to make it more attractive and meaningful. Indeed, the

majority of IoT stakeholders, such as enterprises, is still

reluctant to invest directly on IoT solutions and most of them

seek to secure their entrance with standardization. So, a new

solution based on IoT technologies should be oriented as much

as possible on standardized specifications and technologies

24 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

1845-6421/03/8439 © 2016 CCIS

FESB
Typewritten Text
 Original scientific paper

(both hardware and software). In this perspective the oneM2M

specifications represents one of the best choices to achieve this

objective.

To briefly recall what presented in [10], it is worth noting

that in the proposed architecture the semantic reasoning layer

is clearly separated from the action execution layer, which

deals with low-level implementation details. This is achieved

through some key design choices. First, in the domain

ontologies, simple concepts as System, High-level States, and

High-level Actions, allow to describe the environment and its

changes in human-understandable way. Second, applications

are actually ECA Rules and are defined by selecting the High-

Level State of the System that acts as event trigger, the High-

Level States of related Systems that must be satisfied when the

event occurs and High-Level Actions to be taken on the target

Systems. These actions are simply individuals of the domain

ontologies and do not implement any actual (low-level)

operation. Third, a simple semantic reasoner has seamless

access to all information needed to perform ECA Rules

evaluation, which will only affect the updating of certain

individual properties in the domain ontologies. Finally,

appropriate ontology listeners initiate the execution of low-

level operations, which are carried out outside the semantic

framework through an Action Engine. Low-level operations

are defined by domain experts and exploit the devices’ low-

level APIs for implementing all the complexity of the physical

interaction. The benefits of this solution are twofold. On the

one hand, end-users are not required to know any

programming language or control algorithm for defining

applications, since visual wizards guide them during

application creation. On the other hand, action

implementations can be very effective and efficient, since they

are defined by domain experts and are not tied to rule engines

capabilities. Moreover, device heterogeneity is abstracted by

introducing an architecture layer that hides all low-level

details

The rest of the paper is organized as follows. Section II

reports the state-of-the-art related to rule-based semantic

architectures for building automation applications. A deep

description of the domain model is presented in Section III,

while the detailed description of the proposed architecture is

given in Section IV. In Section V, the proposed architecture is

firstly compared with similar solutions in the state-of-the-art,

in order to evaluate, from a qualitative point of view, its

effectiveness and potential benefits; then, a feasible

implementation based on the oneM2M specifications and the

OSGi framework is proposed. Finally, conclusions are drawn

in Section VI.

II. RELATED WORKS

One of the first attempts to apply ECA rule pattern for

building automation applications is [11]. In this paper, authors

propose a rule-based framework for the management of

heterogeneous systems in a smart home environment. The

proposed framework is based on an ECA rule mechanism with

SOAP technology that provides interoperability among

sensors and actuators systems. Main components of the

framework consist of a home application server, a database

module, and a service level application module. ECA rule

mechanism is embedded in a database as data in the form of

table, with a proper retrieval sequence. A more recent study on

ECA pattern applied to building automation is reported in

[12]. This paper suggests that an ECA-based framework is

suitable both for describing the desired system operations in a

user-centric smart environment, and for linking to an event-

based network made up of constrained sensors and actuators.

A service-oriented architecture provides a suitable mechanism

for separating out the event signaling functions of sensors

from the details of the underlying hardware technologies. In

order to address device heterogeneity and foster machine-to-

machine capabilities among systems, a key step in this context

is to base systems on semantic technologies. The first studies

in this direction were focused on Wireless Sensor Networks

(WSN). In [13], authors propose a sensor information

processing architecture, called SWASN (Semantic Web

Architecture for Sensor Networks). The layered SWASN

architecture deals with: (i) data gathering from heterogeneous

sensor nodes and dispatching through sensor gateways; (ii)

semantic annotation of collected data according to sensor

ontologies; (iii) semantic data processing through rule engine

to perform inference over semantically annotated sensor data;

(iv) Web interface for sensor interaction. The same effort was

done with constrained networks made up also of actuators. In

[14] a framework is presented for actuator discovery and

invocation in home care systems. By making use of an

ontology to model services and operations of actuators, policy

actions are made protocol-independent. This allows actions of

a care policy to be specified abstractly using human-

understandable concepts, hiding the low-level networking

details from ordinary users. At run-time, the semantic

discovery module searches for concrete actuator instances, so

concrete action execution can take place. On a larger scale,

[15] proposes a layered software architecture for delivering

personalized services to residents in Self-Care Homes (SeCH).

The architectural core layers grasp and understand the

semantic of various situations that can be encountered in

SeCH, through a variety of smart objects, which co-exist in

pervasive environments. The decision making on appropriate

actions is based on reasoning created by SWRL-enabled OWL

ontologies, to ensure that residents are delivered suitable and

personalized healthcare services in any situation. Concerning

the application of semantic technologies within the building

automation field, a good reference is [16], which presents a

building automation system adopting SOA paradigm with

devices implemented by Device Profile for Web Service

(DPWS). Context information is collected, processed, and sent

to a composition engine to coordinate appropriate

devices/services based on context, composition plan, and

predefined policy rules. A six-phased composition process

carries out the task. In addition, in order to support the

composition process, a building ontology is provided as a

schema for representing semantic data, while a composition

plan description language (CPDL) is used to describe context-

based composite services. Focusing more on the visual

definition of policy rules by end-users and their interaction

with system elements, in [17] authors propose a visual user-

centric service environment that helps users to create context

aware services. It consists of a service mash-up process and a

web-based service composition user interface. Through this

environment and a step-by-step wizard, users define the

P. LILLO et al.: AN ECA-BASED SEMANTIC ARCHITECTURE FOR IOT BUILDING AUTOMATION SYSTEMS 25

service environment, context and behavior of actuators,

indicating only actuator's function and service condition. In

addition, an ontology based sensor data processing is proposed

that removes heterogeneity of sensor data and processes the

object data to the context information. A functional

comparison between these works and the proposed solution is

carried out in Section V.A.

