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 Abstract— The Web of Things paradigm has represented a 

shift in the conjunction of the Internet of Things (IoT) with 

people, as it allows treating a smart object as a Web resource. 

While in a first phase the challenge was the physically 

management of smart objects, the current demand is to help 

users in profitably introducing IoT in their own daily life. 

The paper presents a software architecture for IoT systems 

able to manage the behaviour of involved IoT entities basing on 

knowledge processing tools. The main goal is informing the user 

of the occurrence of events of interest semantically determined 

starting from actual state of the environment. The architecture 

exploits the potentialities of the Web of Topics (WoX) approach, 

a conceptual model that simplifies the designing of IoT 

applications. Leveraging the WoX approach, the architecture 

introduces an innovative way to mine knowledge from IoT 

devices aside from any technological background, so that facing 

the intrinsic heterogeneity affecting IoT entities. The discussed 

architecture is composed by different modules integrated into an 

Enterprise Service Bus (ESB), strongly decoupled and provided 

with RESTful-compliant web interfaces to communicate each 

other and with the external environment, according to a SOA 

structure. The paper shows how the system is able to receive data 

coming from sensors and to semantically interpret them by 

means of a series of business rules that act as knowledge 

processor. 

 
Index Terms—Cloud, Internet of Things, Architecture, 

RESTful, SOA, validation 

 

I. INTRODUCTION 

NTERNET of Things represents a new era in Computer 

Science. It has led to a pervasive computing and, so, to a 

new way to think at computational systems. Nowadays, 

informatics shifts from personal computers to smart objects 

and it becomes more and more ubiquitous, with the aims of 

simplifying and automatising our daily life.  

However, at the application layer, smart devices still form 

multiple and incompatible islands and, for this reason, 

developing applications using them is a challenging task that 

requires deep knowledge of each hardware platform, operating 

system and programming language. To overcome this 
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 problem, the research in the field of the Internet of Things 

(IoT) is aimed to interconnect uniquely identifiable embedded 

devices within the existing Internet infrastructure, in order to 

allow the development of services and applications 

independently of both specific embedded technology and 

programming language. In simple terms, the main goal of the 

IoT is to enable things to be connected anytime, anywhere, 

with anything and anyone. According to the IoT vision, the 

environment should be populated by several smart things that, 

through wireless and wired connections and unique addressing 

schemes, are able to interact and cooperate with each other to 

create new services and achieve common goals. So, IoT 

applications can be applied to a number of different scenarios 

and devices, resulting in integration and interoperability issues 

due to the heterogeneity of the involved technologies. 

In this regard, a new vision inspired from the IoT and better 

focused on a simpler and global integration of heterogeneous 

smart objects is represented by the Web of Things (WoT), 

which sees the Web as the best candidate for a universal 

integration platform [1]. According to it, everyday devices are 

interconnected through their full integration into the Web. In 

this way, unlike in existing IoT systems, the smart devices are 

able to communicate with each other by using Web standards 

and technologies, which can be reused and adapted to build 

new applications and services. Well-accepted and understood 

standards and blueprints (such as URI, HTTP, REST, etc.) are 

used to access the functionality of the smart objects. In other 

words, the data produced by smart devices can be directly 

accessible as normal Web resources, so as providing the so-

called physical mash-up [2][3][4]. 

The current work aims to extend the Web of Things approach: 

an integrated cloud platform, a middleware implementing the 

communication between IoT devices and end-user 

applications, able to apply logical reasoning on IoT row data 

in order to retrieve complex information relating to the 

environment in which IoT devices are immersed: the core of 

the platform is able to elaborate environment state basing on 

sensors data and to undertake semantically defined actions. 

For example, the platform could advice the user that some 

relative is experimenting a sudden, or it could control rolling 

shutter in a smart home mixing information about wind and 

temperature.  

