
Three-Phase Detection and Classification for

Android Malware Based on Common Behaviors
Ying-Dar Lin, Chun-Ying Huang, Yu-Ni Chang, and Yuan-Cheng Lai

Abstract—Android is one of the most popular operating
systems used in mobile devices. Its popularity also renders
it a common target for attackers. We propose an efficient

and accurate three-phase behavior-based approach for detecting
and classifying malicious Android applications. In the proposed
approach, the first two phases detect a malicious application
and the final phase classifies the detected malware. The first
phase quickly filters out benign applications based on requested
permissions and the remaining samples are passed to the slower
second phase, which detects malicious applications based on
system call sequences. The final phase classifies malware into
known or unknown types based on behavioral or permission
similarities. Our contributions are three-fold: First, we propose
a self-contained approach for Android malware identification and
classification. Second, we show that permission requests from an
Application are beneficial to benign application filtering. Third,
we show that system call sequences generated from an application
running inside a virtual machine can be used for malware
detection. The experiment results indicate that the multi-phase
approach is more accurate than the single-phase approach. The
proposed approach registered true positive and false positive
rates of 97% and 3%, respectively. In addition, more than 98%
of the samples were correctly classified into known or unknown
types of malware based on permission similarities. We believe that
our findings shed some lights on future development of malware
detection and classification.

Index Terms—Android, behavioral analysis, permissions, mal-
ware, system call sequences

I. INTRODUCTION

In the past, mobile devices were used solely for making

phone calls and sending and receiving short messages. How-

ever, the rapid development of computing technology and

wireless bandwidth has turned mobile devices into universal

devices in digital life. Activities such as watching videos,

playing games, checking e-mails, and online shopping can

now be performed anytime and anywhere with an Internet-

connected mobile device. Therefore, many users have migrated

from PCs to mobile devices and the number of mobile devices

has thus grown exponentially.

Because of its openness, Android is one of the most

popular operating systems (OSs) adopted by modern mobile

devices [1]. Statistics collected in 2014 indicated that there are

more than one billion devices that run the Android OS. The

widespread deployment of Android also renders it an attractive

Manuscript received November 30, 2015; revised September 30, 2016.
This work was supported in part by Minister of Science and Technology.
Ying-Dar Lin, Chun-Ying Huang, and Yu-Ni Chang are with the Depart-

ment of Computer Science, National Chiao Tung University. Yuan-Cheng
Lai is with the Department of Information Management, National Taiwan
University of Science and Technology.

target for attackers; therefore, problems associated with mobile

security are becoming more critical [2]. In addition to the

behavior of PC-based malware, mobile malware also attempts

to steal sensitive data and conducts financially motivated

attacks. Mobile malware can read the location of a user by

using built-in GPS receivers, intercept short messages, or

steal contact lists. Furthermore, such malware can send short

messages, make phone calls, or relay phone calls to gain

economic benefits. The widespread deployment of the Android

OS renders it an attractive OS to attackers.

Approaches for detecting malicious applications are com-

monly classified into two classes: static- and dynamic-based

approaches. In general, a static-based approach is faster than a

dynamic-based approach; however, a dynamic-based approach

can obtain more detailed information and thus creates the

possibility of conducting a further in-depth analysis of an

application that is being inspected. In our previous study [3],

we reported that a dynamic-based approach can generate

detecting patterns from a group of known malicious Android

applications. However, the approach was also marred by

slow performance because of the characteristics of dynamic

analysis. We attempted to speed up the training and detection

process of our previous study, however, this process is a trade-

off between detection speed and detection risk. This implies

that the detection could be evaded in some rare cases if a

malicious application can decompose the malicious software

implementation into undetectable fragments. Therefore, we

considered other possible approaches to eliminate the possibil-

ity of being evaded and improve the overall detection speed.

In this paper, we propose a hybrid approach that detects

malicious Android applications based on both static features

(the requested permissions) and dynamic features (the system

call sequences). Combining these two features enabled the

proposed approach to detect unknown malware efficiently.

The proposed detector operates in two phases. In the faster

first phase, permissions are investigated to filter out benign

applications quickly. In the slower second phase, a malicious

application is detected from the remaining applications based

on system call sequences. Furthermore, to determine whether

an identified malware is a known or an unknown malware

type, behavioral vectors are established from trained malware

samples and determine unknown malware types based on the

similarity between an inspected malware and behavior vectors.

