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Abstract - The Internet of Things (IoT), with its plethora of smart 

objects and technologies, allows to realize smart environments in 

several scenarios. However, the existing solutions are strictly 

intended for specific applications and their customization is often 

limited to what developers have considered at the design and 

implementation time. So, the integration of new functionalities 

requires significant changes by developers, while common users 

cannot make personalizations by themselves. For these reasons, 

this work deals with the definition of a novel rule-based semantic 

architecture for the easy implementation of building automation 

applications in an IoT context. Applications are structured as an 

Event-Condition-Action (ECA) rule and the layered architecture 

separates high-level semantic reasoning aspects from low-level 

execution details. The proposed architecture is also compared 

with main state-of-the-art solutions and a standard-based 

implementation framework is suggested. The last aspect is 

treated by referring to standardized guidelines and widely-

accepted platforms, in order to make the proposal more 

attractive and robust. 

Index terms - IoT, semantic technologies, ECA rule, ontologies, 

building automation, oneM2M 

 
I. INTRODUCTION 

The current trend in the development of building automation 

applications in an Internet of Things (IoT) context is to provide 

users with simple Integrated Development Environments 

(IDE), giving them low-level control of sensor and actuator 

devices located in the real environment [1, 2]. Indeed, since the 

low-level issues around smart objects, first of all the power 

consumption problem, could be solved by exploiting several 

solutions already in the literature [3, 4, 5], the high-level 

accessibility of users to the smart environment is still an open 

issue. Currently, by leveraging simplified IDEs, users can 

express their preferences without worrying about hardware and 

programming languages details. Unfortunately, these 

preferences are limited to those implemented by system 

developers, so common users have to give up the opportunity 

to define new system behaviors by themselves. Since the IoT 

world evolves rapidly thanks to the development of new 

devices, an ideal IoT-oriented system should provide end-

users with the possibility to define new software behaviors in 

declarative way. Indeed, during the interaction with the 

surrounding environment, user is only interested in the final 
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high-level effect of his/her actions. These actions, related to 

certain physical or abstract properties, should expose only the 

final goal they are able to achieve and should be in charge of 

the interaction with physical devices. To reach this result, the 

system should follow some design principles. First of all, the 

applications to be created should have a well-defined and 

modular structure. In particular, the rule-based Event-

Condition-Action (ECA) pattern could be a proper candidate. 

The structure of an ECA rule is: on EVENT if CONDITIONs 

then ACTIONs. It means that one or more actions can be 

performed on a system when certain events occur under 

certain conditions. Often, both conditions and events of an 

ECA rule could refer to the users’ position in the environment, 

i.e. they could be based on location-aware concept [6, 7]. In 

addition, in order to make the rule processing and execution 

more autonomous and efficient, the system should be based on 

semantic technologies, so that all information is in a machine-

understandable format. By modeling all concepts in the 

domain of interest with a semantic language, i.e. by defining 

one or more ontologies, a semantic reasoner can infer new 

information based on that already contained in the system. In 

this perspective, it is worth noting that, in order to run their 

rules, traditional Rule-based Engines (e.g. Drools Expert) need 

a Working Memory containing the Facts [8], i.e. items of 

information involved in the reasoning process during rule 

execution. For this reason, a key step is to map information 

contained in the ontology with Facts in a suitable format, and 

to re-map the generated information to ontology after rule 

execution. Avoiding this two-way mapping between Working 

Memory and Ontologies formats has been one of the main 

goals of the proposed rule-based semantic architecture. 

Another issue in this context is the implementation of custom 

SWRL Built-ins, which varies depending on the chosen 

semantic reasoner, such as Pellet [9].  

This work is a natural extension of the work presented in 

[10], whereof it recalls the logical architecture and proposes an 

implementation framework, based on the oneM2M 

specifications (explained in section V.B), aimed to foster 

autonomous communications in a M2M context. In more 

details, the main goal of this work is to follow standardized 

guidelines in the development of the proposed architecture, in 

order to make it more attractive and meaningful. Indeed, the 

majority of IoT stakeholders, such as enterprises, is still 

reluctant to invest directly on IoT solutions and most of them 

seek to secure their entrance with standardization. So, a new 

solution based on IoT technologies should be oriented as much 

as possible on standardized specifications and technologies 
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(both hardware and software). In this perspective the oneM2M 

specifications represents one of the best choices to achieve this 

objective.  

To briefly recall what presented in [10], it is worth noting 

that in the proposed architecture the semantic reasoning layer 

is clearly separated from the action execution layer, which 

deals with low-level implementation details. This is achieved 

through some key design choices. First, in the domain 

ontologies, simple concepts as System, High-level States, and 

High-level Actions, allow to describe the environment and its 

changes in human-understandable way. Second, applications 

are actually ECA Rules and are defined by selecting the High-

Level State of the System that acts as event trigger, the High-

Level States of related Systems that must be satisfied when the 

event occurs and High-Level Actions to be taken on the target 

Systems. These actions are simply individuals of the domain 

ontologies and do not implement any actual (low-level) 

operation. Third, a simple semantic reasoner has seamless 

access to all information needed to perform ECA Rules 

evaluation, which will only affect the updating of certain 

individual properties in the domain ontologies. Finally, 

appropriate ontology listeners initiate the execution of low-

level operations, which are carried out outside the semantic 

framework through an Action Engine. Low-level operations 

are defined by domain experts and exploit the devices’ low-

level APIs for implementing all the complexity of the physical 

interaction. The benefits of this solution are twofold. On the 

one hand, end-users are not required to know any 

programming language or control algorithm for defining 

applications, since visual wizards guide them during 

application creation. On the other hand, action 

implementations can be very effective and efficient, since they 

are defined by domain experts and are not tied to rule engines 

capabilities. Moreover, device heterogeneity is abstracted by 

introducing an architecture layer that hides all low-level 

details 

The rest of the paper is organized as follows. Section II 

reports the state-of-the-art related to rule-based semantic 

architectures for building automation applications. A deep 

description of the domain model is presented in Section III, 

while the detailed description of the proposed architecture is 

given in Section IV. In Section V, the proposed architecture is 

firstly compared with similar solutions in the state-of-the-art, 

in order to evaluate, from a qualitative point of view, its 

effectiveness and potential benefits; then, a feasible 

implementation based on the oneM2M specifications and the 

OSGi framework is proposed. Finally, conclusions are drawn 

in Section VI. 
 