The proposed platform grounds on an Enterpise Servise Bus 

(ESB) architecture. It is composed of two main components: 

(i) a knowledge processor able to semantically extract business 
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rules from sensors data and (ii) a module for interacting 

efficiently with IoT devices and user applications. The latter is 

an implementation of a novel model-driven designing 

approach for IoT applications: Web of Topics (WoX) model 

[5]. In WoX, the key concept is the Topic, that is a feature in a 

specific location. WoX features are not technological but 

informal argument of discussion in the Topic, such as 

temperature, crowd, a formula, i.e. any human-definable, 

measurable, perceivable and controllable entity of the 

environment. Information producers and consumers talk to 

each other via the Topic of interest. Behind the scene, each 

end-user application and IoT node declares a set of roles (i.e., 

sensor capability, sensor need, actuator capability, actuator 

need) for the topics of interest. For its intrinsic simplicity, the 

WoX model opens also the doors to physical IoT nodes not 

only providing but also requesting services to (heterogeneous) 

peers. The implementation of WoX model consists of an 

architecture based on the Fosstrak EPCglobal standard [6]. 

WoX permits to overcome the intrinsic drawback of the Web 

of Things approach: it provides a way to design every IoT 

entity in a conceptual model, abstracting it from whatever 

technological detail. So, it permits to tackle the heterogeneity 

affecting IoT devices and to design and create IoT applications 

in a simplest way. By means of such model-driven method, the 

IoT insiders can focus only on the functional aspects of IoT 

devices, without taking care of any technological aspects.  

Leveraging the Topic concept, the presented study provides 

an innovative way to mine complex information from IoT 

devices aside from any technological background and to 

organize them in cloud. It is able to orchestrate data coming 

from heterogeneous IoT devices, to infer logical reasoning on 

them and to interact with users in respect of their needs.  

The next Section examines the state of art in terms of 

architectures and platforms for managing IoT applications, 

paying specific attention to those supported by knowledge 

processing tools. Section III formally illustrates the WoX 

model. Section IV gives a detailed picture of the whole 

architecture, while in Section V the platform is validated by a 

practical running case. The last two Sections provide some 

considerations on the conducted study and the conclusions and 

future work. 

II. RELATED WORK 

In the literature, the interest in design and development of 

WoT software architectures, using different approaches, is 

very deep. Several Web platforms are emerging with the aim 

to abstract the heterogeneity of the physical embedded devices 

in order to facilitate their integration and interoperability. 

Most of the existing architectures belong to two main 

categories: 

 Architectures based on international standards. They 

enjoy several benefits arising from compliance with 

international standards, but are very close to the physical 

layer. Therefore, using these architectures requires expert 

knowledge of physical technologies and significant 

familiarity with programming languages. Furthermore, 

they are generally focused on a specific use cases and are 

not horizontal enough to support the integration of 

heterogeneous technologies.  

 Horizontal architectures, which are explicitly designed to 

integrate heterogeneous protocols and standards. Semantic 

architectures, for example, belong to this category. 

Generally, these architectures are not compliant with 

international standards, but have the considerable 

advantage of being closer to the developers, which are not 

required to know about the involved physical technologies 

nor specific programming languages. 

Regarding the first category, in [7] the authors propose an 

IoT framework, based on the EPCglobal [8] architecture, 

which is able to integrate the transducer capability of IEEE 

1451 standards [9]. As the original EPCglobal only supports 

C-1 Gen-2 RFID tag identification, the authors propose to 

extend the framework to support more readers, tags, and 

transducers in versatile IoT applications. EPCglobal 

Application Level Events (ALE) middleware is provided with 

transducer capability of IEEE 1451.  

Regarding the second category, the Semantic Web of 

Things (SWoT) is an emerging vision in Information and 

Communication Technology (ICT), joining together the 

Semantic Web and the Internet of Things. Its goal is to 

associate semantically rich and easily accessible information 

to real-world objects, locations and events, by means of 

inexpensive, disposable and unobtrusive micro-devices, such 

as Radio Frequency IDentification (RFID) tags and wireless 

sensors [6].  

A widely used tool for the realization of semantic 

architectures is Smart-M3 [7]. It is a content-based, semantic 

subscribe-notify, and open-source middleware able to provide 

a Semantic Web information-sharing infrastructure among 

software entities and devices. The main goals of Smart-M3 

concern sharing interoperable information in smart 

environment applications and making information in the 

physical world available for smart services. 

The authors of [10] describe their own vision a middleware 

for the Internet of Things, with the aims of creating a new 

generation middleware platform which will allow creation of 

self-managed complex  systems,  in  particular  industrial  

ones,  consisting of distributed, heterogeneous, shared and 

reusable components of different nature.  Grounding on 

semantic and Multi-Agent System technologies and 

methodologies, they analyse and design such middleware and 

demonstrate how it is possible to enable various components 

to automatically discover each other and to configure a system 

with complex functionality based on the atomic functionalities 

of the components. 