Inspired by our previous work focusing on native Windows

binaries [4], we attempt to perform automated malicious soft-

ware classification by using a multi-phase approach. Compared

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2016 157

1845-6421/09/8439 © 2016 CCIS

FESB
Typewritten Text
 Original scientific paper

to handling native Windows binaries, there are two major

challenges for analyzing Android binaries. First, there is not

a good classifier that is able to perform initial detection of

malicious behavior for Android applications in a reasonable

short time. Second, Android binaries are launched in a virtual

machine based runtime environment, and the system calls

could be triggered by the virtual machine itself or by the

application. Due to the aforementioned challenges, we have

to carefully design and implement our proposed approach to

adapt the differences on the Android platform.

The rest of this paper is organized as follows. In Section II, a

brief survey of related studies is presented. Section III presents

the precise problem statement and the details of the proposed

mechanism, including the processing of permissions and sys-

tem call sequences. The experimental results are presented in

Section IV. Finally, the concluding remarks are presented in

Section V.

II. RELATED WORK

Numerous approaches are available for analyzing malicious

malware on Android. In addition to antivirus software and

app inspection services such as Google Bouncer [5], we

classified the approaches proposed in previous studies into

sandboxes, static-based, and dynamic-based approaches. A

sandbox monitors the activities of Android applications by

running an application inside a constrained environment. Addi-

tional events can be sent to a running application for triggering

more application behavior. Anubis is an online dynamic anal-

ysis tool originally designed for inspecting malware running

on personal computers. The core component was developed

by Bayer et al. [6]. In 2012, Anubis included a sandbox

environment for inspecting Android applications (codename:

Andrubis). In addition to dynamic analysis in sandboxes,

Andrubis performs static analysis, yielding information such as

an application’s activities, services, required external libraries,

and actually required permission. A detailed introduction to

the design of Andrubis can be found in [7]. Huang et al. [8]

proposed android behavior monitor (ABM), which integrates

open source components and is built upon standard Android

emulator. In addition to its open design, ABM adopts several

strategies to improve code coverage including emulation of

random user inputs, sending short messages, and making

phone calls. Yan and Yin [9] proposed DroidScope to analyze

Android application behavior. DroidScope is built on Quick

Emulator (QEMU) and can reconstruct the OS- and Java-

level semantic views completely from the outside. In addition,

numerous tools, including an API tracer, native instruction

tracer, Dalvik instruction tracer, and taint tracker, have been

developed to conduct further analysis. Tam et al. [10] proposed

CopperDroid, another dynamic analysis tool built on QEMU

that has designs and implementations similar to DroidScope.

CopperDroid monitors low-level system calls and can thus

monitor malware behavior, regardless of whether such behav-

ior is initiated from Java, Java native interface (JNI), or native

code execution.

A static-based approach detects a malicious application by

inspecting only the information stored in an application in-

stallation package file such as binary signatures and requested

permissions. By contrast, a dynamic-based approach detects

a malicious application by using additional run-time informa-

tion such as accessed system resources and invoked system

calls. Kirin [11] uses permission security rules to mitigate

malware by using voice, location, or short messages; a set

of security rules is used to determine whether an application

requests specific combinations of permissions. PUMA [12]

adopts machine-learning approaches, including simple logistic,

naı̈ve Bayes, J48, and random tree approaches to classify

applications into benign or malicious applications based on

permissions. These two approaches are simple and efficient

because they analyze only the manifest file of an applica-

tion. However, a malicious application can easily evade the

detection. Numerous static-based approaches analyze the use

of Android permissions. Statistics provided by the Stowaway

project [13] indicated that one-third out of 940 applications

were provided with over-privileged permissions. Johnson et

al. [14] also reported that most developers over-requested

permissions that could cause security threats. Zhou et al. [15]

obtained the permissions and behaviors by manually analyzing

10 malware families. They used the permissions to filter

out benign applications quickly and detected the remaining

applications through behavioral footprint matching. However,

their approach is not scalable because the approach cannot be

automated.

A number of dynamic-based approaches are also available.