II. RELATED WORKS 

One of the first attempts to apply ECA rule pattern for 

building automation applications is [11]. In this paper, authors 

propose a rule-based framework for the management of 

heterogeneous systems in a smart home environment. The 

proposed framework is based on an ECA rule mechanism with 

SOAP technology that provides interoperability among 

sensors and actuators systems. Main components of the 

framework consist of a home application server, a database 

module, and a service level application module. ECA rule 

mechanism is embedded in a database as data in the form of 

table, with a proper retrieval sequence. A more recent study on 

ECA pattern applied to building automation is reported in 

[12]. This paper suggests that an ECA-based framework is 

suitable both for describing the desired system operations in a 

user-centric smart environment, and for linking to an event-

based network made up of constrained sensors and actuators. 

A service-oriented architecture provides a suitable mechanism 

for separating out the event signaling functions of sensors 

from the details of the underlying hardware technologies. In 

order to address device heterogeneity and foster machine-to-

machine capabilities among systems, a key step in this context 

is to base systems on semantic technologies. The first studies 

in this direction were focused on Wireless Sensor Networks 

(WSN). In [13], authors propose a sensor information 

processing architecture, called SWASN (Semantic Web 

Architecture for Sensor Networks). The layered SWASN 

architecture deals with: (i) data gathering from heterogeneous 

sensor nodes and dispatching through sensor gateways; (ii) 

semantic annotation of collected data according to sensor 

ontologies; (iii) semantic data processing through rule engine 

to perform inference over semantically annotated sensor data; 

(iv) Web interface for sensor interaction.  The same effort was 

done with constrained networks made up also of actuators. In 

[14] a framework is presented for actuator discovery and 

invocation in home care systems. By making use of an 

ontology to model services and operations of actuators, policy 

actions are made protocol-independent. This allows actions of 

a care policy to be specified abstractly using human-

understandable concepts, hiding the low-level networking 

details from ordinary users. At run-time, the semantic 

discovery module searches for concrete actuator instances, so 

concrete action execution can take place. On a larger scale, 

[15] proposes a layered software architecture for delivering 

personalized services to residents in Self-Care Homes (SeCH). 

The architectural core layers grasp and understand the 

semantic of various situations that can be encountered in 

SeCH, through a variety of smart objects, which co-exist in 

pervasive environments. The decision making on appropriate 

actions is based on reasoning created by SWRL-enabled OWL 

ontologies, to ensure that residents are delivered suitable and 

personalized healthcare services in any situation. Concerning 

the application of semantic technologies within the building 

automation field, a good reference is [16], which presents a 

building automation system adopting SOA paradigm with 

devices implemented by Device Profile for Web Service 

(DPWS). Context information is collected, processed, and sent 

to a composition engine to coordinate appropriate 

devices/services based on context, composition plan, and 

predefined policy rules. A six-phased composition process 

carries out the task. In addition, in order to support the 

composition process, a building ontology is provided as a 

schema for representing semantic data, while a composition 

plan description language (CPDL) is used to describe context-

based composite services. Focusing more on the visual 

definition of policy rules by end-users and their interaction 

with system elements, in [17] authors propose a visual user-

centric service environment that helps users to create context 

aware services. It consists of a service mash-up process and a 

web-based service composition user interface. Through this 

environment and a step-by-step wizard, users define the 
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service environment, context and behavior of actuators, 

indicating only actuator's function and service condition. In 

addition, an ontology based sensor data processing is proposed 

that removes heterogeneity of sensor data and processes the 

object data to the context information. A functional 

comparison between these works and the proposed solution is 

carried out in Section V.A. 

 

III. DOMAIN MODEL 

A. High-level Context Modeling 

As stated in the Introduction Section, the main goal of the 

proposed architecture is to simplify the definition and 

implementation of building automation applications by 

common end-users. It can be achieved, firstly, by giving the 

applications a simple and well-defined structure, like the ECA 

rule pattern. When an event occurs, i.e. a fact with a particular 

meaning in the context of interest happens, if some conditions 

are verified, then one or more actions can be performed in 

response to the detected event.  

Moreover, this model is much simpler and more effective 

the more event, condition and action components are abstract 

and close to the user. In smart home environments, people are 

generally interested in monitoring and controlling particular 

properties of some entities in a given location. Entities and 

related properties can be material or immaterial, such as 

temperature of the air, moisture of the soil, presence of a 

person, occurrence of rain, and so on. These are correlated 

with a location, which typically has (but is not limited to) an 

indoor scope. According to these considerations, we have 

defined in [10] the concept of (i) System, as the triple 

Property-Entity-Location, (ii) Sub-System, i.e. allowable 

System (e.g. temperature-air-room), and (iii) Sub-Systems 

instances, i.e. combination of concrete elements (e.g. temp-air-

kitchen). Then, to each System (and each Sub-System for 

extension) it is associated a set of High-Level States, which 

can be changed by performing some High-Level Actions. 

Therefore, when state change occurs, user can select the 

desired High-Level Action and the desired High-Level State.  

With this model in mind, the concept of System High-Level 

State change can be used as a trigger for the EVENT part of 

the ECA Rule and System High-Level Action as the 

corresponding ACTION part. CONDITION item can be the 

High-Level (current) State of any related System. For example, 

the rule expressed in human language “When the air 

temperature in the living room becomes hot, if Frank is in the 

room, then decrease the temperature to a normal value” can be 

mapped to the following ECA Rule (pseudo-notation): 

ON temperature-air-living_room(hot) 
IF presence-Frank-living_room(present) 
THEN temperature-air-living_room.decrease(normal) 

High-Level Actions can be classified according to the 

duration of their intervention. For example, increasing the 

luminosity of a room is an immediate action and its effect is 

stable in time; increasing room temperature, instead, requires 

some time before the desired result is got, hence actuators 

must be on for a certain period of time. When the controlled 

temperature exceeds the target threshold, all actuators must be 

switched off, otherwise it would raise indefinitely. The first 

example is a typical case of an “On/Off” control action, while 

the second is a kind of “Single Threshold” control action and 

both are included in the context model (with other types of 

action). In the last case, it is framework responsibility to create 

an ECA Rule that de-activates all actuators involved in an 

High-Level Action. Such a rule is named De-Activate Rule and 

the desired state of original ACTION becomes its trigger state, 

while its ACTION is the logical negation of the original action 

(i.e. stopIncrease, stopDecrease, etc.). For this purpose, a 

HLService entity must be modeled that keeps track of 

actuators activation within High-Level Actions. 