Another interesting horizontal approach is presented in [11], 

where the authors propose a software architecture to easily 

mash-up CoAP resources. The architecture is able to discover 

the available devices and to virtualize them outside the 

physical network. These virtualizations are then exposed to the 

upper layers by a RESTful interface, so that the physical 

devices interact only with their own virtualization. The 

architecture is designed to establishing a bidirectional 

communication channel, allowing not only to monitor but also 

to control the devices. The achieved platform, also, provides 

simplified tools allowing the development of mash-up 

applications to different-skilled users.  

Relating to Enterprise Service Bus architectures for IoT, the 

study in [12] proposes an architecture for an effective 
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integration of the Internet of Things in enterprise services: the 

architecture exposes real-world devices with embedded 

software to standard IT systems by making them accessible in 

a service-oriented way.  

The author of [13] show a new IoT sensing service system 

based on EDSOA (Event Driven SOA) architecture to support 

real-time, event-driven, and active service execution. The 

study also provides a new IoT browser that uses augmented 

reality technology to display IoT resource, realising the 

superposition presentation of the physical world and abstract 

information.  

Despite these interesting approaches, in literature there is a 

lack of integrated platforms that can provide a cloud access to 

IoT resources along with a semantic management of them. 

There is the need of IoT architecture that can manage smart 

devices with the support of knowledge processing tools and, in 

the same time, that allow end-users to interact with them as 

Web services.  

The proposed architecture tries to satisfy both the 

requirements.  

III. THE WEB OF TOPICS MODEL 

In this section we summarize briefly the Web of Topics 

(WoX) model concepts. The reader could deepen the WoX 

treatise in [5].  

WoX refers to both IoT hardware nodes and IoT 

applications generically as IoT entities. In WoX, the ‘sensor’ 

and ‘actuator’ concepts do not exist. The main concept is the 

Topic. A WoX Topic is about a quantity of interest – called 

feature – in a certain location. More rigorously, a feature is 

any characteristic or entity of the environment that can be 

perceivable, definable, measurable and/or controllable. Some 

bare examples of feature are: temperature, humidity, presence. 

A crowd of people can be a feature too, as well as an alarm. 

Also a mathematical function – e.g. sum, min, max – can be a 

feature. The set of WoX features is the following: 

 

 (1)  

The location is expressed hierarchically following the URN 

(Uniform Resource Name) scheme, e.g. 

“urn:italy:salento:highschool:firstfloor:phylab:desk1” or 

“urn:usa:california:la:westwood:overlandavenue:2801”. The 

set of WoX locations si the following: 

 

 (2)  

 

where L also includes two special locations: 

1. LOC_ANY, i.e. a wildcard for any location; 

2. LOC_SELF, i.e. a pointer to the current location. 

 

Hence WoX define T as the set of couples feature-in-

location: 

 

  , ,i j i jT t f l F L     (3)  

 

In WoX, the topic is the key between who asks for services 

and who provides services. Separating the twos, WoX reaches 

the maximum abstraction possible. In fact, IoT designers can 

focus on concepts (features) rather than on hardware. 

An IoT entity will introduce itself to a topic in different 

ways, depending on its nature. In WoX, such nature is 

analyzed in two dimensions: 

1. Collaborative dimension. It includes two aspects: (i) the 

capability to perform a service within the topic, and (ii) 

the need for other entities who can perform a service. 

2. Technological dimension. It includes the legacy (i) sensor 

and (ii) actuator distinction, as well as a generic (iii) 

function service. 

Hence WoX defines the following two dimensions sets:  

 

 (4)  

 

 (5)  

 

Then, WoX defines the set of WoX roles R included in the 

following Cartesian product: 

 

 , , , , ,C TECHR D D SC AC FC SN AN FN    (6)  

 

The items in the curly brackets respectively state for: sensor 

capability, actuator capability, function capability, sensor 

need, actuator need, function need. The generic IoT entity z 

can be modeled as a set of couples role-topic belonging to the 

following Cartesian product:  

 

  ,,z k i jE r t R T    (7) 

 

By this way, WoX is able to model any device or app in the 

IoT, even the most complex. An example of IoT node 

implementing the WoX model is a personal enhanced RFID 

tag which need to know the temperature in the current room, is 

capable to perform a comparison between float numbers and 

can activate a LED alarm. In the next section we will cover the 

evolution of the WoX model towards and ESB approach that 

will include the use of knowledge processors. 

