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Abstract — In this paper, we present a new (t,n)-threshold 

secret images sharing scheme based on linear memory cellular 

automata (LMCA). While all existing LMCA-based sharing 

scheme are not robust, the proposed one provides full robustness 

property. Precisely, any subset of t participants can collude to 

recover the shared secret, in contrast to existing LMCA-based 

schemes when this is possible only for participants having 

consecutive shares. To achieve robustness, produced shares are 

constructed using subsets of different LMCA’s configurations 

instead of using single ones. The subsets are defined according to 

an assignments matrix that is generated using a specific heuristic. 

The proposed scheme is shown to be robust, and its security is 

experimentally evaluated with respect to the problem of secret 

color image sharing. Obtained results illustrate the secrecy of the 

produced shares, while comparison gives an accurate evaluation 

with respect to existing schemes.  

 
Index Terms — Threshold secret sharing, linear memory 

cellular automata, sharing robustness, assignment matrix. 

I. INTRODUCTION 

ecret sharing schemes are cryptographic procedures used 

for sharing a given secret among a set of n different 

participants. Each one receives a different data block named a 

share, and when required, only qualified subset of participants 

can colludes and combines their shares to recover the original 

secret. Particularly, a (t,n)-threshold secret sharing scheme 

allows secret's reconstruction only for subsets of t or more 

different participants, while any subset of (t-1) or less 

participants is unable to recover any useful information about 

the secret. Secret sharing schemes have many applications in 

different areas such as electronic-voting, threshold access 

control, e-auction and anonymous token to name a few.  

Several secret sharing schemes have been proposed during 

the last decades. The first (t,n)-threshold scheme was proposed 

in 1979 by Shamir [1] based on Lagrange polynomial 

interpolation, using the fact that at less t different points are 

necessary to define a (t-1)th degree polynomial. In the same 

year, Blackley [2] proposed another threshold scheme based  
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on plane geometry using the fact that any n nonparallel (n-1)-

dimensional hyperplanes intersect at a specific point, and the 

secret may be encoded as any single coordinate of the point of 

intersection. Each participant is given enough information to 

define a hyperplane, and the secret is recovered by calculating 

the plane's point of intersection and then taking a specified 

coordinate of that intersection. In 1983, Asmuth, Bloom [3] 

and Mignotte [4] proposed independently another threshold 

secret sharing schemes using the Chinese Remainder Theorem 

(CRT): the shares are generated by reducing the secret modulo 

a set of relatively primes integers m1,m2,….mn, when the 

construction can be performed by essentially solving the 

system of t congruence using the CRT.  

All mentioned sharing schemes are unconditionally secure 

and permit to solve the sharing problem in an efficient 

manner. However, their computational complexity for sharing 

and reconstructing secrets is polynomial. When dealing with 

large sized secrets such as digital images or multimedia 

content, these approaches are not suitable, and can difficultly 

be adapted to real-time scenarios.  Recently, a new model of 

threshold secret sharing approach exploits the cellular 

automata paradigm and more precisely the linear memory ones 

(LMCA). The LMCA model provides linear complexity for 

both sharing and reconstruction phases, and leads to best 

runtime performances for large-scaled secrets. The first 

attempt for using LMCA in secret sharing has been proposed 

in [5] by considering the secret as an initial configuration of a 

t-order LMCA, and randomly generate the remaining (t-1) 

configurations. The evolution of the constructed LMCA 

produces n consecutive configurations used to define the n 

different shares distributed among the n participants. Running 

the LMCA backward starting from any set of t consecutive 

shares, permits a perfect reconstruction of the shared secret in 

a linear time with respect to the size of secret. The LMCA 

based sharing approach has been enhanced later in [6] using 

two-dimensional cellular automata to handle images sharing, 

then recently, many other variants have been developed: in 

[7], the authors use steganography to build a lossy sharing 

scheme, when in [8] a discrete logarithm based signature 

verification is combined with LMCAs to provide 

authentication of the different shares. Wu and al proposed in 

[9] another combination of steganography and LMCA to build 

a user-friendly secret sharing scheme but only a lossy secret 
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image can be reconstructed. The same authors proposed an 

authenticated image sharing approach in [10] by combining 

wavelets transforms and LMCAs, but unfortunately, they 

detailed only (3,n) threshold instance of the sharing problem 

and assumed that extension to the (t,n) general case is feasible. 