B.  Low-level Action Modeling 

High-Level Actions labels must be translated into runnable 

applications in order to be executed. These applications are 

intended for hiding from end-user all complexity related to 

low-level details of action implementation. Instead, all these 

details are addressed by domain experts, who are in charge of 

creating action implementations exploiting context-aware 

information of the High-Level Context Model. Although it is 

not easy to define a common application structure, some 

common phases can be identified. For example, in a 

DecreaseTemp Action of a temperature-air-room Sub-System, 

the Action code, firstly, must retrieve the numerical value of 

the current High-Level State; then it must retrieve numerical 

value of desired High-Level State threshold, so the magnitude 

of the intervention can be calculated. As a mere example, if 

the difference between current and desired values of 

temperature is little, then it can be decided to open the window 

in the room; if the difference is a little bit greater, then the fan 

can be activated, or, if the difference is substantial, the air 

conditioner must be switched on. According to this business 

logic, a resource discovery phase is started, in order to get the 

URIs of devices that can execute the required service, and then 

proper commands can be issued to physical devices. Resource 

discovery and interaction are done by exploiting APIs 

provided by the framework (as explained in Section IV). 

Action codes are stored in a central repository, so they can be 

called by the proper module anytime are needed. 

C. Semantic Model and Domain Ontologies 

The High-Level Context Model must be implemented in 

order to share the knowledge contained in it among all 

framework components. Moreover, an execution environment 

for the modeled ECA Rules is needed. Both requirements can 

be fulfilled by means of semantic technologies. All the 

previously mentioned concepts can be seen as classes and 

individuals of an ontology [17]. Ontologies are used to 

formally name and define the types, properties, and 

interrelationships of the entities of a particular domain of 

discourse, in a machine-readable and understandable format. 

In this way, with the help of a semantic reasoner, it is possible 

to infer new information from data contained in the starting 

ontology. Furthermore, ECA Rules can be directly mapped to 

simple semantic rules written with a semantic rule language 

(like SRWL), so the semantic reasoner itself can execute them. 

By doing so, during rule execution all the information 

contained in this Semantic Model can be exploited and rule 

effects can be stored back in it to add new knowledge. 

Semantic rules are also used during the creation of the 
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Fig. 2. Excerpts of the Domain Ontologies 

individual: when user inserts the Property-Entity-Location 

triple during the ECA Rule definition, this information is used 

to create an individual of the class System, which then is 

classified to infer its right Sub-System class; once the Sub-

System is identified, available High-Level States and High-

Level Actions are linked to the individual by running the so-

called Structural Rules (Fig. 1). These rules represent 

structural knowledge for the Semantic Model and are created 

at design time by domain modelers. 

For the sake of space and readability, the structure of 

Domain Ontologies is not deeply explained in this document, 

but this will be the focus of upcoming manuscripts. However, 

the core blocks are illustrated in Fig. 2, which shows some 

excerpts of the Domain Ontologies modeling the concept of 

System, Sub-System and their Property-Entity-Location 

components, High-Level States, High-Level Actions, 

Resources and their Functionalities. Whereas the picture does 

not show the User and Time entities, which also have an 

important role in the model. Fig. 3 shows an example of Sub-

System individual (pseudo-notation), while Fig. 4 depicts ECA 

Rule components (pseudo-notation) mapped to a semantic rule 

(SWRL language).  The hasCurrentState and isFired 

properties of Sub-System and Action individuals, respectively, 

play an important role in that they trigger rule evaluation and 

action execution (as explained in next Section). 

 

IV. PROPOSED ARCHITECTURE 

The structure of the proposed Rule-based Semantic 

Architecture is depicted in Fig. 5. Its main characteristic is the 

decoupling of the semantic layer from the actual Action 

execution layer. Once modeled all the entities and 

relationships of the context domain through ontologies, 

including physical resources functionalities and states, as well 

as ECA Rule structure and components, the execution of an 

ECA Rule at the semantic level implies only the change of the 

isFired property of the ACTION individual in the related 

ontology. A proper ontology listener observes this property 

and, on value change, triggers the actual action execution by 

calling the appropriate module and passing the action 

individual to it. Moreover, ECA Rule execution layer is 

independent from the semantic technologies chosen for its 

implementation, so different reasoners, rule languages and 

semantic framework can be used to create a working instance 

of the architecture. The main building blocks of each layer in 

the architecture are illustrated in the following sub-sections. 

A. GUI Layer 

This three-component layer represents the interface between 

end-user and framework. The Rule Editor allows user to 

visually create applications by selecting which Systems belong 

to EVENT, CONDITION, and ACTION part of the ECA Rule. 

This can be done by choosing, within a wizard, the Property-

Entity-Location individuals triple to identify the Sub-System of 

interest, and then by choosing the related High-Level State or 

High-Level Action as needed. The Dashboard Manager, 

instead, allows user to create simple dashboards for 

monitoring and controlling System related information. This 

can be high-level information, like High-Level State of the 

System, as well as low-level information, like sensor readings 

or actuator states related to the System. Finally, the 

Framework Manager allows user to configure various aspects 

of the Semantic Framework, like the environment layout, the 

type and position of devices deployed in it, and the numeric 

range of the High-level State labels of each System. 

B. Semantic Execution Layer 

This is the core layer of the whole architecture, since it 

deals with the management of the Semantic Model and 

semantic rule execution. Its first task, accomplished by the 

RULE MAPPER Module, is to take the ECA Rule 

components, visually defined by the user, and create the 

proper individuals of the Domain Ontologies.  At the same 

time, a valid executable rule is created, using the semantic rule 

language set at configuration time (e.g. SWRL). Finally, the 

rule is stored in the Rule Repository. Any interaction with 

ontologies and repositories is managed by the KNOWLEDGE 

BASE UPDATER (KBU), which provides an interface for 

creating, updating and removal of individuals in the 

knowledge base. Then the OBSERVER MANAGER (OM) 

Module implements the Observer pattern and takes care of 

adding the RULE individual as an observer of the 

hasCurrentState property of the Sub-System individual 

indicated in the EVENT part, so that any state change will 

trigger semantic rule evaluation. Also the isFired property of 

Rule1: TempAirRoom(?s) -> hasAvailableAction(?s, decTempAirRoom), 
hasAvailableAction(?s, incTempAirRoom), hasAvailableState(?s, 
high), hasAvailableState(?s, low), hasAvailableState(?s, normal) 

Fig. 1. Example of a Structural Rule 

 

Sub-System: TempAirRoom (TAR) 
sys1-> sysHasProperty: temperature 
 sysHasEntity: air 
 sysHasLocation: living_room 
 hasAvailableState: TAR_low, TAR_normal, TAR_high 
 hasCurrentState: TAR_high 
 hasAvailableAction: TAR_increase, TAR_decrease, 

TAR_stopIncr, TAR_stopDec 

Fig. 3. Sub-System individual example 
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Fig. 5. Framework Architecture 

 

the ACTION individual is added to a list of observable 

objects, which will trigger an eventual action execution after 

rule execution. The RULE EXECUTOR (RE) Module, in 

collaboration with the SEMANTIC REASONER (SR) 

Module, deals with ECA Rule execution. The SR contains the 

whole domain model implemented in a semantic format 

(OWL/RDF), so all the knowledge can be used to make 

inference. The DE-ACTIVATE RULE COMPOSER (DRC) 

Module deals with the creation of the De-Activate Rules, as 

explained in Section III.A. All their components are created as 

individuals of the related ontologies and registered as proper 

observers. Finally, the QUERY MANAGER (QM) Module 

provides an interface for querying domain ontologies and 

repositories. 

