

A Cloud Architecture for Managing IoT-aware

Applications According to Knowledge Processing

Rules

Luca Mainetti, Luigi Manco, Luigi Patrono, and Roberto Vergallo

 Abstract— The Web of Things paradigm has represented a

shift in the conjunction of the Internet of Things (IoT) with

people, as it allows treating a smart object as a Web resource.

While in a first phase the challenge was the physically

management of smart objects, the current demand is to help

users in profitably introducing IoT in their own daily life.

The paper presents a software architecture for IoT systems

able to manage the behaviour of involved IoT entities basing on

knowledge processing tools. The main goal is informing the user

of the occurrence of events of interest semantically determined

starting from actual state of the environment. The architecture

exploits the potentialities of the Web of Topics (WoX) approach,

a conceptual model that simplifies the designing of IoT

applications. Leveraging the WoX approach, the architecture

introduces an innovative way to mine knowledge from IoT

devices aside from any technological background, so that facing

the intrinsic heterogeneity affecting IoT entities. The discussed

architecture is composed by different modules integrated into an

Enterprise Service Bus (ESB), strongly decoupled and provided

with RESTful-compliant web interfaces to communicate each

other and with the external environment, according to a SOA

structure. The paper shows how the system is able to receive data

coming from sensors and to semantically interpret them by

means of a series of business rules that act as knowledge

processor.

Index Terms—Cloud, Internet of Things, Architecture,

RESTful, SOA, validation

I. INTRODUCTION

NTERNET of Things represents a new era in Computer

Science. It has led to a pervasive computing and, so, to a

new way to think at computational systems. Nowadays,

informatics shifts from personal computers to smart objects

and it becomes more and more ubiquitous, with the aims of

simplifying and automatising our daily life.

However, at the application layer, smart devices still form

multiple and incompatible islands and, for this reason,

developing applications using them is a challenging task that

requires deep knowledge of each hardware platform, operating

system and programming language. To overcome this

Manuscript received October 30, 2015; revised February 27, 2016.

L. Mainetti, L. Manco, L. Patrono and R. Vergallo are with the Department
of Innovation Engineering, University of Salento, Lecce, Italy (E-mails:{

luca.mainetti, luigi.manco, luigi.patrono, roberto.vergallo}@unisalento.it).

 problem, the research in the field of the Internet of Things

(IoT) is aimed to interconnect uniquely identifiable embedded

devices within the existing Internet infrastructure, in order to

allow the development of services and applications

independently of both specific embedded technology and

programming language. In simple terms, the main goal of the

IoT is to enable things to be connected anytime, anywhere,

with anything and anyone. According to the IoT vision, the

environment should be populated by several smart things that,

through wireless and wired connections and unique addressing

schemes, are able to interact and cooperate with each other to

create new services and achieve common goals. So, IoT

applications can be applied to a number of different scenarios

and devices, resulting in integration and interoperability issues

due to the heterogeneity of the involved technologies.

In this regard, a new vision inspired from the IoT and better

focused on a simpler and global integration of heterogeneous

smart objects is represented by the Web of Things (WoT),

which sees the Web as the best candidate for a universal

integration platform [1]. According to it, everyday devices are

interconnected through their full integration into the Web. In

this way, unlike in existing IoT systems, the smart devices are

able to communicate with each other by using Web standards

and technologies, which can be reused and adapted to build

new applications and services. Well-accepted and understood

standards and blueprints (such as URI, HTTP, REST, etc.) are

used to access the functionality of the smart objects. In other

words, the data produced by smart devices can be directly

accessible as normal Web resources, so as providing the so-

called physical mash-up [2][3][4].

The current work aims to extend the Web of Things approach:

an integrated cloud platform, a middleware implementing the

communication between IoT devices and end-user

applications, able to apply logical reasoning on IoT row data

in order to retrieve complex information relating to the

environment in which IoT devices are immersed: the core of

the platform is able to elaborate environment state basing on

sensors data and to undertake semantically defined actions.

For example, the platform could advice the user that some

relative is experimenting a sudden, or it could control rolling

shutter in a smart home mixing information about wind and

temperature.