IV. THE ENTERPRISE ARCHITECTURE 

This section introduces the enterprise architecture in which 

the WoX approach can be enhanced by the use of knowledge 

processing tools. The Section is divided in three parts, since 

the architecture can be analysed from just as many 

perspectives. The first subsection describes the WoX 

implementation and its integration on the top of Fosstrak 

middleware. The second subsection shows how the 

architecture logically works, while in the last subsection it is 

shown the technical deployment of the architecture on an 

enterprise system. 

A. The WoX Technical Architecture 

The WoX model requires a robust ICT architecture capable 

of facing the extremely high numbers of IoT entities and 

Topics, the intense exchange of messages and the 

heterogeneity of the IoT technologies. WoX architecture is 

built as instance of the publish-subscribe (pub/sub) software 

design pattern. Pub/sub is an enterprise integration pattern 

where senders of messages, called publishers, do not know a 

F = fi{ }

L = l j{ }

DC = capability,need{ }

DTECH = sensor,actuator, function{ }
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priori what are the specific receivers of messages, called 

subscribers. Instead, published messages are characterized into 

classes, without knowledge of subscribers’ identity. Similarly, 

subscribers express interest in one or more classes, and only 

receive messages that are of interest, without knowledge of 

publishers’ identity. 

The modelling of the pub/sub architecture starts from the 

Topic class. In Fig. 1 the UML dependence diagram is shown. 

The Observer software design pattern implements the main 

WoX idea. The Topic class has two member variables, to hold 

respectively the topic’s actual value and preferred value: the 

actual value contains the most recent value for the feature in 

the location; the preferred value is used to send and receive 

requests about the desired topic value. 

Every time an IoT node shows up, it handshakes with the 

WoX architecture, i.e. it declares its roles according to the 

formula (7). The corresponding subscriber classes are 

instanced and get attached to the Topic instance. When the 

Topic’s actual value gets updated, SN subscribers (i.e. 

information consumers) get notified. Vice versa, when the 

Topic preferred value is modified, AC subscribers are notified 

so they can absolve their task. If the Topic’s feature is a 

function, the topic’s preferred value is ignored and the actual 

value is used both to pass function parameters as well as to 

obtain the function result. In the first case, FC subscribers get 

notified; in the second case, FN subscribers get notified. 

The pub/sub architectural pattern centralizes the core 

information separating who provides data from who consumes 

it. IoT-based apps perform a one-time subscription to the 

topic(s) of interests, without perceiving the hardware layer. 

Subscribing to topics is easy also for “stupid” IoT nodes 

(e.g. RFID tags). Moreover, the total number of exchanged 

messages is drastically reduced because of dropping all the 

point-to-point connections between IoT entities.  

Fig. 2 shows the WoX technical architecture. A pub/sub 

architecture alone cannot satisfy the requirements of 

hardware abstraction, event filtering, and standard-

compliant persistence of an IoT middleware. To this aim, 

the pub/sub architecture rests on the top of an EPCglobal 

middleware. Such design choice guarantees quality and 

performance to the whole architecture. As aforementioned, 

the WoX architecture grounds on the Fosstrak. It is made 

up of four main layers: 

1. Environment Level: it comprises the physical layer as 

well as any virtual environment that can generate 

events. Social Networks chats can be source of events 

too. 

2. ALE middleware: it is responsible of querying/piloting 

the Environment Level and packing event reports for 

the upper layers. It also normalizes the events and 

filters duplicated data. On the bottom side, a series of 

adaptor is present for each IoT technology, both 

physical (e.g. RFID, WSN, KNX, etc.) and virtual 

(CVEs, Facebook, etc.). On the top side, three SOAP 

(Simple Object Access Protocol) Web services are 

needed to send hardware configuration (when needed), 

receive event reports formatted with the ECSpec 

(Event Cycle Specification) schema, and to send data 

to the technologies using the respective technology’s 

format. 

3. WoX Capturing Application: it is the architectural level 

implementing the WoX model. It instances the topics, 

updates them, takes care of the topic map, and make such 

data available to the end-user apps by a set of REST 

interfaces. 

4. End users applications use the WoX APIs to subscribe to 

topics and they can run on any kind of device. For testing 

purposes, in the current work, Java and Android APIs 

have been used, but APIs in other programming language 

will be developed in the next steps. 