AAsandbox [16] observes suspicious applications by using

system call counts. Crowdroid [17] monitors system calls

invoked by an application and used a clustering algorithm

to determine whether the application is benign or malicious.

However, this approach must collect several user experiences

for the same application, otherwise it could return several false

positives. The approach detects only anomalous behaviors

of analyzed applications. Isohara et al. [18] defined three

categories of threats and there is information leakage, jail-

breaking, and destructive application detection. They gener-

ated signatures by applying a set of regular expression rules to

the name of system calls or file paths. A malicious activity in

these three categories was then detected by matching the signa-

tures. However, their system cannot detect malicious activities

except the three threat categories. Lin et al. [3] extracted

longest common substrings (LCS) of system calls for similar

malicious applications and used probabilities derived from the

Bayes model to discriminate malicious behaviors from regular

behaviors. They then detected repackaged malware with the

obtained LCS. Although the proposed layered multithread

comparison approach demonstrated a favorable efficiency, it

could be evaded if malware attempts to split system calls into

distinct threads. System call sequences can be combined from

distinct threads; however, with the approach, the false positive

rates could also be increased.

III. THREE-PHASE BEHAVIORAL DETECTION AND

CLASSIFICATION

We propose three-phase behavioral detection and classifi-

cation for handling Android malware. Unlike our previous

work [4], which heavily depends on an external malware

158 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2016

Fig. 1. Overview of the proposed approach.

behavior extractor, the proposed approach is self-contained and

does not depend on other classifiers. Given a set of benign

programs (BP), a set of malicious programs (MP), and a

set of programs that must be inspected (IP), the proposed

approach attempts to detect malicious programs from the IP

and also classifies detected malware into either a known or

an unknown malware type. Figure 1 shows an overview of

the three phases: the permission-based detection (PBD) phase,

system-call-based detection (SBD) phase, and behavior-based

classification (BBC) phase. Each phase comprises a training

process and detection process. The system is first trained

with BP and MP and then used to detect malware from IP.

The details of the proposed two detection phases and one

classification phase are introduced in Sections III-A, III-B,

and III-C, respectively. Implementation issues are discussed in

Section III-D. Table I shows the notations used in this paper.

A. Permission-Based Detection Phase

The PBD phase comprises three components: the permis-

sion extractor, Bayes analyzer, and permission comparator.

In the training phase, the permission extractor retrieves built-

in permissions from each inspected application from the BP

and MP. For all the trained programs and their requested

permissions, the Bayes analyzer was used to compute the

probability of a program being malicious for each permission.

The probabilities were evaluated as follows:

P (M |pl) =
P (pl|M) · P (M)

P (pl|M) · P (M) + P (pl|B) · P (B)
, (1)

where pl represents one of the 139 built-in permissions that

must be evaluated, P (B) denotes the ratio of BP, and P (M)

denotes the ratio of MP. The terms P (pl|B) and P (pl|M)
represent the probability that pl is requested by BP and MP,

respectively. The probability P (M |pl), which indicates the

probability of an inspected application being malicious based

on the condition the application requested permission pl is

finally obtained. The permission probabilities for all of the

139 built-in permissions were obtained using Equation 1 and

stored in a permission probability (PP) vector for future use.

Given an inspected program ipk from IP in the detection

phase, the permission extractor retrieves requested built-in

permissions from the program. The permission comparator

computes the product of permission probabilities by using the

PP vector obtained in the training phase and then filters out

the program if the product is lower than a predefined threshold

Tperm. Otherwise, the application is considered a suspicious

program and is passed to the next phase for further inspection.

B. System-Call-Based Detection Phase

The SBD phase comprises four components: system call

recorder, system call sequence tokenizer, system call sequence

analyzer, and system call sequence comparator (Figure 2). In

the training phase, the system call recorder retrieves the system

calls issued from programs in BP and MP. All system calls

are collected by running a specific program in an Android

emulator. In addition to the program launch, several system

events including rebooting, receiving short messages, and

receiving phone calls are sent to the program. System calls

issued from the program are collected for a period of time.

The traces of system calls for programs in BP and MP are

then passed to the system call sequence tokenizer.