III. DOMAIN MODEL

A. High-level Context Modeling

As stated in the Introduction Section, the main goal of the

proposed architecture is to simplify the definition and

implementation of building automation applications by

common end-users. It can be achieved, firstly, by giving the

applications a simple and well-defined structure, like the ECA

rule pattern. When an event occurs, i.e. a fact with a particular

meaning in the context of interest happens, if some conditions

are verified, then one or more actions can be performed in

response to the detected event.

Moreover, this model is much simpler and more effective

the more event, condition and action components are abstract

and close to the user. In smart home environments, people are

generally interested in monitoring and controlling particular

properties of some entities in a given location. Entities and

related properties can be material or immaterial, such as

temperature of the air, moisture of the soil, presence of a

person, occurrence of rain, and so on. These are correlated

with a location, which typically has (but is not limited to) an

indoor scope. According to these considerations, we have

defined in [10] the concept of (i) System, as the triple

Property-Entity-Location, (ii) Sub-System, i.e. allowable

System (e.g. temperature-air-room), and (iii) Sub-Systems

instances, i.e. combination of concrete elements (e.g. temp-air-

kitchen). Then, to each System (and each Sub-System for

extension) it is associated a set of High-Level States, which

can be changed by performing some High-Level Actions.

Therefore, when state change occurs, user can select the

desired High-Level Action and the desired High-Level State.

With this model in mind, the concept of System High-Level

State change can be used as a trigger for the EVENT part of

the ECA Rule and System High-Level Action as the

corresponding ACTION part. CONDITION item can be the

High-Level (current) State of any related System. For example,

the rule expressed in human language “When the air

temperature in the living room becomes hot, if Frank is in the

room, then decrease the temperature to a normal value” can be

mapped to the following ECA Rule (pseudo-notation):

ON temperature-air-living_room(hot)
IF presence-Frank-living_room(present)
THEN temperature-air-living_room.decrease(normal)

High-Level Actions can be classified according to the

duration of their intervention. For example, increasing the

luminosity of a room is an immediate action and its effect is

stable in time; increasing room temperature, instead, requires

some time before the desired result is got, hence actuators

must be on for a certain period of time. When the controlled

temperature exceeds the target threshold, all actuators must be

switched off, otherwise it would raise indefinitely. The first

example is a typical case of an “On/Off” control action, while

the second is a kind of “Single Threshold” control action and

both are included in the context model (with other types of

action). In the last case, it is framework responsibility to create

an ECA Rule that de-activates all actuators involved in an

High-Level Action. Such a rule is named De-Activate Rule and

the desired state of original ACTION becomes its trigger state,

while its ACTION is the logical negation of the original action

(i.e. stopIncrease, stopDecrease, etc.). For this purpose, a

HLService entity must be modeled that keeps track of

actuators activation within High-Level Actions.

B. Low-level Action Modeling

High-Level Actions labels must be translated into runnable

applications in order to be executed. These applications are

intended for hiding from end-user all complexity related to

low-level details of action implementation. Instead, all these

details are addressed by domain experts, who are in charge of

creating action implementations exploiting context-aware

information of the High-Level Context Model. Although it is

not easy to define a common application structure, some

common phases can be identified. For example, in a

DecreaseTemp Action of a temperature-air-room Sub-System,

the Action code, firstly, must retrieve the numerical value of

the current High-Level State; then it must retrieve numerical

value of desired High-Level State threshold, so the magnitude

of the intervention can be calculated. As a mere example, if

the difference between current and desired values of

temperature is little, then it can be decided to open the window

in the room; if the difference is a little bit greater, then the fan

can be activated, or, if the difference is substantial, the air

conditioner must be switched on. According to this business

logic, a resource discovery phase is started, in order to get the

URIs of devices that can execute the required service, and then

proper commands can be issued to physical devices. Resource

discovery and interaction are done by exploiting APIs

provided by the framework (as explained in Section IV).

Action codes are stored in a central repository, so they can be

called by the proper module anytime are needed.

C. Semantic Model and Domain Ontologies

The High-Level Context Model must be implemented in

order to share the knowledge contained in it among all

framework components. Moreover, an execution environment

for the modeled ECA Rules is needed. Both requirements can

be fulfilled by means of semantic technologies. All the

previously mentioned concepts can be seen as classes and

individuals of an ontology [17]. Ontologies are used to

formally name and define the types, properties, and

interrelationships of the entities of a particular domain of

discourse, in a machine-readable and understandable format.

In this way, with the help of a semantic reasoner, it is possible

to infer new information from data contained in the starting

ontology. Furthermore, ECA Rules can be directly mapped to

simple semantic rules written with a semantic rule language

(like SRWL), so the semantic reasoner itself can execute them.

By doing so, during rule execution all the information

contained in this Semantic Model can be exploited and rule

effects can be stored back in it to add new knowledge.

Semantic rules are also used during the creation of the

26 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

Fig. 2. Excerpts of the Domain Ontologies

individual: when user inserts the Property-Entity-Location

triple during the ECA Rule definition, this information is used

to create an individual of the class System, which then is

classified to infer its right Sub-System class; once the Sub-

System is identified, available High-Level States and High-

Level Actions are linked to the individual by running the so-

called Structural Rules (Fig. 1). These rules represent

structural knowledge for the Semantic Model and are created

at design time by domain modelers.

For the sake of space and readability, the structure of

Domain Ontologies is not deeply explained in this document,

but this will be the focus of upcoming manuscripts. However,

the core blocks are illustrated in Fig. 2, which shows some

excerpts of the Domain Ontologies modeling the concept of

System, Sub-System and their Property-Entity-Location

components, High-Level States, High-Level Actions,

Resources and their Functionalities. Whereas the picture does

not show the User and Time entities, which also have an

important role in the model. Fig. 3 shows an example of Sub-

System individual (pseudo-notation), while Fig. 4 depicts ECA

Rule components (pseudo-notation) mapped to a semantic rule

(SWRL language). The hasCurrentState and isFired

properties of Sub-System and Action individuals, respectively,

play an important role in that they trigger rule evaluation and

action execution (as explained in next Section).