The proposed platform grounds on an Enterpise Servise Bus

(ESB) architecture. It is composed of two main components:

(i) a knowledge processor able to semantically extract business

I

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016 45

1845-6421/03/8431 © 2016 CCIS

FESB
Typewritten Text
 Original scientific paper

rules from sensors data and (ii) a module for interacting

efficiently with IoT devices and user applications. The latter is

an implementation of a novel model-driven designing

approach for IoT applications: Web of Topics (WoX) model

[5]. In WoX, the key concept is the Topic, that is a feature in a

specific location. WoX features are not technological but

informal argument of discussion in the Topic, such as

temperature, crowd, a formula, i.e. any human-definable,

measurable, perceivable and controllable entity of the

environment. Information producers and consumers talk to

each other via the Topic of interest. Behind the scene, each

end-user application and IoT node declares a set of roles (i.e.,

sensor capability, sensor need, actuator capability, actuator

need) for the topics of interest. For its intrinsic simplicity, the

WoX model opens also the doors to physical IoT nodes not

only providing but also requesting services to (heterogeneous)

peers. The implementation of WoX model consists of an

architecture based on the Fosstrak EPCglobal standard [6].

WoX permits to overcome the intrinsic drawback of the Web

of Things approach: it provides a way to design every IoT

entity in a conceptual model, abstracting it from whatever

technological detail. So, it permits to tackle the heterogeneity

affecting IoT devices and to design and create IoT applications

in a simplest way. By means of such model-driven method, the

IoT insiders can focus only on the functional aspects of IoT

devices, without taking care of any technological aspects.

Leveraging the Topic concept, the presented study provides

an innovative way to mine complex information from IoT

devices aside from any technological background and to

organize them in cloud. It is able to orchestrate data coming

from heterogeneous IoT devices, to infer logical reasoning on

them and to interact with users in respect of their needs.

The next Section examines the state of art in terms of

architectures and platforms for managing IoT applications,

paying specific attention to those supported by knowledge

processing tools. Section III formally illustrates the WoX

model. Section IV gives a detailed picture of the whole

architecture, while in Section V the platform is validated by a

practical running case. The last two Sections provide some

considerations on the conducted study and the conclusions and

future work.

II. RELATED WORK

In the literature, the interest in design and development of

WoT software architectures, using different approaches, is

very deep. Several Web platforms are emerging with the aim

to abstract the heterogeneity of the physical embedded devices

in order to facilitate their integration and interoperability.

Most of the existing architectures belong to two main

categories:

 Architectures based on international standards. They

enjoy several benefits arising from compliance with

international standards, but are very close to the physical

layer. Therefore, using these architectures requires expert

knowledge of physical technologies and significant

familiarity with programming languages. Furthermore,

they are generally focused on a specific use cases and are

not horizontal enough to support the integration of

heterogeneous technologies.

 Horizontal architectures, which are explicitly designed to

integrate heterogeneous protocols and standards. Semantic

architectures, for example, belong to this category.

Generally, these architectures are not compliant with

international standards, but have the considerable

advantage of being closer to the developers, which are not

required to know about the involved physical technologies

nor specific programming languages.

Regarding the first category, in [7] the authors propose an

IoT framework, based on the EPCglobal [8] architecture,

which is able to integrate the transducer capability of IEEE

1451 standards [9]. As the original EPCglobal only supports

C-1 Gen-2 RFID tag identification, the authors propose to

extend the framework to support more readers, tags, and

transducers in versatile IoT applications. EPCglobal

Application Level Events (ALE) middleware is provided with

transducer capability of IEEE 1451.

Regarding the second category, the Semantic Web of

Things (SWoT) is an emerging vision in Information and

Communication Technology (ICT), joining together the

Semantic Web and the Internet of Things. Its goal is to

associate semantically rich and easily accessible information

to real-world objects, locations and events, by means of

inexpensive, disposable and unobtrusive micro-devices, such

as Radio Frequency IDentification (RFID) tags and wireless

sensors [6].

A widely used tool for the realization of semantic

architectures is Smart-M3 [7]. It is a content-based, semantic

subscribe-notify, and open-source middleware able to provide

a Semantic Web information-sharing infrastructure among

software entities and devices. The main goals of Smart-M3

concern sharing interoperable information in smart

environment applications and making information in the

physical world available for smart services.