Y.-D. LIN et al.: THREE-PHASE DETECTION AND CLASSIFICATION FOR ANDROID MALWARE 159

TABLE I
NOTATIONS USED IN THIS ARTICLE.

Notation Description

BP Set of benign programs bpi, i = 1 ... |BP |

MP Set of malicious programs mpj , j = 1 ... |MP |

IP Set of inspected programs ipk, k = 1 ... |IP |

BBS Set of benign behavior sequences bbe, e = 1 ... |BBS|

SBS Set of suspicious behavior sequences sbf , f = 1 ... |SBS|

MBS Set of malicious behavior sequences mbg , g = 1 ... |MBS|

IBS Set of inspected behavior sequences ibh, h = 1 ... |IBS|

P Set of permissions pl, l = 1 ... |P |

PP Set of permission probabilities ppm, m = 1 ... |PP |

TV Set of type vectors tvv , v = 1 ... |TV |

Install the

application

bpi , mpj

ipk

Launch the

application

Execute the

application

for a period time

Extract

System call

Consolidate

BBS

{bb1, bb2, …, bb }

SBS

{sb1, sb2, …, sb }

System Call

Sequence

Analyzer

{mb1, mb2, …, mb }

System Call

Sequence

Comparator
Benign application or Malware

Tokenizer

Training Detection

Trigger

Events

System Call Recorder

System Call

Sequence

Tokenizer

IBS

{ib1, ib2, …, ib }

Fig. 2. The working flow of the system call-based detection phase.

The system call sequence tokenizer first consolidates suc-

cessive system calls into a single call. The process is per-

formed because a system call could be issued in loops. For

example, a system call sequence of “open, read, read,

read, close” would become “open, read, close.” The

consolidated system call sequences are then inserted into either

a benign behavior sequence set (BBS) or a suspicious behavior

sequence set (SBS) depending on whether the system call

sequences are collected from BP or MP, respectively. The BBS

and SBS are then used as inputs in the system call sequence

analyzer.

The system call sequence analyzer generates a malicious

behavior sequence set (MBS) based on the input BBS and

SBS. This study used two types of MBS; the first is based

on the N-gram algorithm and the second is based on the

longest common subsequence (LCS) algorithm. The MBS for

these two types are generated based on two assumptions.

For the N-gram based MBS, we assumed that sequences

retrieved from a malicious program would also contain benign

behaviors. Therefore, the sequence of malicious behaviors can

be obtained by removing sequences of benign behaviors. We

transformed system call sequences into N-grams and then

obtained the MBS by removing the BBS from the SBS. For

the LCS-based MBS, we assumed that malicious programs

demonstrated similar behaviors. Therefore, the same malicious

sequences can be observed from different malicious programs.

The MBS can be obtained by deriving the LCS from two MPs.

The resulting MBS was then used for detection in the second

phase.

In the detection phase, given an IP, the system call recorder

operates as usual and the system call sequence tokenizer also

outputs a processed behavior sequence called the inspected

behavior sequence (IBS). The IBS is fed to the system

call sequence comparator and then compared with the MBS

obtained in the training phase. With the N-gram-based MBS,

the IP is identified as malicious if an equivalent N-gram is

discovered in the IBS. Similarly, with LCS-based MBS, the

inspected program is identified as malicious if a subsequence

is equivalent to one sequence in the MBS.

C. Behavior-Based Classification Phase

In the BBC phase, if a malicious application is detected

in the previous phase, the malware is further classified as a

known type or an unknown malware type. The BBC phase

comprises a training process and a classification process. In

the training process, a bit vector is used to denote the behavior

of a malicious application. Assume a total of k different MBSs

are observed in all training samples, each trained malicious

sample would have a bit vector of k bits, and the bits for the

corresponding malicious sequences observed in the sample are

labeled as one. The bit vectors for all the training samples

are then used to determine whether an IP is a known or an

unknown type of malware. In this study, the bit vector was

denoted as a type vector (tv). The number of tvs is equal to

or lower than the number of trained malicious samples less if

there are equivalent tvs.