C. Action Execution Layer 

This layer implements all the mechanisms needed for 

translating High-Level Actions into a series of commands 

destined to physical actuator devices. The ACTION 

EXECUTOR (AEx) Module, when called by the OM, 

retrieves from the Action Repository the business code 

associated with the Action and gives it in input to the 

ACTION ENGINE (AEn). This module executes each 

instruction and, when needed, it queries the knowledge base 

(through the QM) in order to discover which resources offer 

the required functionalities. For each bounded device, it passes 

the device URI and the command string to the HLAC Module, 

contained in the Abstraction Layer. 

D. Repository Layer 

This layer contains several repositories for storing 

ontologies and their individuals (the so-called knowledge 

base), the Rules in semantic format (that must be included in 

the knowledge base only when they have to be executed), the 

Action business codes and the Dashboard templates. 

E. Abstraction Layer 

This layer acts as a middleware between the Technology 

Layer and the Semantic Layer, in that it semantically annotates 

data coming from physical devices and stores it in the 

knowledge base. The same applies in the opposite way, when 

high-level operations on actuators are translated into low-level 

commands according to the given technology. For each 

technology a TECH-X ADAPTER Module is provided, which 

is in charge of collecting data from physical devices, arrange 

them in an intermediate format and send them to the RAW 

DATA COLLECTOR (RDC) Module. The RDC Module, 

firstly semantically annotates data and stores them into the 

knowledge base via the KBU, then it passes these semantic 

data to the EVENT GENERATOR (EG) Module, which 

accomplishes the task of comparing numerical data with 

predefined thresholds in order to classify the High-Level State. 

If a state change is detected, an Event is triggered to the upper 

layer of the architecture. On the other side, messages coming 

from the Action Execution Layer, containing high-level 

commands and directed to physical actuators, are firstly 

handled by HIGH-LEVEL ACTUATOR CONTROLLER 

(HLAC) Module. It is in charge of reporting the intended 

operation in the knowledge base by creating a new individual 

of the class HLService, indicating which device has been 

activated, with which command and under which High-Level 

Action. After that, flow control is taken by the LOW LEVEL 

ACTUATOR CONTROLLER (LLAC) that, starting from 

device URI, identifies its native technology and prepares a 

proper message format according to it. 

F. Technology Layer 

This layer encompasses the main technologies and protocols 

used for managing devices in building automation 

applications. These can be roughly divided into three main 

categories: (i) wired and wireless standards for home 

automation networks, (ii) protocols for WSNs management, 

and (iii) indoor positioning systems. All these technologies are 

completely unaware of the upper layers, but, exploiting the 

proper TECH-X ADAPTER provided by the Abstraction 

Layer, they are simply seen as data sources and sinks, and they 

can seamlessly interoperate together. 

G. Runtime Lifecycle 

This section briefly explains how the whole architecture 

works. Firstly, user visually sets up the system through the 

Framework Manager, where s/he defines building layout, 

device deploying and threshold intervals. Then, end-user 

applications (i.e. ECA Rules) are defined through the Rule 

Editor, as explained in Section IV.A. In the background, a 

Rule  Event 
R1 -> hasEvent: E1  E1 -> hasESystem: sys1 
 hasCondition: C1 

hasAction: A1 
  hasETriggerState: 

             TAR_high 
     

Condition  Action 
C1 -> hasCSystem: sys5  A1 -> hasASystem: sys1 
 hasCTriggerState: 

          PPL_yes 
  hasADesiredState: 

           TAR_normal 
    hasADesiredHLAction: 

         TAR_Decrease 
    isFired: false 

SWRL Rule1    

hasETriggerState(?E1,TAR_high), hasCTriggerState(?C1,PPL_yes) -> 
isFired(?A1,true) 

Fig. 4. ECA Rule individuals and related SWRL semantic rule 
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Fig. 6. Framework Runtime Lifecycle 