IV. PROPOSED ARCHITECTURE

The structure of the proposed Rule-based Semantic

Architecture is depicted in Fig. 5. Its main characteristic is the

decoupling of the semantic layer from the actual Action

execution layer. Once modeled all the entities and

relationships of the context domain through ontologies,

including physical resources functionalities and states, as well

as ECA Rule structure and components, the execution of an

ECA Rule at the semantic level implies only the change of the

isFired property of the ACTION individual in the related

ontology. A proper ontology listener observes this property

and, on value change, triggers the actual action execution by

calling the appropriate module and passing the action

individual to it. Moreover, ECA Rule execution layer is

independent from the semantic technologies chosen for its

implementation, so different reasoners, rule languages and

semantic framework can be used to create a working instance

of the architecture. The main building blocks of each layer in

the architecture are illustrated in the following sub-sections.

A. GUI Layer

This three-component layer represents the interface between

end-user and framework. The Rule Editor allows user to

visually create applications by selecting which Systems belong

to EVENT, CONDITION, and ACTION part of the ECA Rule.

This can be done by choosing, within a wizard, the Property-

Entity-Location individuals triple to identify the Sub-System of

interest, and then by choosing the related High-Level State or

High-Level Action as needed. The Dashboard Manager,

instead, allows user to create simple dashboards for

monitoring and controlling System related information. This

can be high-level information, like High-Level State of the

System, as well as low-level information, like sensor readings

or actuator states related to the System. Finally, the

Framework Manager allows user to configure various aspects

of the Semantic Framework, like the environment layout, the

type and position of devices deployed in it, and the numeric

range of the High-level State labels of each System.

B. Semantic Execution Layer

This is the core layer of the whole architecture, since it

deals with the management of the Semantic Model and

semantic rule execution. Its first task, accomplished by the

RULE MAPPER Module, is to take the ECA Rule

components, visually defined by the user, and create the

proper individuals of the Domain Ontologies. At the same

time, a valid executable rule is created, using the semantic rule

language set at configuration time (e.g. SWRL). Finally, the

rule is stored in the Rule Repository. Any interaction with

ontologies and repositories is managed by the KNOWLEDGE

BASE UPDATER (KBU), which provides an interface for

creating, updating and removal of individuals in the

knowledge base. Then the OBSERVER MANAGER (OM)

Module implements the Observer pattern and takes care of

adding the RULE individual as an observer of the

hasCurrentState property of the Sub-System individual

indicated in the EVENT part, so that any state change will

trigger semantic rule evaluation. Also the isFired property of

Rule1: TempAirRoom(?s) -> hasAvailableAction(?s, decTempAirRoom),
hasAvailableAction(?s, incTempAirRoom), hasAvailableState(?s,
high), hasAvailableState(?s, low), hasAvailableState(?s, normal)

Fig. 1. Example of a Structural Rule

Sub-System: TempAirRoom (TAR)
sys1-> sysHasProperty: temperature
 sysHasEntity: air
 sysHasLocation: living_room
 hasAvailableState: TAR_low, TAR_normal, TAR_high
 hasCurrentState: TAR_high
 hasAvailableAction: TAR_increase, TAR_decrease,

TAR_stopIncr, TAR_stopDec

Fig. 3. Sub-System individual example

P. LILLO et al.: AN ECA-BASED SEMANTIC ARCHITECTURE FOR IOT BUILDING AUTOMATION SYSTEMS 27

Fig. 5. Framework Architecture

the ACTION individual is added to a list of observable

objects, which will trigger an eventual action execution after

rule execution. The RULE EXECUTOR (RE) Module, in

collaboration with the SEMANTIC REASONER (SR)

Module, deals with ECA Rule execution. The SR contains the

whole domain model implemented in a semantic format

(OWL/RDF), so all the knowledge can be used to make

inference. The DE-ACTIVATE RULE COMPOSER (DRC)

Module deals with the creation of the De-Activate Rules, as

explained in Section III.A. All their components are created as

individuals of the related ontologies and registered as proper

observers. Finally, the QUERY MANAGER (QM) Module

provides an interface for querying domain ontologies and

repositories.

C. Action Execution Layer

This layer implements all the mechanisms needed for

translating High-Level Actions into a series of commands

destined to physical actuator devices. The ACTION

EXECUTOR (AEx) Module, when called by the OM,

retrieves from the Action Repository the business code

associated with the Action and gives it in input to the

ACTION ENGINE (AEn). This module executes each

instruction and, when needed, it queries the knowledge base

(through the QM) in order to discover which resources offer

the required functionalities. For each bounded device, it passes

the device URI and the command string to the HLAC Module,

contained in the Abstraction Layer.

D. Repository Layer

This layer contains several repositories for storing

ontologies and their individuals (the so-called knowledge

base), the Rules in semantic format (that must be included in

the knowledge base only when they have to be executed), the

Action business codes and the Dashboard templates.

E. Abstraction Layer

This layer acts as a middleware between the Technology

Layer and the Semantic Layer, in that it semantically annotates

data coming from physical devices and stores it in the

knowledge base. The same applies in the opposite way, when

high-level operations on actuators are translated into low-level

commands according to the given technology. For each

technology a TECH-X ADAPTER Module is provided, which

is in charge of collecting data from physical devices, arrange

them in an intermediate format and send them to the RAW

DATA COLLECTOR (RDC) Module. The RDC Module,

firstly semantically annotates data and stores them into the

knowledge base via the KBU, then it passes these semantic

data to the EVENT GENERATOR (EG) Module, which

accomplishes the task of comparing numerical data with

predefined thresholds in order to classify the High-Level State.