In the classification process, the tv is retrieved from a

detected malicious application. The retrieved tv is then com-

pared with all the trained tvs by using a cosine similarity

160 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2016

measure [19]. The cosine similarity for two tvs tv1 and tv2
can be calculated as follows:

tv1 · tv2
||tv1|| × ||tv2||

. (2)

The detected malicious application is then classified into a

similar class as the tv that has a higher cosine similarity than

a predefined threshold Tsim. If there is no tv with a cosine

similarity greater than Tsim, the detected malicious application

is classified as an unknown type of malware.

D. Additional Implementation Note

We took advantage of several existing tools to simplify

implementing the proposed approach. The tools were used

to retrieve permissions and system call sequences of Android

applications automatically.

1) Permission Analyzer: Because an application package

(APK) file is basically a ZIP archive file with the apk file

extension, we decompressed an application to retrieve its

permissions by using the apktool [20]. The apktool provides

assets, resources, source codes of an application (in assembly

language), and the manifest file. We retrieved permissions by

parsing only the manifest file because a developer must declare

requested permissions in this file.

2) System Call Recorder: To capture the system call

sequences of an application, the system image file

ramdisk.img was modified and strace was in-

stalled in the emulator. First, we decompressed the de-

fault ramdisk.img, installed the strace tool into

the image, and modified the init.rc file to launch

the strace tool. The strace tool is located in the

/data directory. The exact command we inserted into

the init.rc file is “/data/strace -F -ff -tt -o

/data/tracefile/zygote”. With the presented modifi-

cations, strace was launched to record system calls immedi-

ately after booting up the emulator. The output of the strace

tool was placed in /data/tracefile/zygote file.

IV. EVALUATION

To evaluate the effectiveness of the proposed approach,

we conducted experiments with various types of repackaged

applications. The environment of the experiment and number

of trained and inspected applications are described in Sec-

tion IV-A. Various aspects of the performance of the proposed

approaches are discussed in the remaining subsections.

A. Evaluation Environment

In this section, the training and detection processes of

the experimental environment are discussed; furthermore, we

also introduce the samples used in the experiments. Fig-

ure 3 shows the detailed procedures for the experimental

environment. The requested permissions were parsed from the

AndroidManifest.xml file contained in each APK file. All of

the components and the emulator were operated on an Intel

Core i3 3.1 GHz machine running the Ubuntu Linux OS.

The system call recorder currently launches each application

for 3 min [3]. In addition to the components, databases are

used to store permission probabilities, system call sequences,

malicious behavior sets, and tvs.

We prepared 1198 sample applications, comprising 933

benign applications and 265 malware applications, to conduct

the experiments. The sample applications were divided into

two sets (i.e., a training set and a detection set). We used

863 applications (700 benign and 163 malicious) for training

and 335 applications (233 benign and 102 malicious) for

detection. The benign applications were obtained from third-

party markets and malware were collected by Zhou et al.[21].

We also used several antivirus tools to scan all the benign

applications to ensure that they were virus-free.

B. Permission-Based Detector

First, we evaluated the PBD. We calculated the malicious

probabilities for the 139 built-in permissions by using Equa-

tion 1. The permission probabilities of an application were

multiplied together and the product is then compared against

a predefined threshold Tperm. Figure 4 shows the accuracy

of various thresholds. A higher threshold filters out more

benign and malicious applications than a lower threshold

does. Because the objective of this phase was to filter out

benign application and obtain as many malicious applications

as possible, we used a low threshold value to avoid filtering out

excessive malicious applications. We used a threshold Tperm

of 0.1 for the permission-based detector in the remaining

experiments. Although the PBD has a relatively higher false

positive rate1, it can filter out more than 75% of the benign

applications, thus reducing time costs considerably in the

subsequent phase. The PBD registered a false negative rate of

2% and false positive rate of 24%. The average time required

for inspecting an application was 2.57 s, including the unpack

and permission-retrieval time.

C. System Call Based Detector

We then evaluated SBD, which was operated by the N-

gram and LCS algorithm. When using the N-gram-based SBD,

the value of N must be selected appropriately. The value

of N in the N-gram means the unit length of system call

sequences retrieved from full system call traces and this value

affects the overall detection performance. A low value of N

filters out substantial system call sequences, thus increasing

false negatives. By contrast, a high value of N confuses

benign sequences with malicious sequences, thus increasing

false positives. We use various values of N that ranged from

2 to 150 and used an N value of 15 for the rest of our

experiments. The performance of the SBD is summarized as

follows. The N-gram-based SBD registered a false negative

rate of 0% and false positive rate of 35%. In contrast to the

N-gram-based SBD, the LCS-based SBD registered a false

negative rate of 3% and false positive rate of 14%. The average

time required to inspect an application was 600 s for both

detectors. Although each application was launched for only 3

mins, several pre-processing operations including creating a

1A false positive means that a benign application is detected as a malicious
application.