mapping algorithm creates executable semantic rules and the 

De-Activate Rule components (if needed). Then all individuals 

are stored in the related ontologies. This way the system is 

initialized, and can start its runtime life-cycle, as illustrated in 

Fig. 6. Raw data coming from heterogeneous devices, 

including sensor readings and actuator states, are collected by 

the related TECH-X ADAPTERs and sent to the RAW DATA 

COLLECTOR (a). Here, data are semantically annotated and 

stored into the knowledge base as current state value of the 

resource associated to the physical device. Since each resource 

is linked to a Sub-System by means of Property-Entity-

Location triple, this information is used to retrieve the High-

Level State threshold definitions, so the current reading can be 

classified (b). If this comparison results in a High-Level State 

change, the Sub-System hasCurrentState property is updated in 

the knowledge base. This is detected as an Event at the 

Semantic Execution Layer (c), so the OBSERVER 

MANAGER scans the list of Rules interested in this particular 

state change and, eventually, Rule individuals are sent to the 

RULE EXECUTOR. This module retrieves the Rule semantic 

code and gives it in input to the SEMANTIC REASONER. It 

evaluates the Rule according to information currently 

contained in the knowledge base. If all conditions in the rule 

antecedent1 part are met, then its consequent part can be 

executed, so the isFired property of Action individual can be 

set to true. This means that current rule has been successfully 

evaluated and the related Action can be executed (d). After 

semantic rule evaluation, the rule code is removed from the 

knowledge base, otherwise it would be executed after every 

event detection. If any condition in the antecedent part is 

unmet, then the consequent part will not be executed and no 

action execution will be fired. When the isFired property of 

the Rule Action is updated, the OM selects the Action 

individual and passes it to the ACTION EXECUTOR. It 

retrieves the business code of the Action from the repository 

and starts its execution routine through the ACTION ENGINE 

(e). This module queries the knowledge base through the 

QUERY MANAGER to identify the URIs of devices 

implementing the required service (f). Once URIs are 

identified, they are sent to the HLAC, along with the 

command strings. This component reports the required 

operation in the knowledge base by creating an individual of 

the HLService class, then formats the message and sends it to 

 
1 Semantic rules generally have the form: A1˄A2˄…˄An→H, where the left–

hand side is also called antecedent or body, while the right-hand side is called 

consequent or head 

the LLAC. This module, starting from device URI, identifies 

its native technology and accordingly formats the message 

destined to it (g). This pattern is repeated until all operations in 

the Action business code are executed. At this point, the whole 

Action is considered as fully executed, and all actuator state 

changes are reported back in the knowledge base as an update 

notification. When the desired High-Level State of each Sub-

System involved in the Action part of the ECA Rule is 

reached, the related De-Activate Rule (if any) must be 

executed, in order to set Rule state as Stopped. In the 

meanwhile, the current ECA Rule must be considered in a 

Running state. The De-Activate Rule execution follows the 

same pattern of a common ECA Rule, except for the fact that 

it does not imply another De-Activate cycle. In any moment, 

all information related to each Sub-System can be monitored 

and controlled through a visual dashboard, which contains a 

set of widgets showing System High-Level State and 

associated sensor values, all Rules related to the System (both 

active and inactive), the Actions being executed and involved 

actuators state. Values displayed within these widgets are 

gathered from the knowledge base by the OM, which listens 

for resource state changes. Commands fired by GUI widgets 

get directly to the HLAC and follow the common execution 

path. 

V. DISCUSSION 

In this section, the proposed architecture is discussed by 

comparing it with similar solutions in the State-of-the-Art and 

by proposing a reference framework that can be used for its 

implementation. 

A. Architecture comparison 

The rule-based semantic architecture described in this paper 

presents the following core features: 

• ECA Rules abstraction: explicit use of the ECA pattern as 

application template; 

• High-Level abstraction: representation of context 

information and actions with a format close to user, hiding 

all low-level details; 

• Semantic modeling: application of semantic technologies 

for context modeling; 

• Device heterogeneity: abstraction of device functionalities, 

independently from their native technologies; 

• Visual interface: provision of a graphic user interface for 

system setup and application creation and control; 

• DSL compliance: possibility to define a domain specific 

language to facilitate action implementation. 

The analysis of the architectures reported in Section II with 

respect to these functionalities is shown in Table I. ECA rules 

are treated only in [11], [12] and [14], while [15] uses normal 

semantic rules in SWRL language. In the proposed work, 

instead, ECA rules are the core of the entire architecture, 

because their well-defined and meaningful structure helps end-

users in the application definition process. Moreover, also a 

context abstraction based on familiar concepts, can further 

facilitate users during applications creation. High-level 

abstraction is addressed by all the analyzed works, though at 

different levels. Although most solutions abstract raw sensor 

data to extract useful information for end-users, in the 

proposed architecture the abstraction is done at System level. 
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TABLE I 

ARCHITECTURE FEATURES COMPARISON 

 [11] [12] [13] [14] [15] [16] [17] Proposed 

ECA Rules   -  - - -  
High-Level 

Abstraction 
        

Semantic Modeling - -       
Device Heterogeneity         

Visual Interface - -   -    
DSL Compliance - - - - -  -  

 The state of the considered System can be affected by a set of 

available actions that involves physical or virtual devices. This 

abstraction is used by the user to compose the elements of the 

application, by selecting the items of interest among ones 

proposed through a visual wizard. An interactive GUI can 

improve user experience, and has a central role in [13] and 

[17], whereas in [14] and [16] is a system functionality. From 

a technological point of view, semantic technologies are 

increasingly being used in such architectures, and they are 

applied in [13-17]. The main difference is that, in the proposed 

architecture, also ECA rules are executed by traditional 

semantic reasoner, exploiting the context modeling. Device 

heterogeneity is addressed by all works, though [13] only 

focuses on WSN devices and [16] only considers DPWS 

compliant devices. Finally, a domain specific language to 

compose applications is provided only in [16]. Taking into 

account this comparison, it is clear that, even if other scientific 

works already address some of the issues faced by the 

proposed system, none of them is able to provide a complete 

solution that efficiently solves all these issues.  

B. Towards implementation 

This paper focuses mainly on the context modeling and on 

the logical design of the proposed architecture, which is 

independent from any real technology; however, at the time of 

writing, its implementation is in an early stage. The aim is to 

prove the overall feasibility of the framework by mapping all 

of its logical blocks to the structure of the oneM2M project, 

described in the following paragraphs. Moreover, since 

Domain Ontologies are a central block of the architecture, this 

sub-section firstly proposes a scouting about already existing 

suitable ontologies that can be linked to the Semantic Model, 

in order to augment its expressivity and to foster knowledge 

sharing. 

B.1 Ontology enhancement  

The Semantic Execution Layer focuses on semantic model 

management; in particular, it is in charge of receiving both 

ECA rules from upper layers and event notifications from 

lower layers, and to process them in order to achieve the 

desired behavior. To do so, it has to interact with the Domain 

Ontologies to (i) create the proper individuals, (ii) infer new 

information from the starting knowledge, and (iii) store back 

in it new knowledge arising from ECA rules execution. So, it 

is clear that the structure of the Domain Ontologies is critical 

for the effectiveness of the Semantic Execution Layer, thus the 

possibility to rely on standard ontologies is an important 

aspect of the proposal. Among all the entities of the 

architecture, the User, the Location, the Time and the Physical 

Devices are the most likely to have well-defined and shared 

ontologies, due  to their common and widely-used concepts. 