Even if all LMCA based approaches provide best 

performances with respect to the standard Shamir's sharing 

scheme, they all have a major drawback that make them un-

useful for real applications: not all possible sets of t shares 

permit to recover the secret, but only those having consecutive 

ones. Unfortunately, for any given values of t and n (t ≤ n), the 

number of possible sets of t shares having consecutive 

elements equal to (n-t+1) is very small with respect to the 

whole set of possible sets of t shares equal to (𝐶𝑛
𝑡 =

𝑛!

𝑡!(𝑛−𝑡)!
). 

For example, when (t=3) and (n=10), we have (𝐶10
3 = 120) 

possible set of t shares, when only (10-3+1=8) from them 

verify the property of consecutive elements. Hence, less than 

(7%) of the possible sets of t participants can recover the 

secret.  Such problem makes the LMCA-based secret sharing 

scheme non-robust, and consequently inappropriate for the use 

in real scenario applications.   

In the present work, we propose a solution to the robustness 

problem of the LMCA-based secret sharing schemes. In 

contrast to existing ones, the proposed LMCA-based (t,n)-

threshold secret sharing scheme allows any subset of t 

participants (let 𝐶𝑛
𝑡  subsets) to reconstruct the secret using a 

specific matrix of configuration's assignment: instead of 

giving each participant a single configuration as a share, a 

specific set of different configurations is assigned to each 

participant. Configurations affected to each participant are 

constructed in a such a way that the union of t different subsets 

of t participants contain always t different consecutive 

configurations, while regrouping t-1 or less subsets do not 

permit to achieve such constraint. The assignment of the 

configurations is performed using a specific assignment matrix 

constructed using a heuristically proposed algorithm, while 

sharing and reconstruction are performed as usual using the 

mechanism of LMCA's evolution. The remaining of this paper 

is organized as follows: in Section 2, basic definitions about 

one dimensional cellular automata, LMCAs and reversibility 

are introduced briefly. In Section 3, the proposed scheme is 

described. Security analysis and proofs of the schemes are 

presented in section 4 with a set of experimental results. 

Finally, conclusions are drawn in Section 5. 
 

II. THEORETICAL PRELIMINARIES 

In this section, we briefly present the main definitions of 

one dimensional cellular automata, linear memory cellular 

automata (LMCA) and the main existing LMCA-based secret 

sharing schemes with related definitions and security aspects. 

A. One dimensional cellular automata 

A cellular automata consist of a number of cells arranged in 

a regular lattice, each cell has its own state that can change in 

a discrete time step. States of the whole CA’s cells are updated 

synchronously using a local transition rule that define each 

new cell’s state using its old state, and the states of the 

corresponding neighbors. The neighbors are a specific 

selection of cells relatively chosen with respect to a given 

cell’s position that can be defined for each cell using a radius r 

on the lattice. This will give 2r+1 different neighbor including 

the cell itself. The boundaries cells of the lattice are 

concatenated together in a cyclic form to deal with finite size 

automaton. If the same update rule is used for all the cells then 

the resulting CA is named uniform. Otherwise, if a different 

transition rule is used each time the cell's position change, the 

resulting CA is named non-uniform.  

Formally,  if we define the state of a cell i at the time t with 

st
i, , its state on time t+1 will depend only on the states of the 

corresponding neighborhood at the time t, by applying a 

transition rule that define the way states are updated. If the 

neighborhood radius is r, and if only two cell states are defined 

(0 or 1), the length of each transition rule is then 22r+1 bit, and 

the number of possible rules is equal to 222𝑟+1
.  The transition 

rule of one dimensional binary CAs is generally coded using 

the integer value of the corresponding binary representation, 

when the different CA’s configurations are represented by 

binary blocks. 

In contrast to elementary cellular automata, reversible 

cellular automata (RCAs) are a specific case in which every 

configuration has only one unique predecessor. Precisely, 

RCAs are constructed in such a manner that state of each cell 

prior to an update is determined uniquely from the updated 

states of all the cells. Several approaches have been defined to 

construct reversible cellular automata rules. The second-order 

cellular automaton method introduced firstly in [10], in which 

the update rule combines states from two previous steps of the 

automata, permits to turn any one-dimensional binary rule into 

a reversible one using the fact that the state of a cell at time t 

depends not only on its neighborhood at time t-1, but also on 

its state at time t-2. This is ensured by combining the ith cell 

state at time t with the state of the same cell in time t-2 using 

the xor operator.  