Y.-D. LIN et al.: THREE-PHASE DETECTION AND CLASSIFICATION FOR ANDROID MALWARE 161

Fig. 3. The detailed procedures to train and detect malicious applications.

162 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2016

93%

13%

12% 12% 12% 11% 10% 9% 7%
2%

0%
1% 1% 1% 1% 2% 3% 4%

21%
24%

0%

20%

40%

60%

80%

100%

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

P
e
rc
e
n
ta
g
e

Threshold

False Negative Rate False Positive Rate

Fig. 4. Performance of permission-based detector using various threshold.

3%
3%2%

5%

2%

24%

3%

14%

0%

35%

0%

10%

20%

30%

40%

False Negative Rate False Positive Rate

P
e
rc
e
n
ta
g
e

PBD+SBD(LCS) PBD+SBD(N-gram) PBD SBD(LCS) SBD(N-gram)

Fig. 5. Comparison of detection accuracies for one-phase and two-phase
detectors.

clean evaluation environment, installing the application, and

rebooting also consumed considerable time.

D. Effectiveness of the Two-Phase Detector

The experimental results indicated that the two-phase de-

tectors demonstrated equivalent performance in the overall

detection accuracies, regardless of the phase position of the

PBD or SBD. Therefore, we placed the PBD and SBD in

the first phase and second phase, respectively, because of

their processing efficiency. In addition to shorter processing

time, the PBD quickly filtered out more than 75% of benign

applications and registered a relatively low false negative rate

(approximate 2%).

This section further presented the evaluated performance

of the combined two-phase detector. Figure 5 shows the

performance of one-phase detectors and the combined two-

phase detectors. For the one-phase detectors, the PBD and

SBD produced poor performance in detecting malicious ap-

plications. We examined the cause of the false negatives

and false positives and we discovered that for the PBD,

some malicious applications request only a few noncritical

permissions. Therefore, those applications cannot be detected

by the PBD. The false negatives reported for the PBD were

safe because a malicious application that does not possess

appropriate permissions cannot cause damage. Regarding the

false positives, the difficulty in detecting malicious applica-

tions based on permissions increased because it is challenging

for Android developers to declare a minimum set of required

permissions [13]. For the SBD, we analyzed the undetected

malicious applications and discovered that the false negatives

were caused by untouched malicious parts. Because the system

events sent by the SBD are limited, if malicious parts are not

triggered, the corresponding malicious sequences cannot be

captured. The false positives were caused by two major factors.

First, because most Android malware applications are repack-

aged applications, benign and malicious sequences are always

mixed. Second, Android applications are launched in its own

virtual machine. Therefore, it is impossible to distinguish

system call sequences generated by the virtual machine or

inspected application. Nevertheless, when combined, the PBD

and SBD complement each other and obtain a more favorable

performance compared with the single-phase detectors.

E. Behavior Based Classifier

This section presents the evaluation of the performance

of the BBC. Based on the type of classification [21], we

used 22 types of malware and divided them into two sets.

One set comprised known types of malware and the other

set comprised unknown malware types. The behavior was

represented as a tv constructed from various sources, including

LCS-based system call sequences, permissions, or mixed.

We generated tvs from one half of the malicious samples

belonging to the set that comprises known types and then

classified the remaining malicious samples into either known

or unknown malware types. The tvs used to classify malicious

applications were constructed from the LCS-based system call

sequences, permissions, or mixed. The BBC works only for

applications that have been detected by the two-phase detector.

We first demonstrated that tvs can efficiently classify mal-

ware types. A detected malicious application was classified

into the appropriate class by evaluating cosine similarities.