The User has the capability to define the desired actions 

through ECA rules, the Location and Time are essential to 

identify the occurrence of events, which are the triggers of the 

ECA rules, whereas the Physical Devices are the interface 

between virtual and real world. Regarding the User, the FOAF 

ontology [18] seems to be a significant candidate. It is a 

machine-readable ontology describing persons, their activities 

and their relations to other people and objects. In more detail, 

it can be seen as a descriptive vocabulary expressed through 

the Resource Description Framework (RDF) and the Web 

Ontology Language (OWL). About the Time concept, several 

ontologies could be suitable for the proposed architecture. The 

OWL-Time [19] provides a vocabulary for expressing facts 

about topological relations among instants and intervals, 

together with information about durations, and about date/time 

information. Moreover, the Timeline Ontology [20] defines 

the TimeLine concept, representing a coherent backbone for 

addressing temporal information. Each temporal object 

(signal, video, performance, work, etc.) can be associated to 

such a timeline. As an alternative, the 

SWRLTemporalOntology [21] defines a temporal model that 

can be used to model complex interval-based temporal 

information in OWL ontologies. It also defines a library of 

SWRL built-ins to perform temporal operations on 

information described using this ontology. An introduction to 

this ontology and an explanation of how can be used to 

perform temporal reasoning is covered in [22]. The model 

defined by SWRLTemporalOntology is based on the valid-

time temporal model [23], a commonly-used model to 

represent temporal information in many systems. The valid-

time temporal model provides an approach for consistently 

representing temporal information. In this model, a piece of 

information, which is often referred to as a fact or a 

proposition, can be associated with instants or intervals 

denoting the time or times that the fact is held to be true. Such 

facts have a value and one or more valid times. In other words, 

every temporal fact holds information denoting the valid-time 

of the facts. Conceptually, this representation means that every 

temporal fact is held to be true or valid during the time or 

times associated with it. No conclusions can be made about 

the fact for time periods outside of its valid-time. Going ahead 

with the Location component, it is worth noting that it is not 

simple to find a universally adopted standard ontology. Even if 

there are several research works aimed at providing location-

based solutions dedicated to smart environments, they often 

define their own location ontologies. Furthermore, these works 

usually focus on a wider location ontology concept, namely a 

context ontology, which is not limited to places’ description 

but to define all aspects characterizing the surrounding 

environment [24]. Finally, regarding the networks of Physical 

Devices, a reference ontology could be the oneM2M Base 

Ontology draft [25]. It aims at providing syntactic and 

semantic interoperability to the oneM2M Project (described in 

more detail in the following paragraph) with external systems. 

In particular, external organizations and companies are 

expected to contribute their own ontologies that can be 

mapped to the oneM2M Base Ontology. These external 

ontologies might describe specific types of devices or, more 
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Fig. 7. oneM2M functional architecture 

generally, they might describe real-world “things” that should 

be represented in an oneM2M implementation. In this way, 

oneM2M data can be enhanced with information on the 

meaning/purpose of these data. Therefore, the oneM2M Base 

Ontology is the minimal ontology that is required such that 

other ontologies can be mapped into oneM2M. About Physical 

Devices, it is worth considering also the Semantic Sensor 

Network (SSN) Ontology [26]. This ontology is based around 

the concepts of systems, processes, and observations and it 

supports the description of the physical and processing 

structure of sensors. Sensors are not constrained to physical 

sensing devices, rather a sensor is anything that can estimate 

or calculate the value of a phenomenon; so a device or 

computational process or combination could play the role of a 

sensor. The representation of a sensor in the ontology links 

together what it measures (the domain phenomena), the 

physical sensor (the device) and its functions and processing 

(the models). 

B.2 The oneM2M project 

The goal of oneM2M is to develop technical specifications 

aimed to create a common M2M Service Layer, which can be 

readily embedded within various hardware and software, in 

order to connect heterogeneous devices with M2M application 

servers worldwide. The oneM2M system architecture provides 

both basic functionalities (e.g., registration and message 

handling) and various advanced functionalities (e.g., 

interconnections with other systems). To achieve this, 

oneM2M defines a common service layer providing M2M 

services, independently from the underlying networks. The 

latest oneM2M functional architecture [27] is shown in Fig. 7. 

An oneM2M system is composed of functional entities, called 

nodes, which can be application dedicated node (ADN), 

application service node (ASN), middle node (MN) and 

infrastructure node (IN). Nodes consist of at least one 

oneM2M Common Services Entity (CSE) or one oneM2M 

Application Entity (AE). A CSE is a logical entity that is 

instantiated in an M2M node and comprises a set of service 

functions called Common Services Functions (CSFs), which 

can be used by applications and other CSEs. An AE is a 

logical entity that provides application logic for end-to-end 

M2M solutions. oneM2M currently defines three reference 

points, namely Mca, Mcc, and Mcn. The Mca reference point 

enables AEs to exploit the services provided by the CSE, 

whereas the Mcc reference point enables inter-CSE 

communications. The Mcc’ reference is similar to Mcc, but 

provides an interface to another oneM2M system. The Mcn 

reference point is between a CSE and the service entities in the 

underlying networks. oneM2M has specified a set of core 

CSFs for its initial release. Some CSFs provide administrative 

functions for the service layer and other CSFs, like the 

Registration (REG) CSF that provides a means for an AE or a 

CSE to register to a CSE and be able to use the services 

provided by that CSE. An AE and a Service Layer 

Management (ASM) CSF provide functions to configure, 

troubleshoot, and upgrade CSEs and AEs. A Device 

Management (DMG) CSF manages device capabilities such as 

firmware updates. The Communication Management and 

Delivery Handling (CMDH) CSF, instead, is responsible for 

the delivery of service layer messages. The Network Service 

Exposure (NSSE) CSF acts as the anchor point between the 

service layer and services provided by different underlying 

networks. The Security (SEC) CSF enables secure connections 

and data privacy. Some CSFs provide value-added services to 

registered AEs and CSEs. For example, the Data Management 

and Repository (DMR) CSF is responsible for user data 

storage and processing, so users can also subscribe and get 

notifications of changes in the data. The Discovery (DIS) CSF 

provides a means to make the services and resources 

discoverable by other CSEs and AEs. A Subscription and 

Notification (SUB) CSF manages subscriptions to changes on 

the oneM2M platform. The Service Session Management 

(SSM) CSF supports end-to-end service layer sessions. A 

Group Management (GMG) CSF supports bulk operations and 

manages group membership. The Location (LOC) CSF allows 

M2M AEs to obtain geographic location information of an 

entity and receive location-based services. The Service 

Charging and Accounting (SCA) CSF provides mechanisms to 

support service-layer-based charging. In addition to CSFs, a 

CSE includes a service enabler to ensure the extensibility of 

services.  

B.3 Mapping with the oneM2M architecture 

All the functionalities introduced in the proposed 

architecture (Section IV) can be mapped to the components of 

the oneM2M architecture. For the sake of clarity, let suppose a 

testing scenario in which a smart building is equipped with a 

wired building automation system (for example based on the 

KNX standard), a WSN for ambient data sensing and a BLE-

based indoor positioning system that interacts with user’s 

smartphone to detect his/her position. All these systems 

communicate with a local smart gateway to make their data 

available to the global framework. The semantic framework 

runs in a proper container, which can be deployed on the smart 

gateway, on a dedicated local server, or in the cloud. 

Comparing this scenario with the proposed architecture in Fig. 

5 and the functional architecture in Fig. 7, the functionalities 

of the local gateway and the TECH-X Adapter for each low-

level technology can be mapped to the NSE; in fact, it 

provides services from the underlying networks that can be 

accessed through the NSSE CSF of the CSE. As usual, 

physical devices remains completely unaware of the upper 

layers, but they can be still managed through the DMG CSF. 