If a state change is detected, an Event is triggered to the upper

layer of the architecture. On the other side, messages coming

from the Action Execution Layer, containing high-level

commands and directed to physical actuators, are firstly

handled by HIGH-LEVEL ACTUATOR CONTROLLER

(HLAC) Module. It is in charge of reporting the intended

operation in the knowledge base by creating a new individual

of the class HLService, indicating which device has been

activated, with which command and under which High-Level

Action. After that, flow control is taken by the LOW LEVEL

ACTUATOR CONTROLLER (LLAC) that, starting from

device URI, identifies its native technology and prepares a

proper message format according to it.

F. Technology Layer

This layer encompasses the main technologies and protocols

used for managing devices in building automation

applications. These can be roughly divided into three main

categories: (i) wired and wireless standards for home

automation networks, (ii) protocols for WSNs management,

and (iii) indoor positioning systems. All these technologies are

completely unaware of the upper layers, but, exploiting the

proper TECH-X ADAPTER provided by the Abstraction

Layer, they are simply seen as data sources and sinks, and they

can seamlessly interoperate together.

G. Runtime Lifecycle

This section briefly explains how the whole architecture

works. Firstly, user visually sets up the system through the

Framework Manager, where s/he defines building layout,

device deploying and threshold intervals. Then, end-user

applications (i.e. ECA Rules) are defined through the Rule

Editor, as explained in Section IV.A. In the background, a

Rule Event
R1 -> hasEvent: E1 E1 -> hasESystem: sys1
 hasCondition: C1

hasAction: A1
 hasETriggerState:

 TAR_high

Condition Action
C1 -> hasCSystem: sys5 A1 -> hasASystem: sys1
 hasCTriggerState:

 PPL_yes
 hasADesiredState:

 TAR_normal
 hasADesiredHLAction:

 TAR_Decrease
 isFired: false

SWRL Rule1

hasETriggerState(?E1,TAR_high), hasCTriggerState(?C1,PPL_yes) ->
isFired(?A1,true)

Fig. 4. ECA Rule individuals and related SWRL semantic rule

28 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

Fig. 6. Framework Runtime Lifecycle

mapping algorithm creates executable semantic rules and the

De-Activate Rule components (if needed). Then all individuals

are stored in the related ontologies. This way the system is

initialized, and can start its runtime life-cycle, as illustrated in

Fig. 6. Raw data coming from heterogeneous devices,

including sensor readings and actuator states, are collected by

the related TECH-X ADAPTERs and sent to the RAW DATA

COLLECTOR (a). Here, data are semantically annotated and

stored into the knowledge base as current state value of the

resource associated to the physical device. Since each resource

is linked to a Sub-System by means of Property-Entity-

Location triple, this information is used to retrieve the High-

Level State threshold definitions, so the current reading can be

classified (b). If this comparison results in a High-Level State

change, the Sub-System hasCurrentState property is updated in

the knowledge base. This is detected as an Event at the

Semantic Execution Layer (c), so the OBSERVER

MANAGER scans the list of Rules interested in this particular

state change and, eventually, Rule individuals are sent to the

RULE EXECUTOR. This module retrieves the Rule semantic

code and gives it in input to the SEMANTIC REASONER. It

evaluates the Rule according to information currently

contained in the knowledge base. If all conditions in the rule

antecedent1 part are met, then its consequent part can be

executed, so the isFired property of Action individual can be

set to true. This means that current rule has been successfully

evaluated and the related Action can be executed (d). After

semantic rule evaluation, the rule code is removed from the

knowledge base, otherwise it would be executed after every

event detection. If any condition in the antecedent part is

unmet, then the consequent part will not be executed and no

action execution will be fired. When the isFired property of

the Rule Action is updated, the OM selects the Action

individual and passes it to the ACTION EXECUTOR. It

retrieves the business code of the Action from the repository

and starts its execution routine through the ACTION ENGINE

(e). This module queries the knowledge base through the

QUERY MANAGER to identify the URIs of devices

implementing the required service (f). Once URIs are

identified, they are sent to the HLAC, along with the

command strings. This component reports the required

operation in the knowledge base by creating an individual of

the HLService class, then formats the message and sends it to

1 Semantic rules generally have the form: A1˄A2˄…˄An→H, where the left–

hand side is also called antecedent or body, while the right-hand side is called

consequent or head

the LLAC. This module, starting from device URI, identifies

its native technology and accordingly formats the message

destined to it (g). This pattern is repeated until all operations in

the Action business code are executed. At this point, the whole

Action is considered as fully executed, and all actuator state

changes are reported back in the knowledge base as an update

notification. When the desired High-Level State of each Sub-

System involved in the Action part of the ECA Rule is

reached, the related De-Activate Rule (if any) must be

executed, in order to set Rule state as Stopped. In the

meanwhile, the current ECA Rule must be considered in a

Running state. The De-Activate Rule execution follows the

same pattern of a common ECA Rule, except for the fact that

it does not imply another De-Activate cycle. In any moment,

all information related to each Sub-System can be monitored

and controlled through a visual dashboard, which contains a

set of widgets showing System High-Level State and

associated sensor values, all Rules related to the System (both

active and inactive), the Actions being executed and involved

actuators state. Values displayed within these widgets are

gathered from the knowledge base by the OM, which listens

for resource state changes. Commands fired by GUI widgets

get directly to the HLAC and follow the common execution

path.

V. DISCUSSION

In this section, the proposed architecture is discussed by

comparing it with similar solutions in the State-of-the-Art and

by proposing a reference framework that can be used for its

implementation.

A. Architecture comparison

The rule-based semantic architecture described in this paper

presents the following core features:

• ECA Rules abstraction: explicit use of the ECA pattern as

application template;

• High-Level abstraction: representation of context

information and actions with a format close to user, hiding

all low-level details;

• Semantic modeling: application of semantic technologies

for context modeling;

• Device heterogeneity: abstraction of device functionalities,

independently from their native technologies;

• Visual interface: provision of a graphic user interface for

system setup and application creation and control;

• DSL compliance: possibility to define a domain specific

language to facilitate action implementation.