The authors of [10] describe their own vision a middleware

for the Internet of Things, with the aims of creating a new

generation middleware platform which will allow creation of

self-managed complex systems, in particular industrial

ones, consisting of distributed, heterogeneous, shared and

reusable components of different nature. Grounding on

semantic and Multi-Agent System technologies and

methodologies, they analyse and design such middleware and

demonstrate how it is possible to enable various components

to automatically discover each other and to configure a system

with complex functionality based on the atomic functionalities

of the components.

Another interesting horizontal approach is presented in [11],

where the authors propose a software architecture to easily

mash-up CoAP resources. The architecture is able to discover

the available devices and to virtualize them outside the

physical network. These virtualizations are then exposed to the

upper layers by a RESTful interface, so that the physical

devices interact only with their own virtualization. The

architecture is designed to establishing a bidirectional

communication channel, allowing not only to monitor but also

to control the devices. The achieved platform, also, provides

simplified tools allowing the development of mash-up

applications to different-skilled users.

Relating to Enterprise Service Bus architectures for IoT, the

study in [12] proposes an architecture for an effective

46 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

integration of the Internet of Things in enterprise services: the

architecture exposes real-world devices with embedded

software to standard IT systems by making them accessible in

a service-oriented way.

The author of [13] show a new IoT sensing service system

based on EDSOA (Event Driven SOA) architecture to support

real-time, event-driven, and active service execution. The

study also provides a new IoT browser that uses augmented

reality technology to display IoT resource, realising the

superposition presentation of the physical world and abstract

information.

Despite these interesting approaches, in literature there is a

lack of integrated platforms that can provide a cloud access to

IoT resources along with a semantic management of them.

There is the need of IoT architecture that can manage smart

devices with the support of knowledge processing tools and, in

the same time, that allow end-users to interact with them as

Web services.

The proposed architecture tries to satisfy both the

requirements.

III. THE WEB OF TOPICS MODEL

In this section we summarize briefly the Web of Topics

(WoX) model concepts. The reader could deepen the WoX

treatise in [5].

WoX refers to both IoT hardware nodes and IoT

applications generically as IoT entities. In WoX, the ‘sensor’

and ‘actuator’ concepts do not exist. The main concept is the

Topic. A WoX Topic is about a quantity of interest – called

feature – in a certain location. More rigorously, a feature is

any characteristic or entity of the environment that can be

perceivable, definable, measurable and/or controllable. Some

bare examples of feature are: temperature, humidity, presence.

A crowd of people can be a feature too, as well as an alarm.

Also a mathematical function – e.g. sum, min, max – can be a

feature. The set of WoX features is the following:

 (1)

The location is expressed hierarchically following the URN

(Uniform Resource Name) scheme, e.g.

“urn:italy:salento:highschool:firstfloor:phylab:desk1” or

“urn:usa:california:la:westwood:overlandavenue:2801”. The

set of WoX locations si the following:

 (2)

where L also includes two special locations:

1. LOC_ANY, i.e. a wildcard for any location;

2. LOC_SELF, i.e. a pointer to the current location.

Hence WoX define T as the set of couples feature-in-

location:

  , ,i j i jT t f l F L    (3)

In WoX, the topic is the key between who asks for services

and who provides services. Separating the twos, WoX reaches

the maximum abstraction possible. In fact, IoT designers can

focus on concepts (features) rather than on hardware.

An IoT entity will introduce itself to a topic in different

ways, depending on its nature. In WoX, such nature is

analyzed in two dimensions:

1. Collaborative dimension. It includes two aspects: (i) the

capability to perform a service within the topic, and (ii)

the need for other entities who can perform a service.

2. Technological dimension. It includes the legacy (i) sensor

and (ii) actuator distinction, as well as a generic (iii)

function service.

Hence WoX defines the following two dimensions sets:

 (4)

 (5)

Then, WoX defines the set of WoX roles R included in the

following Cartesian product:

 , , , , ,C TECHR D D SC AC FC SN AN FN   (6)

The items in the curly brackets respectively state for: sensor

capability, actuator capability, function capability, sensor

need, actuator need, function need. The generic IoT entity z

can be modeled as a set of couples role-topic belonging to the

following Cartesian product:

  ,,z k i jE r t R T   (7)

By this way, WoX is able to model any device or app in the

IoT, even the most complex. An example of IoT node

implementing the WoX model is a personal enhanced RFID

tag which need to know the temperature in the current room, is

capable to perform a comparison between float numbers and

can activate a LED alarm. In the next section we will cover the

evolution of the WoX model towards and ESB approach that

will include the use of knowledge processors.