Since the DMR CSF offers data storage and mediation 
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functions in order to store big amounts of data for analytics 

and semantic processing, the entire Repository Layer can be 

mapped to the DMR CSF, which can handle all needed 

repositories. It represents a low-level interface that can be used 

to implement advanced functionalities related to data. In the 

oneM2M architecture, the role of part of the Abstraction Layer 

and all of the original Semantic and Action Layers can be seen 

as a new CSF, called Semantic Rule and Action Engine 

(SRAE), which offers services aimed at the execution of 

semantic rules and low-level actions through the interpretation 

of the provided DSL. In particular, the SRAE interacts with 

the SUB CSF to carry out the concerns of the OBSERVER 

MANAGER and with the DMR to implement the QUERY 

MANAGER and the KNOWLEDGE BASE UPDATER. 

Moreover, the SRAE interacts with the DMR also to 

implement the functionalities of RAW DATA COLLECTOR, 

EVENT GENERATOR, HIGH-LEVEL and LOW-LEVEL 

ACTUATOR CONTROLLERS, which are specialized 

services built upon DMR services. By doing so, the SRAE can 

handle all the needed semantic data. The remaining modules 

of the semantic layer, instead, become inner blocks of the 

SRAE. The same applies to the ACTION EXECUTOR and 

the ACTION ENGINE modules, which become an 

autonomous block within the SRAE and interacts mainly with 

the DIS CSF for service discovery and the GMG CSF for 

group commands. Finally, all modules of the GUI Layer 

become AEs, in that they implement pure application business 

logic. Obviously, AEs register through the REG CSF in order 

to access all the services provided by the CSE, especially the 

ones of the ASM, CMDH and SEC CSFs.  

B.4 OSGi-based implementation design  

In order to build IoT-based applications, OSGi [28] 

provides an excellent programming model based on modern 

principles of modularity and service-oriented computing. In 

addition, the OSGi lifecycle operations provide a high level of 

dynamism about application deploying, managing and 

updating. OSGi builds an abstraction layer over plain-Java, 

defining a software infrastructure by means of which modern 

patterns like code-injection, aspects, discovery, messaging, 

event bindings are easily integrated. OSGi can be a good 

choice in order to implement an oneM2M specification, since 

specialized distributions, like Apache ServiceMix [29], 

provide support for messaging, routing, integration patterns, 

remote services, transaction management and, in general, all 

that needs to implement CSEs functionalities. At one time, 

more compact distributions of OSGi can be deployed on 

constrained devices, like the TECH-X Adapters running on 

NSEs in our scenario. In an OSGi context a TECH-X Adapter 

can be packed as “bundle” and easily deployed on a NSE 

making use of a remote deployment tool like Apache ACE 

[30] which is all about provisioning software artifacts to OSGi 

(and not only) target systems. A TECH-X Adapter, 

implementing a typical OSGi “extender pattern” [31], 

declaratively exposes meta-data to the discovery services and 

then makes the connected devices discoverable. An OSGi 

container permits bundles to be hot deployed/undeployed and 

updated within a running system without restarting the 

application or the JVM, making the system very reactive. 

Once started, the local NSSE CSF holds the connection with 

the adapter and then with devices behind the adapter that are 

registered in the oneM2M system as “resources”. In an 

oneM2M context, our Semantic Rule and Action Engine 

(SRAE) CSF can discover and subscribe a device via NSSE 

CSF, then receiving notification about its state changes 

(sensor) or send actuation commands to it (actuator) via SUB 

CSF.  

VI. CONCLUSION 

In this work, the design of a rule-based semantic 

architecture has been proposed with the aim to help common 

end-users in defining their building automation applications. 

This architecture addresses the main issues involved in 

application management in an Internet of Things context, such 

as: (i) application and context modeling, by means of ECA 

Rule, System, High-Level States and High-Level Actions 

abstractions, (ii) application creation and control, through the 

introduction of a visual IDE, (iii) execution environment 

definition, by means of a Semantic Framework and an Action 

Engine, (iv) physical device management, by introducing a 

low-level layer that abstracts device heterogeneity. Moreover, 

a reference framework has been proposed in order to 

implement each layer of the architecture, on the basis of a set 

of novel standard specifications, namely the oneM2M project. 

These specifications, aiming to foster autonomous 

communications in a M2M context, can be easily implemented 

by means of the OSGi framework. Further developments are 

being carried out to improve overall architecture effectiveness, 

especially concerning the Semantic Model and Domain 

Ontologies. Finally, the last step will be to setup a real test bed 

and assess system performances. 

 

REFERENCES 

[1] L. Mainetti, V. Mighali, S.L. Oliva, L. Patrono, P. Rametta: A 

novel architecture enabling the visual implementation of web of 

Things applications, The 21st Int. Conf. on Software, 

Telecommunications and Computer Networks, SoftCOM 2013, 

Split (Croatia), Sept. 18-20, 2013 

[2] L. Mainetti, V. Mighali, L. Patrono, P. Rametta: Discovery and 

Mash-up of Physical Resources through a Web of Things 

Architecture, Journal of Communications Software and Systems, 

vol. 10, no. 2, pp.124-134, June 2014 

[3] L. Anchora, A. Capone, V. Mighali, L. Patrono, F. Simone: A 

novel MAC scheduler to minimize the energy consumption in a 

Wireless Sensor Network, Ad Hoc Networks, vol. 16, pp. 88-

104, 2014. 

[4] L. Catarinucci, R. Colella, G. Del Fiore, L. Mainetti, V. Mighali, 

L. Patrono, M. L. Stefanizzi: A cross-layer approach to 

minimize the energy consumption in wireless sensor networks, 

International Journal of Distributed Sensor Networks, vol. 2014, 

ID 268284, 11 pages, 2014. 

[5] L. Catarinucci, R. Colella, L. Tarricone: Sensor data 

transmission through passive RFID tags to feed wireless sensor 

networks, in 2010 IEEE MTT-S International Microwave 

Symposium, MTT 2010, Anaheim, CA, 2010, pp. 1772-1775. 

[6] L. Mainetti, V. Mighali, L. Patrono: An IoT-based User-centric 

Ecosystem for Heterogeneous Smart Home Environments, in 

2015 IEEE Int. Conf. on Communications,  IEEE ICC 2015, 

London (UK), June 8-12, 2015 

[7] L. Mainetti, V. Mighali, L. Patrono: A Location-aware 

Architecture for Heterogeneous Building Automation Systems, in 

14th IFIP/IEEE Symposium on Integrated Network and Service 

Management, IM 2015, Ottawa (Canada), May 11-15, 2015 

32 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016



 

[8] Drools Expert: 

https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-

docs/html_single/ 

[9] Pellet Reasoner: https://github.com/complexible/pellet 

[10] L. Mainetti, V. Mighali, L. Patrono, P. Rametta: A novel Rule-

based Semantic Architecture for IoT Building Automation 

Systems, The 23rd Int. Conf. on Software, Telecommunications 

and Computer Networks, SoftCOM 2015, Split (Croatia), Sept. 