The analysis of the architectures reported in Section II with

respect to these functionalities is shown in Table I. ECA rules

are treated only in [11], [12] and [14], while [15] uses normal

semantic rules in SWRL language. In the proposed work,

instead, ECA rules are the core of the entire architecture,

because their well-defined and meaningful structure helps end-

users in the application definition process. Moreover, also a

context abstraction based on familiar concepts, can further

facilitate users during applications creation. High-level

abstraction is addressed by all the analyzed works, though at

different levels. Although most solutions abstract raw sensor

data to extract useful information for end-users, in the

proposed architecture the abstraction is done at System level.

P. LILLO et al.: AN ECA-BASED SEMANTIC ARCHITECTURE FOR IOT BUILDING AUTOMATION SYSTEMS 29

TABLE I

ARCHITECTURE FEATURES COMPARISON

 [11] [12] [13] [14] [15] [16] [17] Proposed

ECA Rules   -  - - - 
High-Level

Abstraction
       

Semantic Modeling - -      
Device Heterogeneity        

Visual Interface - -   -   
DSL Compliance - - - - -  - 

 The state of the considered System can be affected by a set of

available actions that involves physical or virtual devices. This

abstraction is used by the user to compose the elements of the

application, by selecting the items of interest among ones

proposed through a visual wizard. An interactive GUI can

improve user experience, and has a central role in [13] and

[17], whereas in [14] and [16] is a system functionality. From

a technological point of view, semantic technologies are

increasingly being used in such architectures, and they are

applied in [13-17]. The main difference is that, in the proposed

architecture, also ECA rules are executed by traditional

semantic reasoner, exploiting the context modeling. Device

heterogeneity is addressed by all works, though [13] only

focuses on WSN devices and [16] only considers DPWS

compliant devices. Finally, a domain specific language to

compose applications is provided only in [16]. Taking into

account this comparison, it is clear that, even if other scientific

works already address some of the issues faced by the

proposed system, none of them is able to provide a complete

solution that efficiently solves all these issues.

B. Towards implementation

This paper focuses mainly on the context modeling and on

the logical design of the proposed architecture, which is

independent from any real technology; however, at the time of

writing, its implementation is in an early stage. The aim is to

prove the overall feasibility of the framework by mapping all

of its logical blocks to the structure of the oneM2M project,

described in the following paragraphs. Moreover, since

Domain Ontologies are a central block of the architecture, this

sub-section firstly proposes a scouting about already existing

suitable ontologies that can be linked to the Semantic Model,

in order to augment its expressivity and to foster knowledge

sharing.

B.1 Ontology enhancement

The Semantic Execution Layer focuses on semantic model

management; in particular, it is in charge of receiving both

ECA rules from upper layers and event notifications from

lower layers, and to process them in order to achieve the

desired behavior. To do so, it has to interact with the Domain

Ontologies to (i) create the proper individuals, (ii) infer new

information from the starting knowledge, and (iii) store back

in it new knowledge arising from ECA rules execution. So, it

is clear that the structure of the Domain Ontologies is critical

for the effectiveness of the Semantic Execution Layer, thus the

possibility to rely on standard ontologies is an important

aspect of the proposal. Among all the entities of the

architecture, the User, the Location, the Time and the Physical

Devices are the most likely to have well-defined and shared

ontologies, due to their common and widely-used concepts.

The User has the capability to define the desired actions

through ECA rules, the Location and Time are essential to

identify the occurrence of events, which are the triggers of the

ECA rules, whereas the Physical Devices are the interface

between virtual and real world. Regarding the User, the FOAF

ontology [18] seems to be a significant candidate. It is a

machine-readable ontology describing persons, their activities

and their relations to other people and objects. In more detail,

it can be seen as a descriptive vocabulary expressed through

the Resource Description Framework (RDF) and the Web

Ontology Language (OWL). About the Time concept, several

ontologies could be suitable for the proposed architecture. The

OWL-Time [19] provides a vocabulary for expressing facts

about topological relations among instants and intervals,

together with information about durations, and about date/time

information. Moreover, the Timeline Ontology [20] defines

the TimeLine concept, representing a coherent backbone for

addressing temporal information. Each temporal object

(signal, video, performance, work, etc.) can be associated to

such a timeline. As an alternative, the

SWRLTemporalOntology [21] defines a temporal model that

can be used to model complex interval-based temporal

information in OWL ontologies. It also defines a library of

SWRL built-ins to perform temporal operations on

information described using this ontology. An introduction to

this ontology and an explanation of how can be used to

perform temporal reasoning is covered in [22]. The model

defined by SWRLTemporalOntology is based on the valid-

time temporal model [23], a commonly-used model to

represent temporal information in many systems. The valid-

time temporal model provides an approach for consistently

representing temporal information. In this model, a piece of

information, which is often referred to as a fact or a

proposition, can be associated with instants or intervals

denoting the time or times that the fact is held to be true. Such

facts have a value and one or more valid times. In other words,

every temporal fact holds information denoting the valid-time

of the facts. Conceptually, this representation means that every

temporal fact is held to be true or valid during the time or

times associated with it. No conclusions can be made about

the fact for time periods outside of its valid-time. Going ahead

with the Location component, it is worth noting that it is not

simple to find a universally adopted standard ontology. Even if

there are several research works aimed at providing location-

based solutions dedicated to smart environments, they often

define their own location ontologies. Furthermore, these works

usually focus on a wider location ontology concept, namely a

context ontology, which is not limited to places’ description

but to define all aspects characterizing the surrounding

environment [24]. Finally, regarding the networks of Physical

Devices, a reference ontology could be the oneM2M Base

Ontology draft [25]. It aims at providing syntactic and

semantic interoperability to the oneM2M Project (described in

more detail in the following paragraph) with external systems.