IV. THE ENTERPRISE ARCHITECTURE

This section introduces the enterprise architecture in which

the WoX approach can be enhanced by the use of knowledge

processing tools. The Section is divided in three parts, since

the architecture can be analysed from just as many

perspectives. The first subsection describes the WoX

implementation and its integration on the top of Fosstrak

middleware. The second subsection shows how the

architecture logically works, while in the last subsection it is

shown the technical deployment of the architecture on an

enterprise system.

A. The WoX Technical Architecture

The WoX model requires a robust ICT architecture capable

of facing the extremely high numbers of IoT entities and

Topics, the intense exchange of messages and the

heterogeneity of the IoT technologies. WoX architecture is

built as instance of the publish-subscribe (pub/sub) software

design pattern. Pub/sub is an enterprise integration pattern

where senders of messages, called publishers, do not know a

F = fi{ }

L = l j{ }

DC = capability,need{ }

DTECH = sensor,actuator, function{ }

L. MAINETTI et al.: A CLOUD ARCHITECTURE FOR MANAGING IOT-AWARE APPLICATIONS 47

priori what are the specific receivers of messages, called

subscribers. Instead, published messages are characterized into

classes, without knowledge of subscribers’ identity. Similarly,

subscribers express interest in one or more classes, and only

receive messages that are of interest, without knowledge of

publishers’ identity.

The modelling of the pub/sub architecture starts from the

Topic class. In Fig. 1 the UML dependence diagram is shown.

The Observer software design pattern implements the main

WoX idea. The Topic class has two member variables, to hold

respectively the topic’s actual value and preferred value: the

actual value contains the most recent value for the feature in

the location; the preferred value is used to send and receive

requests about the desired topic value.

Every time an IoT node shows up, it handshakes with the

WoX architecture, i.e. it declares its roles according to the

formula (7). The corresponding subscriber classes are

instanced and get attached to the Topic instance. When the

Topic’s actual value gets updated, SN subscribers (i.e.

information consumers) get notified. Vice versa, when the

Topic preferred value is modified, AC subscribers are notified

so they can absolve their task. If the Topic’s feature is a

function, the topic’s preferred value is ignored and the actual

value is used both to pass function parameters as well as to

obtain the function result. In the first case, FC subscribers get

notified; in the second case, FN subscribers get notified.

The pub/sub architectural pattern centralizes the core

information separating who provides data from who consumes

it. IoT-based apps perform a one-time subscription to the

topic(s) of interests, without perceiving the hardware layer.

Subscribing to topics is easy also for “stupid” IoT nodes

(e.g. RFID tags). Moreover, the total number of exchanged

messages is drastically reduced because of dropping all the

point-to-point connections between IoT entities.

Fig. 2 shows the WoX technical architecture. A pub/sub

architecture alone cannot satisfy the requirements of

hardware abstraction, event filtering, and standard-

compliant persistence of an IoT middleware. To this aim,

the pub/sub architecture rests on the top of an EPCglobal

middleware. Such design choice guarantees quality and

performance to the whole architecture. As aforementioned,

the WoX architecture grounds on the Fosstrak. It is made

up of four main layers:

1. Environment Level: it comprises the physical layer as

well as any virtual environment that can generate

events. Social Networks chats can be source of events

too.

2. ALE middleware: it is responsible of querying/piloting

the Environment Level and packing event reports for

the upper layers. It also normalizes the events and

filters duplicated data. On the bottom side, a series of

adaptor is present for each IoT technology, both

physical (e.g. RFID, WSN, KNX, etc.) and virtual

(CVEs, Facebook, etc.). On the top side, three SOAP

(Simple Object Access Protocol) Web services are

needed to send hardware configuration (when needed),

receive event reports formatted with the ECSpec

(Event Cycle Specification) schema, and to send data

to the technologies using the respective technology’s

format.

3. WoX Capturing Application: it is the architectural level

implementing the WoX model. It instances the topics,

updates them, takes care of the topic map, and make such

data available to the end-user apps by a set of REST

interfaces.

4. End users applications use the WoX APIs to subscribe to

topics and they can run on any kind of device. For testing

purposes, in the current work, Java and Android APIs

have been used, but APIs in other programming language

will be developed in the next steps.