16-18, 2015 

[11] Chui Yew Leong, A.R. Ramli, T. Perumal: A rule-based 

framework for heterogeneous subsystems management in smart 

home environment, Consumer Electronics, IEEE Transactions 

on , vol.55, no.3, pp.1208,1213, August 2009. 

[12] S.R. Bhandari, N.W. Bergmann: An Internet-of-Things system 

architecture based on services and events, Intelligent Sensors, 

Sensor Networks and Information Processing, 2013 IEEE 18th 

Int. Conf. on , vol., no., pp.339,344, 2-5 April 2013 

[13] V. Huang, M.K. Javed: Semantic Sensor Information 

Description and Processing, Sensor Technologies and 

Applications, 2008. SENSORCOMM '08. 2nd Int. Conf. on , 

vol., no., pp.456,461, 25-31 Aug. 2008. 

[14] Feng Wang, Kenneth J. Turner: An Ontology-Based Actuator 

Discovery and Invocation Framework in Home Care Systems, in 

Proc. 7th Int. Conf. on Smart Homes and Health Telematics, pp. 

66-73, LNCS 5597, Springer, Berlin, June 2009 

[15] R. Shojanoori, R. Juric, M. Lohi, G. Terstyanszky: ASeCS: 

Assistive Self-Care Software Architectures for Delivering 

Service in Care Homes, System Sciences (HICSS), 2014 47th 

Hawaii Int. Conf. on , vol., no., pp.2928,2937, 6-9 Jan. 2014 

[16] S.N. Han, Gyu Myoung Lee, N. Crespi:  Semantic Context-

Aware Service Composition for Building Automation System, 

Industrial Informatics, IEEE Transactions on , vol.10, no.1, 

pp.752,761, Feb. 2014 

[17] Hoan-Suk Choi, Jun-Young Lee, Na-Ri Yang, Woo-Seop Rhee: 

User-centric service environment for context aware service 

mash-up, Internet of Things (WF-IoT), 2014 IEEE World Forum 

on , vol., no., pp.388,393, 6-8 March 2014. 

[18] Friend Of A Friend (FOAF) Vocabulary Specification: 

http://xmlns.com/foaf/spec/ 

[19] Time Ontology in OWL: http://www.w3.org/TR/owl-time/ 

[20] The Timeline Ontology: 

http://motools.sourceforge.net/timeline/timeline.html 

[21] SWRL Temporal Ontology: http://protege.cim3.net/cgi-

bin/wiki.pl?SWRLTemporalOntology 

[22] SWRL Temporal Built-ins: http://protege.cim3.net/cgi-

bin/wiki.pl?SWRLTemporalBuiltIns 

[23] Valid-Time Temporal Model: http://protege.cim3.net/cgi-

bin/wiki.pl?ValidTimeTemporalModel 

[24] I. Roussaki, M. Strimpakou, N. Kalatzis, M. Anagnostou, C. 

Pils: Hybrid context modeling: a location-based scheme using 

ontologies, in Pervasive Computing and Communications 

Workshops, 2006. PerCom Workshops 2006. Fourth Annual 

IEEE International Conference on , vol., no., pp.6 pp.-7, 13-17 

March 2006 

[25] oneM2M Base Ontology Draft: 

http://www.onem2m.org/technical/latest-drafts 

[26] Semantic Sensor Network (SSN) Ontology: 

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn 

[27] oneM2M Specifications: 

http://www.onem2m.org/technical/published-documents. 

[28] OSGi Alliance: http://www.osgi.org/Main/HomePage 

[29] Apache ServiceMix: http://servicemix.apache.org/ 

[30] Apache ACE: https://ace.apache.org/ 

[31] OSGi Extender Pattern: http://blog.osgi.org/2007/02/osgi-

extender-model.html 

 
 

Paolo Lillo graduated in Electronic Engineering 

at University of Florence (Italy) in 1987. He is 

currently a PhD student in Complex Systems 

Engineering at University of Salento. His 

research topics are mainly focused on 

development of architectures based on OSGi, 

Internet of Things, design and development of 

model-based multi-platform UI by using 

Eclipse/Xtext/Xtend technology, developing 

software interfacing C/Java/Python layers and ARM boards via 

Bluetooth/BluetoothLE channels, development of multi-platform 

clients to control building automation systems compliant with KNX. 

 

Luca Mainetti is an Associate Professor of 

Software Engineering and Computer Graphics 

at the University of Salento. His research 

interests include web design methodologies, 

notations and tools, services oriented 

architectures and IoT applications, and 

collaborative computer graphics. He is a 

scientific coordinator of the GSA Lab - 

Graphics and Software Architectures Lab and 

IDA Lab - IDentification Automation Lab at the Department of 

Innovation Engineering, University of Salento. 

 

Vincenzo Mighali received the "Laurea" 

Degree in Computer Engineering with honors at 

the University of Salento, Lecce, Italy, in 2012. 

Since January 2009 he collaborates with IDA 

Lab — IDentification Automation Laboratory at 

the Department of Innovation Engineering, 

University of Salento. His activity is focused on 

the definition and implementation of new 

tracking system based on RFID technology and 

on the design and validation of innovative communication protocol 

aimed to reduce power consumption in Wireless Sensor Networks. 

He is also involved in the study of new solutions for building 

automation. He authored several papers on international journals and 

conferences. 

 

Luigi Patrono received his MS in Computer 

Engineering from University of Lecce, Lecce, 

Italy, in 1999 and PhD in Innovative Materials 

and Technologies for Satellite Networks from 

ISUFI-University of Lecce, Lecce, Italy, in 

2003. He is an Assistant Professor of Network 

Design at the University of Salento, Lecce, 

Italy. His research interests include RFID, 

EPCglobal, Internet of Things, Wireless Sensor 

Networks, and design and performance evaluation of protocols. He is 

Organizer Chair of the international Symposium on RFID 

Technologies and Internet of Things within the IEEE SoftCOM 

conference. He is author of about 100 scientific papers published on 

international journals and conferences 

 

Piercosimo Rametta received the "Laurea" 

Degree in Computer Engineering with honors at 

the University of Salento, Lecce, Italy, in 2013. 

His thesis concerned the definition and 

implementation of a novel mash-up tool for 

Wireless Sensor Networks’ configuration. Since 

November 2013 he collaborates with IDA Lab 

— IDentification Automation Laboratory at the 

Department of Innovation Engineering, 

University of Salento. His activity is focused on the definition and 

implementation of new mash-up tools for managing Internet of 

Things based smart environments by using semantic technologies 

P. LILLO et al.: AN ECA-BASED SEMANTIC ARCHITECTURE FOR IOT BUILDING AUTOMATION SYSTEMS 33