In particular, external organizations and companies are

expected to contribute their own ontologies that can be

mapped to the oneM2M Base Ontology. These external

ontologies might describe specific types of devices or, more

30 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

Fig. 7. oneM2M functional architecture

generally, they might describe real-world “things” that should

be represented in an oneM2M implementation. In this way,

oneM2M data can be enhanced with information on the

meaning/purpose of these data. Therefore, the oneM2M Base

Ontology is the minimal ontology that is required such that

other ontologies can be mapped into oneM2M. About Physical

Devices, it is worth considering also the Semantic Sensor

Network (SSN) Ontology [26]. This ontology is based around

the concepts of systems, processes, and observations and it

supports the description of the physical and processing

structure of sensors. Sensors are not constrained to physical

sensing devices, rather a sensor is anything that can estimate

or calculate the value of a phenomenon; so a device or

computational process or combination could play the role of a

sensor. The representation of a sensor in the ontology links

together what it measures (the domain phenomena), the

physical sensor (the device) and its functions and processing

(the models).

B.2 The oneM2M project

The goal of oneM2M is to develop technical specifications

aimed to create a common M2M Service Layer, which can be

readily embedded within various hardware and software, in

order to connect heterogeneous devices with M2M application

servers worldwide. The oneM2M system architecture provides

both basic functionalities (e.g., registration and message

handling) and various advanced functionalities (e.g.,

interconnections with other systems). To achieve this,

oneM2M defines a common service layer providing M2M

services, independently from the underlying networks. The

latest oneM2M functional architecture [27] is shown in Fig. 7.

An oneM2M system is composed of functional entities, called

nodes, which can be application dedicated node (ADN),

application service node (ASN), middle node (MN) and

infrastructure node (IN). Nodes consist of at least one

oneM2M Common Services Entity (CSE) or one oneM2M

Application Entity (AE). A CSE is a logical entity that is

instantiated in an M2M node and comprises a set of service

functions called Common Services Functions (CSFs), which

can be used by applications and other CSEs. An AE is a

logical entity that provides application logic for end-to-end

M2M solutions. oneM2M currently defines three reference

points, namely Mca, Mcc, and Mcn. The Mca reference point

enables AEs to exploit the services provided by the CSE,

whereas the Mcc reference point enables inter-CSE

communications. The Mcc’ reference is similar to Mcc, but

provides an interface to another oneM2M system. The Mcn

reference point is between a CSE and the service entities in the

underlying networks. oneM2M has specified a set of core

CSFs for its initial release. Some CSFs provide administrative

functions for the service layer and other CSFs, like the

Registration (REG) CSF that provides a means for an AE or a

CSE to register to a CSE and be able to use the services

provided by that CSE. An AE and a Service Layer

Management (ASM) CSF provide functions to configure,

troubleshoot, and upgrade CSEs and AEs. A Device

Management (DMG) CSF manages device capabilities such as

firmware updates. The Communication Management and

Delivery Handling (CMDH) CSF, instead, is responsible for

the delivery of service layer messages. The Network Service

Exposure (NSSE) CSF acts as the anchor point between the

service layer and services provided by different underlying

networks. The Security (SEC) CSF enables secure connections

and data privacy. Some CSFs provide value-added services to

registered AEs and CSEs. For example, the Data Management

and Repository (DMR) CSF is responsible for user data

storage and processing, so users can also subscribe and get

notifications of changes in the data. The Discovery (DIS) CSF

provides a means to make the services and resources

discoverable by other CSEs and AEs. A Subscription and

Notification (SUB) CSF manages subscriptions to changes on

the oneM2M platform. The Service Session Management

(SSM) CSF supports end-to-end service layer sessions. A

Group Management (GMG) CSF supports bulk operations and

manages group membership. The Location (LOC) CSF allows

M2M AEs to obtain geographic location information of an

entity and receive location-based services. The Service

Charging and Accounting (SCA) CSF provides mechanisms to

support service-layer-based charging. In addition to CSFs, a

CSE includes a service enabler to ensure the extensibility of

services.

B.3 Mapping with the oneM2M architecture

All the functionalities introduced in the proposed

architecture (Section IV) can be mapped to the components of

the oneM2M architecture. For the sake of clarity, let suppose a

testing scenario in which a smart building is equipped with a

wired building automation system (for example based on the

KNX standard), a WSN for ambient data sensing and a BLE-

based indoor positioning system that interacts with user’s

smartphone to detect his/her position. All these systems

communicate with a local smart gateway to make their data

available to the global framework. The semantic framework

runs in a proper container, which can be deployed on the smart

gateway, on a dedicated local server, or in the cloud.

Comparing this scenario with the proposed architecture in Fig.

5 and the functional architecture in Fig. 7, the functionalities

of the local gateway and the TECH-X Adapter for each low-

level technology can be mapped to the NSE; in fact, it

provides services from the underlying networks that can be

accessed through the NSSE CSF of the CSE. As usual,

physical devices remains completely unaware of the upper

layers, but they can be still managed through the DMG CSF.

Since the DMR CSF offers data storage and mediation

P. LILLO et al.: AN ECA-BASED SEMANTIC ARCHITECTURE FOR IOT BUILDING AUTOMATION SYSTEMS 31

functions in order to store big amounts of data for analytics

and semantic processing, the entire Repository Layer can be

mapped to the DMR CSF, which can handle all needed

repositories. It represents a low-level interface that can be used

to implement advanced functionalities related to data. In the

oneM2M architecture, the role of part of the Abstraction Layer

and all of the original Semantic and Action Layers can be seen

as a new CSF, called Semantic Rule and Action Engine

(SRAE), which offers services aimed at the execution of

semantic rules and low-level actions through the interpretation

of the provided DSL. In particular, the SRAE interacts with

the SUB CSF to carry out the concerns of the OBSERVER

MANAGER and with the DMR to implement the QUERY

MANAGER and the KNOWLEDGE BASE UPDATER.