An additional element, the EPCIS, concludes the

architecture. It aims to persist IoT events for asynchronous

usage. Nevertheless in WoX the EPCIS role is not crucial.

The Fig. 2 evidences the two possible flows of information: (i)

node-to-node, the curved arrow, i.e. any IoT node can request

services to other nodes (even of different technology), and (ii)

node-to-app, the straight arrow, i.e. any app can receive data

from any node, and vice-versa. The cornerstone of each

information exchange is the WoX Capturing application,

where the WoX model is implemented and the topics are

instanced

B. Enterprise System Logic Architecture

The whole enterprise architecture depends on the WoX

model, as presented in the previous section. The platform

receives the row data from sensors and it elaborates them in

order to extract complex information. The workflow of data

within the application is basically depicted in Fig. 3.

The logic architecture introduces two kinds of topics, both

compliant with the definition of Topic, but referring to

Fig. 1. The WoX architecture conceptual UML diagram

48 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

different levels of abstraction:

1. Low-Level Topic: it is related to data belonging to

observable/controllable IoT entities without any semantic

connotation;

2. High-Level Topic: it represents a refined information

semantically determined

The other components in the logic architecture are:

3. Enterprise Service Bus (ESB): it is the solution adopted to

connect the various component of the application. It is

compliant to Service-Oriented Applications (SOA)

architectural pattern and it guarantees the interoperability

among heterogeneous technologies.

4. Business Rules Web Service: it is a middleware with the

specific function of knowledge processor. The module

subscribes to the Low-Level Topic and applies the

business rules on the data deriving from it, in order to

draw events of interest and to update the corresponding

High-Level Topic;

5. User Application: high abstraction level module

appointed to subscribe to the High-Level Topic and to

notify the user when an event of interest occurs.

The first kind of Topic is used to catch data provided by

sensors, to control actuators and, generally, to process row

data in an IoT network. The second one is used to treat

elaborate information mined from row data according to the

logic rules imposed by the knowledge processor.

Once a High-Level Topic changes its own internal state –

that is, some event of interest has occurred – the User

Application component gets notified and it can inform the

end user. So, the User Application makes up the bridge

between the end users and the Enterprise architecture.

C. Enterprise System Implementation

Referring to Fig. 4, most part of the architecture is

implemented using WSO2 technologies. Particularly, WSO2

takes part in the constitution of the components: Enterprise

Service Bus, Business Rules Server and Web Service

Application Server.

As discussed in the Subsection IV.A, the module for

managing topics is implemented on the top of Fosstrak

EPCGlobal implementation and is deployed on a dedicated

server.

The different modules in the architecture communicate by

way of RESTful interfaces, in accordance with WSO2

directives.

The sensor component sends the data describing the state

of the environment to the Enterprise Service Bus.

The ESB sends the data from sensors to the Fosstrak

Capturing Application component, where a specific instance

of Low-Level Topic encapsulates the data from the sensor.

The Application Server implemented on the WSO2 Web

Service Application Server subscribes to all the topic instances

in the Capturing Application, firing different actions

depending on the type of topic.

In case of Low-Level Topic subscription, the Application

Server receives notifications from it in conjunction with sensor

updates and it forwards the information included in the topic

to the Business Rule Server. In the latter component there is a

Web service equipped with a Knowledge Processing Engine.

It acts as Knowledge Processor and computes the received

data: on the basis of the business logic rules, the modules

decrees if an event of interest has occurred or not. If so, the

Business Rule Server updates the High-Level Topic

corresponding to such event. the business logic rules are

implemented by means of Drools tools [14].

Since the Application Server can perform subscriptions also

to High-Level Topic, an event of interest occurrence is

seamless notified to it and, so, to the end users.

The Business Rules Server exposes the logic rules as Web

services. Therefore, it is possible adding new rules or

modifying existing ones by means of http requests, without the

need of redeploy the application.

V. PROOF OF CONCEPTS

In order to validate the architecture, a real scenario has been

implemented in-vitro.

The main subject of the scenario is an elderly person, or a

person with balance and/or ambulation difficulties. A generic

user of the analysed platform is interested in remotely

monitoring the person. Also, s/he has to be alerted by

necessity.