An additional element, the EPCIS, concludes the 

architecture. It aims to persist IoT events for asynchronous 

usage. Nevertheless in WoX the EPCIS role is not crucial. 

The Fig. 2 evidences the two possible flows of information: (i) 

node-to-node, the curved arrow, i.e. any IoT node can request 

services to other nodes (even of different technology), and (ii) 

node-to-app, the straight arrow, i.e. any app can receive data 

from any node, and vice-versa. The cornerstone of each 

information exchange is the WoX Capturing application, 

where the WoX model is implemented and the topics are 

instanced 

B. Enterprise System Logic Architecture 

The whole enterprise architecture depends on the WoX 

model, as presented in the previous section. The platform 

receives the row data from sensors and it elaborates them in 

order to extract complex information. The workflow of data 

within the application is basically depicted in Fig. 3. 

The logic architecture introduces two kinds of topics, both 

compliant with the definition of Topic, but referring to 

 
 

Fig. 1. The WoX architecture conceptual UML diagram 
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different levels of abstraction: 

1. Low-Level Topic: it is related to data belonging to 

observable/controllable IoT entities without any semantic 

connotation; 

2. High-Level Topic: it represents a refined information 

semantically determined  

The other components in the logic architecture are: 

3. Enterprise Service Bus (ESB): it is the solution adopted to 

connect the various component of the application. It is 

compliant to Service-Oriented Applications (SOA) 

architectural pattern and it guarantees the interoperability 

among heterogeneous technologies.  

4. Business Rules Web Service: it is a middleware with the 

specific function of knowledge processor. The module 

subscribes to the Low-Level Topic and applies the 

business rules on the data deriving from it, in order to 

draw events of interest and to update the corresponding 

High-Level Topic; 

5. User Application: high abstraction level module 

appointed to subscribe to the High-Level Topic and to 

notify the user when an event of interest occurs. 

The first kind of Topic is used to catch data provided by 

sensors, to control actuators and, generally, to process row 

data in an IoT network. The second one is used to treat 

elaborate information mined from row data according to the 

logic rules imposed by the knowledge processor. 

Once a High-Level Topic changes its own internal state – 

that is, some event of interest has occurred – the User 

Application component gets notified and it can inform the 

end user. So, the User Application makes up the bridge 

between the end users and the Enterprise architecture. 

C. Enterprise System Implementation 

Referring to Fig. 4, most part of the architecture is 

implemented using WSO2 technologies. Particularly, WSO2 

takes part in the constitution of the components: Enterprise 

Service Bus, Business Rules Server and Web Service 

Application Server. 

As discussed in the Subsection IV.A, the module for 

managing topics is implemented on the top of Fosstrak 

EPCGlobal implementation and is deployed on a dedicated 

server. 

The different modules in the architecture communicate by 

way of RESTful interfaces, in accordance with WSO2 

directives. 

The sensor component sends the data describing the state 

of the environment to the Enterprise Service Bus. 

The ESB sends the data from sensors to the Fosstrak 

Capturing Application component, where a specific instance 

of Low-Level Topic encapsulates the data from the sensor.  

The Application Server implemented on the WSO2 Web 

Service Application Server subscribes to all the topic instances 

in the Capturing Application, firing different actions 

depending on the type of topic.  

In case of Low-Level Topic subscription, the Application 

Server receives notifications from it in conjunction with sensor 

updates and it forwards the information included in the topic 

to the Business Rule Server. In the latter component there is a 

Web service equipped with a Knowledge Processing Engine. 

It acts as Knowledge Processor and computes the received 

data: on the basis of the business logic rules, the modules 

decrees if an event of interest has occurred or not. If so, the 

Business Rule Server updates the High-Level Topic 

corresponding to such event. the business logic rules are 

implemented by means of Drools tools [14].  

Since the Application Server can perform subscriptions also 

to High-Level Topic, an event of interest occurrence is 

seamless notified to it and, so, to the end users. 

The Business Rules Server exposes the logic rules as Web 

services. Therefore, it is possible adding new rules or 

modifying existing ones by means of http requests, without the 

need of redeploy the application. 

V. PROOF OF CONCEPTS 

In order to validate the architecture, a real scenario has been 

implemented in-vitro. 