Moreover, the SRAE interacts with the DMR also to

implement the functionalities of RAW DATA COLLECTOR,

EVENT GENERATOR, HIGH-LEVEL and LOW-LEVEL

ACTUATOR CONTROLLERS, which are specialized

services built upon DMR services. By doing so, the SRAE can

handle all the needed semantic data. The remaining modules

of the semantic layer, instead, become inner blocks of the

SRAE. The same applies to the ACTION EXECUTOR and

the ACTION ENGINE modules, which become an

autonomous block within the SRAE and interacts mainly with

the DIS CSF for service discovery and the GMG CSF for

group commands. Finally, all modules of the GUI Layer

become AEs, in that they implement pure application business

logic. Obviously, AEs register through the REG CSF in order

to access all the services provided by the CSE, especially the

ones of the ASM, CMDH and SEC CSFs.

B.4 OSGi-based implementation design

In order to build IoT-based applications, OSGi [28]

provides an excellent programming model based on modern

principles of modularity and service-oriented computing. In

addition, the OSGi lifecycle operations provide a high level of

dynamism about application deploying, managing and

updating. OSGi builds an abstraction layer over plain-Java,

defining a software infrastructure by means of which modern

patterns like code-injection, aspects, discovery, messaging,

event bindings are easily integrated. OSGi can be a good

choice in order to implement an oneM2M specification, since

specialized distributions, like Apache ServiceMix [29],

provide support for messaging, routing, integration patterns,

remote services, transaction management and, in general, all

that needs to implement CSEs functionalities. At one time,

more compact distributions of OSGi can be deployed on

constrained devices, like the TECH-X Adapters running on

NSEs in our scenario. In an OSGi context a TECH-X Adapter

can be packed as “bundle” and easily deployed on a NSE

making use of a remote deployment tool like Apache ACE

[30] which is all about provisioning software artifacts to OSGi

(and not only) target systems. A TECH-X Adapter,

implementing a typical OSGi “extender pattern” [31],

declaratively exposes meta-data to the discovery services and

then makes the connected devices discoverable. An OSGi

container permits bundles to be hot deployed/undeployed and

updated within a running system without restarting the

application or the JVM, making the system very reactive.

Once started, the local NSSE CSF holds the connection with

the adapter and then with devices behind the adapter that are

registered in the oneM2M system as “resources”. In an

oneM2M context, our Semantic Rule and Action Engine

(SRAE) CSF can discover and subscribe a device via NSSE

CSF, then receiving notification about its state changes

(sensor) or send actuation commands to it (actuator) via SUB

CSF.

VI. CONCLUSION

In this work, the design of a rule-based semantic

architecture has been proposed with the aim to help common

end-users in defining their building automation applications.

This architecture addresses the main issues involved in

application management in an Internet of Things context, such

as: (i) application and context modeling, by means of ECA

Rule, System, High-Level States and High-Level Actions

abstractions, (ii) application creation and control, through the

introduction of a visual IDE, (iii) execution environment

definition, by means of a Semantic Framework and an Action

Engine, (iv) physical device management, by introducing a

low-level layer that abstracts device heterogeneity. Moreover,

a reference framework has been proposed in order to

implement each layer of the architecture, on the basis of a set

of novel standard specifications, namely the oneM2M project.

These specifications, aiming to foster autonomous

communications in a M2M context, can be easily implemented

by means of the OSGi framework. Further developments are

being carried out to improve overall architecture effectiveness,

especially concerning the Semantic Model and Domain

Ontologies. Finally, the last step will be to setup a real test bed

and assess system performances.

REFERENCES

[1] L. Mainetti, V. Mighali, S.L. Oliva, L. Patrono, P. Rametta: A

novel architecture enabling the visual implementation of web of

Things applications, The 21st Int. Conf. on Software,

Telecommunications and Computer Networks, SoftCOM 2013,

Split (Croatia), Sept. 18-20, 2013

[2] L. Mainetti, V. Mighali, L. Patrono, P. Rametta: Discovery and

Mash-up of Physical Resources through a Web of Things

Architecture, Journal of Communications Software and Systems,

vol. 10, no. 2, pp.124-134, June 2014

[3] L. Anchora, A. Capone, V. Mighali, L. Patrono, F. Simone: A

novel MAC scheduler to minimize the energy consumption in a

Wireless Sensor Network, Ad Hoc Networks, vol. 16, pp. 88-

104, 2014.

[4] L. Catarinucci, R. Colella, G. Del Fiore, L. Mainetti, V. Mighali,

L. Patrono, M. L. Stefanizzi: A cross-layer approach to

minimize the energy consumption in wireless sensor networks,

International Journal of Distributed Sensor Networks, vol. 2014,

ID 268284, 11 pages, 2014.

[5] L. Catarinucci, R. Colella, L. Tarricone: Sensor data

transmission through passive RFID tags to feed wireless sensor

networks, in 2010 IEEE MTT-S International Microwave

Symposium, MTT 2010, Anaheim, CA, 2010, pp. 1772-1775.

[6] L. Mainetti, V. Mighali, L. Patrono: An IoT-based User-centric

Ecosystem for Heterogeneous Smart Home Environments, in

2015 IEEE Int. Conf. on Communications, IEEE ICC 2015,

London (UK), June 8-12, 2015

[7] L. Mainetti, V. Mighali, L. Patrono: A Location-aware

Architecture for Heterogeneous Building Automation Systems, in

14th IFIP/IEEE Symposium on Integrated Network and Service

Management, IM 2015, Ottawa (Canada), May 11-15, 2015

32 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

[8] Drools Expert:

https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-

docs/html_single/

[9] Pellet Reasoner: https://github.com/complexible/pellet

[10] L. Mainetti, V. Mighali, L. Patrono, P. Rametta: A novel Rule-

based Semantic Architecture for IoT Building Automation

Systems, The 23rd Int. Conf. on Software, Telecommunications

and Computer Networks, SoftCOM 2015, Split (Croatia), Sept.

16-18, 2015

[11] Chui Yew Leong, A.R. Ramli, T. Perumal: A rule-based

framework for heterogeneous subsystems management in smart

home environment, Consumer Electronics, IEEE Transactions

on , vol.55, no.3, pp.1208,1213, August 2009.