For this purpose, the senior wears a wearable device

equipped with an embedded accelerometer. The device

forwards the accelerometer data to a Low-Level Topic. The

Knowledge Processor will process the data in that topic and, in

case of an incident related to a fall, it will update a High-Level

Topic. End users interested in the status of the elderly will

subscribe the topic and will be updated about any notifications

Fig. 2. The WoX technical architecture, based on the EPCglobal

standard and its open source implementation Fosstrak. The arrows

indicate the possible flows of information in WoX: node-to-node and

node-to-app

Fig. 3. Enterprise System Logic Workflow

L. MAINETTI et al.: A CLOUD ARCHITECTURE FOR MANAGING IOT-AWARE APPLICATIONS 49

from the platform.

The use case requires the implementation of two Topics in

the WoX framework:

 Shock: sudden change in the values of vertical

acceleration measured by sensors.

 Fall: event of fall of the person to be monitored.

Topics’ properties are detailed in TABLE I and TABLE II.

The step-by-step scenario is the following:

1. The on-board accelerometer on the wearable device

detects acceleration data along three axes.

2. The data are sent to the Smart Gateway (by means of

WiFi technologies).

3. The Smart Gateway forwards the gathered information

to the ESB platform.

4. The ESB communicates the data to the WoX Capturing

Application, which updates the Shock Topic in the

corresponding location

5. The Application Server on the WSO2 Web Service

Application Server component subscribes to the Shock

Topic, receiving notifications from it in case of

updates.

6. Each notification is forwarded to the Business Rule

Server, where the Web service serves as Knowledge

Processor. It triggers one of the following two rules:

a. "Elder person has fallen": the Business

Rules Server updates the Fall Topic in the

Capturing Application.

b. "Elder person is unhurt": do not perform

any operation.

7. A summary response is sent back to the Application

Server, which has initiated the processing request to

Knowledge Processor.

8. A person interested to the health condition of the

monitored subject has to subscribe the Fall Topic (by

means of a dedicated user application).

The implemented Knowledge Processor is a Web service

that exposes the business logic operation

SendFallNotification: it triggers an event that updates the

topics related to the fall of the monitored person.

Fig. 5 shows the Drools implementation of the business

logic rules related to the SendFallNotification operation: each

incoming request sent to the Knowledge Processor Web

service is mapped into a TopicNotification_Shock object;

then, on the basis of a condition placed on average values for

the vertical accelerations received within the incoming

requests, the Knowledge Processors triggers the two already

discussed rules: "Elder person has fallen" and "Elder person is

unhurt".

Behind the Web Service, the KP consists in a semantic agent

that uses an ontology to create relations about concepts. Such

relationships allow excluding that the falling event is critical,

for example when the WSN node is worn by an athlete

performing his daily training session. In Fig. 6 the ontology

used by the KP is shown. The ontology allows matching a

‘Shock’ event incoming from the PHY layer with a series of

contextual information, like the user type, the timestamp, and

the place of happening. Reasoning over the provided ontology

allows to determine the criticism of the shock event.

The Fig. 7 collects some screenshots of the ‘grandma fell

down’ notifications.

Considering that the system has to interact in real-time with

users, system latency is a good parameter for quantitatively

evaluating it. An Android mobile application connected to the

Internet by LTE network was used as client for getting notified

by the system in case of falling event. The average timespan

between the falling event and the notification to the mobile

application has been computed: on 5000 empirical samples,

the average system latency value was 4980 milliseconds.

VI. DISCUSSION

To perform the discussion of the WoX model, the current

TABLE I

SHOCK TOPIC PROPERTIES

Topic property Value

Topic Name Shock

Description It models the event of a sudden acceleration of the

under examination subject along the vertical axis.
The topic gets updated by the accelerometer worn

by the person

Type Low-Level Topic
Feature Acceleration

Location e.g., it:lecce:Garibaldi_street:71:grandma_home

Value String value coming from the accelerometer and
saved in the topic. It consists of a tern of values:

- Time Window: timespan in milliseconds, in

which samples are sent from the accelerometer.
- Sample number: number of samples sent in the

time window

- Measure: acceleration along three axes of
reference.