The main subject of the scenario is an elderly person, or a 

person with balance and/or ambulation difficulties. A generic 

user of the analysed platform is interested in remotely 

monitoring the person. Also, s/he has to be alerted by 

necessity.  

For this purpose, the senior wears a wearable device 

equipped with an embedded accelerometer. The device 

forwards the accelerometer data to a Low-Level Topic. The 

Knowledge Processor will process the data in that topic and, in 

case of an incident related to a fall, it will update a High-Level 

Topic. End users interested in the status of the elderly will 

subscribe the topic and will be updated about any notifications 

 
Fig. 2. The WoX technical architecture, based on the EPCglobal 

standard and its open source implementation Fosstrak. The arrows 

indicate the possible flows of information in WoX: node-to-node and 

node-to-app 

 

 
Fig. 3. Enterprise System Logic Workflow 
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from the platform. 

The use case requires the implementation of two Topics in 

the WoX framework: 

 Shock: sudden change in the values of vertical 

acceleration measured by sensors. 

 Fall: event of fall of the person to be monitored. 

Topics’ properties are detailed in TABLE I and TABLE II. 

The step-by-step scenario is the following: 

1. The on-board accelerometer on the wearable device 

detects acceleration data along three axes. 

2. The data are sent to the Smart Gateway (by means of 

WiFi technologies). 

3. The Smart Gateway forwards the gathered information 

to the ESB platform. 

4. The ESB communicates the data to the WoX Capturing 

Application, which updates the Shock Topic in the 

corresponding location 

5. The Application Server on the WSO2 Web Service 

Application Server component subscribes to the Shock 

Topic, receiving notifications from it in case of 

updates. 

6. Each notification is forwarded to the Business Rule 

Server, where the Web service serves as Knowledge 

Processor. It triggers one of the following two rules: 

a. "Elder person has fallen": the Business 

Rules Server updates the Fall Topic in the 

Capturing Application. 

b. "Elder person is unhurt": do not perform 

any operation. 

7. A summary response is sent back to the Application 

Server, which has initiated the processing request to 

Knowledge Processor. 

8. A person interested to the health condition of the 

monitored subject has to subscribe the Fall Topic (by 

means of a dedicated user application). 

The implemented Knowledge Processor is a Web service 

that exposes the business logic operation 

SendFallNotification: it triggers an event that updates the 

topics related to the fall of the monitored  person. 

Fig. 5 shows the Drools implementation of the business 

logic rules related to the SendFallNotification operation: each 

incoming request sent to the Knowledge Processor Web 

service is mapped into a TopicNotification_Shock object; 

then, on the basis of a condition placed on average values for 

the vertical accelerations received within the incoming 

requests, the Knowledge Processors triggers the two already 

discussed rules: "Elder person has fallen" and "Elder person is 

unhurt". 

Behind the Web Service, the KP consists in a semantic agent 

that uses an ontology to create relations about concepts. Such 

relationships allow excluding that the falling event is critical, 

for example when the WSN node is worn by an athlete 

performing his daily training session. In Fig. 6 the ontology 

used by the KP is shown. The ontology allows matching a 

‘Shock’ event incoming from the PHY layer with a series of 

contextual information, like the user type, the timestamp, and 

the place of happening. Reasoning over the provided ontology 

allows to determine the criticism of the shock event. 

The Fig. 7 collects some screenshots of the ‘grandma fell 

down’ notifications. 

Considering that the system has to interact in real-time with 

users, system latency is a good parameter for quantitatively 

evaluating it. An Android mobile application connected to the 

Internet by LTE network was used as client for getting notified 

by the system in case of falling event. The average timespan 

between the falling event and the notification to the mobile 

application has been computed: on 5000 empirical samples, 

the average system latency value was 4980 milliseconds. 

VI. DISCUSSION 

To perform the discussion of the WoX model, the current 

TABLE I 

SHOCK TOPIC PROPERTIES 

Topic property Value 

Topic Name Shock 

Description It models the event of a sudden acceleration of the 

under examination subject along the vertical axis. 
The topic gets updated by the accelerometer worn 

by the person 

Type Low-Level Topic 
Feature Acceleration 

Location e.g., it:lecce:Garibaldi_street:71:grandma_home 

Value String value coming from the accelerometer and 
saved in the topic. It consists of a tern of values: 

- Time Window: timespan in milliseconds, in 

which samples are sent from the accelerometer. 
- Sample number: number of samples sent in the 

time window 

- Measure: acceleration along three axes of 
reference. 