A malicious application was classified into the type that

demonstrated maximum cosine similarities. We used two

strategies to classify malware types: the greedy strategy and

regular strategy. In the greedy strategy, no threshold was used

to filter out a low value of cosine similarity. A malicious

application was always classified into one type if the value

of its cosine similarity value was not zero. By contrast, in

regular strategy, low values of cosine similarity were filtered

out by using a threshold. If a similarity value was less than a

predefined threshold, the malicious application was classified

as an unknown malware type.

For the greedy strategy, the correctly classified rates for

the tvs constructed from LCS-based system call sequences,

permissions, and mixed were 93%, 99%, and 96%, respec-

tively. The correctly classified rate is applicable only for the

set of known malware types because malware from the set of

unknown types were always classified incorrectly. The regular

strategy must be used instead of the greedy strategy to classify

unknown malware types. We used different cosine similarity

thresholds for tvs constructed from different sources. The op-

timal thresholds we obtained from the system-call-sequence-

based, permission-based, and mixed tv were 0.5, 0.8, and 0.65,

respectively. Table II shows the classification results. Based on

the results of the greedy strategy and optimized threshold, we

Y.-D. LIN et al.: THREE-PHASE DETECTION AND CLASSIFICATION FOR ANDROID MALWARE 163

TABLE II
CLASSIFICATION RESULTS FOR KNOWN AND UNKNOWN MALWARE TYPES.

Vector Malware Type Classified as ...

Known
Correct Type: 83%

System call Incorrect Type or Unknown: 17%
sequence

Unknown
Unknown: 81%

Incorrect Type: 19%

Known
Correct Type: 98%

Permission
Incorrect Type or Unknown: 2%

Unknown
Unknown: 98%

Incorrect Type: 2%

Known
Correct Type: 93%

Mixed
Incorrect Type or Unknown: 7%

Unknown
Unknown: 99%

Incorrect Type: 1%

concluded that the permission-based tv demonstrated optimal

performance in classifying malware types.

Finally, it is impossible to predict the type of unknown

malware in real applications when detecting unknown malware

types. Therefore, for the correctly classified results of unknown

malware types, the 11 unknown types of malware were treated

as one large group without detecting the number of types in

this group.

V. CONCLUSION

We propose a three-phase behavior-based approach for

detecting and classifying Android malware. The proposed

approach achieved a high detection performance and accuracy.

In the proposed approach, the first two phases detect malicious

applications and the final phase classifies a detected malware.

We detected and classified malicious applications from two

aspects (i.e., permissions and system call sequences). The

experimental results indicated that the proposed approach

achieved optimal performance with a true positive rate of

more than 97% and false positive rate of less than 3%. For

classifying the malware type, the proposed approach correctly

classified more than 98% of the detected applications into

known and unknown malware types. Although permission or

system call sequences alone are not efficient detectors, the

results indicated that the two features complement each other.

We also concluded that permission vectors can efficiently

classify detected malicious applications into the appropriate

class of malware types. The difficulty in detecting malicious

applications is increasing. We believe that an appropriate

solution for designing and implementing effective approaches

may involve hybrid features and multiphase designs.

REFERENCES

[1] M. Butler, “Android: Changing the mobile landscape,” IEEE Pervasive

Computing, vol. 10, no. 1, pp. 4–7, 2011.
[2] D. Dagon, T. Martin, and T. Starner, “Mobile phones as computing

devices: the viruses are coming!” IEEE Pervasive Computing, vol. 3,
no. 4, pp. 11–15, 2004.

[3] Y.-D. Lin, Y.-C. Lai, C.-H. Chen, and H.-C. Tsai, “Identifying android
malicious repackaged applications by thread-grained system call se-
quences,” Computers & Security, vol. 39, pp. 340–350, November 2013.

[4] Y.-D. Lin, Y.-C. Lai, C.-N. Lu, P.-K. Hsu, and C.-Y. Lee, “Three-
phase behavior-based detection and classification of known and unknown
malware,” Security and Communicatoin Networks, vol. 8, no. 11, pp.
2004–2015, July 2015.

[5] H. Lockheimer, “Android and security,” February 2012.
[Online]. Available: http://googlemobile.blogspot.tw/2012/02/android-
and-security.html

[6] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A tool for analyzing
malware,” in Proceedings of the 15th European Institute for Computer

Antivirus Research Annual Conference, ser. EICAR, 2006.
[7] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,

V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors,” in Proceedings of

the the 3rd International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS), 2014.