TABLE II

FALL TOPIC PROPERTIES

Topic property Value

Topic Name Fall

Description It models the event of fall of the person to be

monitored

Type High-Level Topic

Feature Event of fall

Location e.g., it:lecce:Garibaldi_street:71:grandma_home
Value boolean

TABLE III

QUALITATIVE COMPARISON WITH EXISTING APPROACHES

Quality
Industry-

based

Semantic-

based

Web of

Topics a

Human understandable X X

Native compliance with

standards
X X

Multiple scenarios
implementable

 X X

Compliance with virtual

environments
 X X

TABLE IV

TECHNICAL COMPARISON WITH EXISTING APPROACHES

Quality
Industry-

based

Semantic-

based

Web of

Topics

Real time X X X

Quick response time X X X

Scalability X X

Integration X X

Heterogeneous System

support
 X X

Design X X

Collision Avoid X

Usability X X

Simplicity X X

Fault Tolerant X X X

Trust X

Security X

Suitability X X

Cooperation X X

Privacy X

Fig. 5. SendFallNotification implementation

50 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

Section presents a practical comparison with the two main

categories of approach discussed in the “Related Work”

Section: architectures based on international standards, and

horizontal (semantic) architectures. Table III shows a

qualitative comparison with the two existing approaches. It is

straightforward affirming that the WoX approach inherits the

advantages of both the standard- and semantic-based ones.

Table IV presents a technical comparison with the same

approaches but from the ISO/IEC 9126 software quality

standard viewpoint. Also in this case, WoX model appears as a

merge of the characteristics of both the two different

approaches. Thanks to the high levels of abstraction it

implements, it gets close to the human way of thinking, so

praising good level of usability, simplicity and design. At the

same time, it leverages the EPCglobal standard, reaching the

necessary features of robustness, security, reliability, and so

on. As a con, WoX opens to threats in the means of

information trust and security, as well as to privacy issues.

This is due to the current lack of a mechanism able to certify

the origin of the Topic information and protect itself from

leaks. We are aware of these lacks and their resolution

represents a future work. Another room for improvement will

be the release of more programming languages with an

enhanced set of exposed APIs.

VII. CONCLUSION

In this paper, an extension of the Web of Topics (WoX)

approach was presented. WoX is a novel design model

shortening the gap between the design and the solution

domains in the IoT. In WoX, the generic IoT entity is seen as

a set of couples Topic-Role. A WoX Role is expressed in

terms of two dimensions: technological (sensor, actuator,

computational node) and collaborative (service capability or

need).

The innovation presented in this paper regards the extension

of the WoX approach with the definition of a Knowledge

Processors (KP). The aim of the KP is to determine new

knowledge using heterogeneous information sources. A KP

subscribes to a set of Topic just like a regular end-user

application. Nevertheless, it uses the information incoming

from the WoX layer to determine new information, hence

updating upper level Topics.

In order to implement the enterprise architecture, the

WSO2 open source ESB implementation has been used,

thereby providing a cloud infrastructure for IoT

applications management. The knowledge processing tools

leverage the WSO2 Business Rules server, which uses

Apache Drools as a Business Rules Engine (BRE). Each

KP is mapped onto a Drools rule. The KP subscribes to a

set of Topics just like a regular end-user application.

Unlike them, the KP can produce new knowledge and push

it on upper-level WoX topics, hence making it available for

the IoT ecosystem.

In order to validate out work, an in-vitro validation was

performed. The KP configuration aimed to determine the

falling down of an elderly person by mashing up

heterogeneous information sources, including a WSN node

placed on the person and a set of data: timestamp, age,

location. By interpreting such data in an ontology, the KP

can determine whether a falling event happened and it

regards a person in need of special care. The information is

then propagated via different kind of notifications using the

regular WoX approach.

As a next step, we are planning to submit the validation

experiment inside a public software development

challenge, in order to reach a valid amount of empirical

data.

VIII. REFERENCES

[1] D. Uckelmann, M. Harrison, and F. Michahelles, Eds.,

Fig. 7. Heterogeneous notifications about the falling down event

Fig. 6. Ontology model used in the KP in the proof of concepts

L. MAINETTI et al.: A CLOUD ARCHITECTURE FOR MANAGING IOT-AWARE APPLICATIONS 51

Architecting the Internet of Things. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011.

[2] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented

architecture for the Web of Things,” in 2010 Internet of Things

(IOT), 2010, pp. 1–8.

[3] L. Mainetti, V. Mighali, L. Patrono, and P. Rametta, “Discovery

and Mash-up of Physical Resources through a Web of Things

Architecture,” J. Commun. Softw. Syst., vol. Vol. 10, N, pp.

124–134, 2014.