 
TABLE II 

FALL TOPIC PROPERTIES 

Topic property Value 

Topic Name Fall 

Description It models the event of fall of the person to be 

monitored 

Type High-Level Topic 

Feature Event of fall 

Location e.g., it:lecce:Garibaldi_street:71:grandma_home 
Value boolean 

 

TABLE III 

QUALITATIVE COMPARISON WITH EXISTING APPROACHES 

Quality 
Industry-

based 

Semantic-

based 

Web of 

Topics a 

Human understandable  X X 

Native compliance with 

standards 
X  X 

Multiple scenarios 
implementable 

 X X 

Compliance with virtual 

environments 
 X X 

 

TABLE IV 

TECHNICAL COMPARISON WITH EXISTING APPROACHES 

Quality 
Industry-

based 

Semantic-

based 

Web of 

Topics 

Real time X X X 

Quick response time X X X 

Scalability X  X 

Integration X  X 

Heterogeneous System 

support 
 X X 

Design X  X 

Collision Avoid X   

Usability  X X 

Simplicity  X X 

Fault Tolerant X X X 

Trust X   

Security X   

Suitability  X X 

Cooperation  X X 

Privacy X   

 

 
Fig. 5. SendFallNotification implementation 
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Section presents a practical comparison with the two main 

categories of approach discussed in the “Related Work” 

Section: architectures based on international standards, and 

horizontal (semantic) architectures. Table III shows a 

qualitative comparison with the two existing approaches. It is 

straightforward affirming that the WoX approach inherits the 

advantages of both the standard- and semantic-based ones. 

Table IV presents a technical comparison with the same 

approaches but from the ISO/IEC 9126 software quality 

standard viewpoint. Also in this case, WoX model appears as a 

merge of the characteristics of both the two different 

approaches. Thanks to the high levels of abstraction it 

implements, it gets close to the human way of thinking, so 

praising good level of usability, simplicity and design. At the 

same time, it leverages the EPCglobal standard, reaching the 

necessary features of robustness, security, reliability, and so 

on. As a con, WoX opens to threats in the means of 

information trust and security, as well as to privacy issues. 

This is due to the current lack of a mechanism able to certify 

the origin of the Topic information and protect itself from 

leaks. We are aware of these lacks and their resolution 

represents a future work. Another room for improvement will 

be the release of more programming languages with an 

enhanced set of exposed APIs. 

VII. CONCLUSION 

In this paper, an extension of the Web of Topics (WoX) 

approach was presented. WoX is a novel design model 

shortening the gap between the design and the solution 

domains in the IoT. In WoX, the generic IoT entity is seen as 

a set of couples Topic-Role. A WoX Role is expressed in 

terms of two dimensions: technological (sensor, actuator, 

computational node) and collaborative (service capability or 

need). 

The innovation presented in this paper regards the extension 

of the WoX approach with the definition of a Knowledge 

Processors (KP). The aim of the KP is to determine new 

knowledge using heterogeneous information sources. A KP 

subscribes to a set of Topic just like a regular end-user 

application. Nevertheless, it uses the information incoming 

from the WoX layer to determine new information, hence 

updating upper level Topics. 

In order to implement the enterprise architecture, the 

WSO2 open source ESB implementation has been used, 

thereby providing a cloud infrastructure for IoT 

applications management. The knowledge processing tools 

leverage the WSO2 Business Rules server, which uses 

Apache Drools as a Business Rules Engine (BRE). Each 

KP is mapped onto a Drools rule. The KP subscribes to a 

set of Topics just like a regular end-user application. 

Unlike them, the KP can produce new knowledge and push 

it on upper-level WoX topics, hence making it available for 

the IoT ecosystem. 

In order to validate out work, an in-vitro validation was 

performed. The KP configuration aimed to determine the 

falling down of an elderly person by mashing up 

heterogeneous information sources, including a WSN node 

placed on the person and a set of data: timestamp, age, 

location. By interpreting such data in an ontology, the KP 

can determine whether a falling event happened and it 

regards a person in need of special care. The information is 

then propagated via different kind of notifications using the 

regular WoX approach. 

As a next step, we are planning to submit the validation 

experiment inside a public software development 

challenge, in order to reach a valid amount of empirical 

data. 
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