[12] S.R. Bhandari, N.W. Bergmann: An Internet-of-Things system

architecture based on services and events, Intelligent Sensors,

Sensor Networks and Information Processing, 2013 IEEE 18th

Int. Conf. on , vol., no., pp.339,344, 2-5 April 2013

[13] V. Huang, M.K. Javed: Semantic Sensor Information

Description and Processing, Sensor Technologies and

Applications, 2008. SENSORCOMM '08. 2nd Int. Conf. on ,

vol., no., pp.456,461, 25-31 Aug. 2008.

[14] Feng Wang, Kenneth J. Turner: An Ontology-Based Actuator

Discovery and Invocation Framework in Home Care Systems, in

Proc. 7th Int. Conf. on Smart Homes and Health Telematics, pp.

66-73, LNCS 5597, Springer, Berlin, June 2009

[15] R. Shojanoori, R. Juric, M. Lohi, G. Terstyanszky: ASeCS:

Assistive Self-Care Software Architectures for Delivering

Service in Care Homes, System Sciences (HICSS), 2014 47th

Hawaii Int. Conf. on , vol., no., pp.2928,2937, 6-9 Jan. 2014

[16] S.N. Han, Gyu Myoung Lee, N. Crespi: Semantic Context-

Aware Service Composition for Building Automation System,

Industrial Informatics, IEEE Transactions on , vol.10, no.1,

pp.752,761, Feb. 2014

[17] Hoan-Suk Choi, Jun-Young Lee, Na-Ri Yang, Woo-Seop Rhee:

User-centric service environment for context aware service

mash-up, Internet of Things (WF-IoT), 2014 IEEE World Forum

on , vol., no., pp.388,393, 6-8 March 2014.

[18] Friend Of A Friend (FOAF) Vocabulary Specification:

http://xmlns.com/foaf/spec/

[19] Time Ontology in OWL: http://www.w3.org/TR/owl-time/

[20] The Timeline Ontology:

http://motools.sourceforge.net/timeline/timeline.html

[21] SWRL Temporal Ontology: http://protege.cim3.net/cgi-

bin/wiki.pl?SWRLTemporalOntology

[22] SWRL Temporal Built-ins: http://protege.cim3.net/cgi-

bin/wiki.pl?SWRLTemporalBuiltIns

[23] Valid-Time Temporal Model: http://protege.cim3.net/cgi-

bin/wiki.pl?ValidTimeTemporalModel

[24] I. Roussaki, M. Strimpakou, N. Kalatzis, M. Anagnostou, C.

Pils: Hybrid context modeling: a location-based scheme using

ontologies, in Pervasive Computing and Communications

Workshops, 2006. PerCom Workshops 2006. Fourth Annual

IEEE International Conference on , vol., no., pp.6 pp.-7, 13-17

March 2006

[25] oneM2M Base Ontology Draft:

http://www.onem2m.org/technical/latest-drafts

[26] Semantic Sensor Network (SSN) Ontology:

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

[27] oneM2M Specifications:

http://www.onem2m.org/technical/published-documents.

[28] OSGi Alliance: http://www.osgi.org/Main/HomePage

[29] Apache ServiceMix: http://servicemix.apache.org/

[30] Apache ACE: https://ace.apache.org/

[31] OSGi Extender Pattern: http://blog.osgi.org/2007/02/osgi-

extender-model.html

Paolo Lillo graduated in Electronic Engineering

at University of Florence (Italy) in 1987. He is

currently a PhD student in Complex Systems

Engineering at University of Salento. His

research topics are mainly focused on

development of architectures based on OSGi,

Internet of Things, design and development of

model-based multi-platform UI by using

Eclipse/Xtext/Xtend technology, developing

software interfacing C/Java/Python layers and ARM boards via

Bluetooth/BluetoothLE channels, development of multi-platform

clients to control building automation systems compliant with KNX.

Luca Mainetti is an Associate Professor of

Software Engineering and Computer Graphics

at the University of Salento. His research

interests include web design methodologies,

notations and tools, services oriented

architectures and IoT applications, and

collaborative computer graphics. He is a

scientific coordinator of the GSA Lab -

Graphics and Software Architectures Lab and

IDA Lab - IDentification Automation Lab at the Department of

Innovation Engineering, University of Salento.

Vincenzo Mighali received the "Laurea"

Degree in Computer Engineering with honors at

the University of Salento, Lecce, Italy, in 2012.

Since January 2009 he collaborates with IDA

Lab — IDentification Automation Laboratory at

the Department of Innovation Engineering,

University of Salento. His activity is focused on

the definition and implementation of new

tracking system based on RFID technology and

on the design and validation of innovative communication protocol

aimed to reduce power consumption in Wireless Sensor Networks.

He is also involved in the study of new solutions for building

automation. He authored several papers on international journals and

conferences.

Luigi Patrono received his MS in Computer

Engineering from University of Lecce, Lecce,

Italy, in 1999 and PhD in Innovative Materials

and Technologies for Satellite Networks from

ISUFI-University of Lecce, Lecce, Italy, in

2003. He is an Assistant Professor of Network

Design at the University of Salento, Lecce,

Italy. His research interests include RFID,

EPCglobal, Internet of Things, Wireless Sensor

Networks, and design and performance evaluation of protocols. He is

Organizer Chair of the international Symposium on RFID

Technologies and Internet of Things within the IEEE SoftCOM

conference. He is author of about 100 scientific papers published on

international journals and conferences

Piercosimo Rametta received the "Laurea"

Degree in Computer Engineering with honors at

the University of Salento, Lecce, Italy, in 2013.

His thesis concerned the definition and

implementation of a novel mash-up tool for

Wireless Sensor Networks’ configuration. Since

November 2013 he collaborates with IDA Lab

— IDentification Automation Laboratory at the

Department of Innovation Engineering,

University of Salento. His activity is focused on the definition and

implementation of new mash-up tools for managing Internet of

Things based smart environments by using semantic technologies

P. LILLO et al.: AN ECA-BASED SEMANTIC ARCHITECTURE FOR IOT BUILDING AUTOMATION SYSTEMS 33