[4] L. Mainetti, V. Mighali, L. Patrono, P. Rametta, and S. L. Oliva,

“A novel architecture enabling the visual implementation of web

of Things applications,” in 2013 21st International Conference

on Software, Telecommunications and Computer Networks -

(SoftCOM 2013), 2013, pp. 1–7.

[5] L. Mainetti, L. Manco, L. Patrono, and R. Vergallo, “Web of

Topics: An IoT-aware Model-driven Designing Approach,” in

IEEE World Forum on Internet of Things, Milan, Italy, Dec. 14-

16, 2015, pp. 46-51.

[6] “Fosstrak.” [Online]. Available: http://fosstrak.github.io/.

[Accessed: 20-Oct-2015].

[7] C.-W. Tseng, Y.-S. Lin, W.-H. Lu, and C.-H. Huang,

“Extending EPCglobal ALE middleware to integrate transducer

capability of IEEE 1451 standards,” in 2014 Sixth International

Conference on Ubiquitous and Future Networks (ICUFN), 2014,

pp. 289–294.

[8] “EPCglobal | GS1.” [Online]. Available:

http://www.gs1.org/epcglobal. [Accessed: 20-Oct-2015].

[9] E. Song and K. Lee, “Understanding IEEE 1451-Networked

smart transducer interface standard - What is a smart

transducer?,” IEEE Instrum. Meas. Mag., vol. 11, no. 2, pp. 11–

17, Apr. 2008.

[10] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Y.

Terziyan, “Smart Semantic Middleware for the Internet of

Things,” in ICINCO 2008, Proceedings of the Fifth

International Conference on Informatics in Control, Automation

and Robotics, Intelligent Control Systems and Optimization,

Funchal, Madeira, Portugal, May 11-15, 2008, 2008, vol. 8, pp.

169–178.

[11] L. Mainetti, V. Mighali, and L. Patrono, “A Software

Architecture Enabling the Web of Things,” IEEE Internet

Things J., vol. 2, no. 6, pp. 445–454, Dec. 2015.

[12] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L.

M. S. de Souza, and V. Trifa, “SOA-Based Integration of the

Internet of Things in Enterprise Services,” in 2009 IEEE

International Conference on Web Services, 2009, pp. 968–975.

[13] L. Lan, F. Li, B. Wang, L. Zhang, and R. Shi, “An Event-Driven

Service-Oriented Architecture for the Internet of Things,” in

2014 Asia-Pacific Services Computing Conference, 2014, pp.

68–73.

[14] “Drools - Business Rules Management System (JavaTM, Open

Source).” [Online]. Available: http://www.drools.org/.

[Accessed: 24-Oct-2015].

 Luca Mainetti is an Associate Professor of

Software Engineering and Computer Graphics

at the University of Salento. His research

interests include web design methodologies,

notations and tools, services oriented

architectures and IoT applications, and

collaborative computer graphics. He is a

scientific coordinator of the GSA Lab -

Graphics and Software Architectures Lab and

IDA Lab - IDentification Automation Lab at the Department of

Innovation Engineering, University of Salento.

Luigi Manco graduated in Computer

Engineering in 2012 at University of Salento

(Italy), after a 6-mounths internship at the

Vicomtech-IK4 Spanish research centre.

Currently, he is a PhD student and collaborates

with DEIB at Polytechnic of Milano. His

research topics are semantic-based Multi-Agent

Systems for Smart Environments.

Luigi Patrono received his MS in Computer

Engineering from University of Lecce, Lecce,

Italy, in 1999 and PhD in Innovative Materials

and Technologies for Satellite Networks from

ISUFI-University of Lecce, Lecce, Italy, in

2003. He is an Assistant Professor of Network

Design at the University of Salento, Lecce,

Italy. His research interests include RFID,

EPCglobal, Internet of Things, Wireless Sensor

Networks, and design and performance evaluation of protocols. He is

Organizer Chair of the international Symposium on RFID

Technologies and Internet of Things within the IEEE SoftCOM

conference. He is author of about 100 scientific papers published on

international journals and conferences and four chapters of books

with international diffusion.

Roberto Vergallo graduated cum laude in

Computer Engineering at University of Salento

(Italy) in October 2010. Currently he is a post-

doc fellow at the same university. He also

collaborates with the Smart Grid Energy

Research Center at the University of California

Los Angeles (UCLA).

52 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 1, MARCH 2016