[8] C.-Y. Huang, S.-P. Ma, M.-L. Chang, C.-H. Chiu, and T.-C. Huang,
“An open and automated android behavior monitor in cloud,” Journal

of Internet Technology, vol. 18, no. 2, pp. 297–305, Mar 2014.
[9] L. K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS

and Dalvik semantic views for dynamic android malware analysis,” in
Proceedings of the 21st USENIX Security Symposium, ser. Security’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 29–29.

[10] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid: Auto-
matic reconstruction of Android malware behaviors,” in Proceedings of

the Network and Distributed System Security Symposium. The Internet
Society, 2015.

[11] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference
on Computer and communications security, 2009.

[12] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and
G. lvarez, “Puma: Permission usage to detect malware in android,”
in Proceedings of International Joint Conference CISIS12-ICEUTE12-
SOCO12, 2012.

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, 2011, pp. 627–638.

[14] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of android
applications’ permissions,” in Proceedings of IEEE 6th International

Conference on Software Security and Reliability Companion (SERE-C),
2012.

[15] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: Detecting malicious apps in ofcial and alternative android
markets,” in Proceedings of the 19th Annual Network and Distributed
System Security Symposium, 2012.

[16] T. Blasing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An android application sandbox system for suspicious software detec-
tion,” in Proceedings of the 5th International Conference on Malicious

and Unwanted Software, 2010.
[17] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-

based malware detection system for android,” in Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile

devices, 2011.
[18] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis

for android malware detection,” in Proceedings of the 7th International

Conference on Computational Intelligence and Security, 2011.
[19] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information

Retrieval. Cambridge University Press, 2008. [Online]. Available:
http://nlp.stanford.edu/IR-book/

[20] R. Winiewski and C. Tumbleson, “android-apktool: A tool for reverse
engineering android apk files,” February 2013. [Online]. Available:
https://code.google.com/p/android-apktool/

[21] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 33rd IEEE Symposium on Security

and Privacy, 2012, pp. 95–109.

164 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2016

Ying-Dar Lin is professor of computer science, and
founder and director of the Network Benchmarking
Lab, and founder of the Embedded Benchmarking
Lab at National Chiao Tung University. His research
interests include design, analysis, implementation,
and benchmarking of network protocols and algo-
rithms; quality of service; network security; deep-
packet inspection; P2P networking; and embedded
hardware/software codesign. He is an IEEE fellow
and on the editorial boards of IEEE Transactions
on Computers, Computer, IEEE Network, IEEE

Communications Magazine Network Testing Series, IEEE Communications
Surveys and Tutorials, IEEE Communications Letters, Computer Commu-
nications, Computer Networks, and IEICE Transactions on Information and
Systems. Contact him at ydlin@cs.nctu.edu.tw.

Chun-Ying Huang received the Ph.D. degree in
electrical engineering from National Taiwan Univer-
sity in 2007. He joined the faculty of the Department
of Computer Science and Engineering at National
Taiwan Ocean University in 2008 and has been an
associate professor since 2013. His research interests
include multimedia networking, system security, and
embedded systems. Dr. Huang is a member of IEEE,
ACM, IICM, and CCISA. He can be reached at
chuang@ntou.edu.tw.

Yu-Ni Chang received the B.S. degree in Com-
puter Science and Engineering from the National
Taipei University of Technology, Taiwan, in 2011,
and the M.S. degree in Computer Science from
the National Chiao Tung University in 2013. Her
researches focus on mobile security, malicious ap-
plication analysis, and wireless networking. She is
now an engineer in MediaTek. Contact her at yu-
nichang.cs00g@g2.nctu.edu.tw.

Yuan-Cheng Lai received the Ph.D. degree in com-
puter science from National Chiao Tung University
in 1997. He joined the faculty of the Department of
Information Management at National Taiwan Uni-
versity of Science and Technology in 2001 and has
been a professor since 2008. His research inter-
ests include wireless networks, network performance
evaluation, network security, and content network-
ing. He can be reached at laiyc@cs.ntust.edu.tw.

Y.-D. LIN et al.: THREE-PHASE DETECTION AND CLASSIFICATION FOR ANDROID MALWARE 165