If the configuration of a given CA at each time step t is 

defined by Ct, then we can build a second-order RCA using 

the following equation: 

                  Ct=F(Ct-1)  Ct-2                (1) 

when the map "F" denotes the global transition function of the 

related basic CA. Such defined RCA can be reversed trivially 

using the following equation:     

                       Ct-2=F(Ct-1)  Ct                (2) 

The RCAs defined according to equations (1) can always be 

reversed reversible even if the basic underlying CA defined by 

F is not. Hence, we can construct as mush RCAs as possible 

existing CAs.  

Instead of using one initial configuration like standard one-

dimensional CA, two initial configurations are used to evolve 

a second-order RCA. After applying m iteration steps on two 

initial configurations C0 and C1 we can obtain two consecutive 

configurations Cm and Cm+1. When running the same RCA 

backward starting from Cm and Cm+1 as initial configurations, 
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we recover the two configurations C0 and C1 after exactly m 

iteration using the same transition rule. Reversion of RCAs is 

raising qualitatively the same behavior of one-order CAs as 

pointed by Wolfram [11].  

B. Reversible Linear memory cellular automata (LMCA) 

An extension of the second order reversible cellular 

automata is defined by m-order reversible cellular automata 

(m-order RCAs). The same principle is applied since m 

consecutive configurations are used to build a new one, and by 

the same manner, m consecutive configurations are used to run 

the automata backward and recover initial states. Particularly, 

a specific case of m-order RCA is the linear memory cellular 

automata (LMCAs) that use specific linear transition rules. 

Let's consider the set of CAs of size n and symmetric 

neighborhoods of radius r, whose local transition function are 

of the following form: 

   𝑠𝑖
(𝑡+1)

= ∑ 𝜆𝑗𝑠𝑖+𝑗
(𝑡) (𝑚𝑜𝑑 2)  𝑟

𝑗=−𝑟                 (3) 

where 0≤ i ≤n-1 , and j{0,1}. These are called linear 

cellular automata (LCAs). As there are 2r+1 cells in the 

symmetric neighborhood of radius r, then there exist 22r+1 

different LCAs which goes from 0 to 22r+1-1, and each LCA is 

conveniently specified by a decimal integer ω representing the 

rule number by:  

                         𝜔 = ∑ 𝜆𝑗2
𝑟+𝑗𝑟

𝑗=−𝑟                              (4)            

In the same way like RCAs, the state of every LMCA's cell 

at time t+1 depends on the states of its neighbor cells at 

different time steps t, t-1, t-2, …,t-m. Particularly, using linear 

transition rules defined by equation (4), one can define m-

order LMCA whose local transition function takes the 

following form:  
         𝑠𝑖

(𝑡+1)
= 𝑓𝜔1

(𝑉𝑖
(𝑡)

) + 𝑓𝜔2
(𝑉𝑖

(𝑡−1)
) + ⋯+ 𝑓𝜔𝑚

(𝑉𝑖
(𝑡−𝑚+1)

)(𝑚𝑜𝑑 2)    (5) 

where 0≤ i ≤n-1, and 1, 2,....., m {0,1,...,22r+1-1}. In this 

case, in order to start the evolution of the LMCA, m initial 

configurations are required. The following proposition 

describes how to construct a reversible LMCA. 

Proposition II.1. If 𝑓𝜔𝑚
(𝑉𝑖

(𝑡−𝑚+1)
) = 𝑠𝑖

(𝑡−𝑚+1), then the LMCA 

expressed by: 

      𝑠𝑖
(𝑡+1)

= 𝑓𝜔1
(𝑉𝑖

(𝑡)
) + ⋯+ 𝑓𝜔𝑚−1

(𝑉𝑖
(𝑡−𝑚+2)

) + 𝑠𝑖
(𝑡−𝑚+1)

(𝑚𝑜𝑑 2)        (6) 

is reversible and its reverse is another LMCA with the 

following local transition function: 

                   𝑠𝑖
(𝑡+1)

= 𝑓 (𝑉𝑖
(𝑡)

, … , 𝑉𝑖
(𝑡−𝑚+1)

) (𝑚𝑜𝑑 2)                               

    = 𝑓𝜔𝑚−1
(𝑉𝑖

(𝑡)
) + ⋯+ 𝑓𝜔1

(𝑉𝑖
(𝑡−𝑚+2)

) + 𝑠𝑖
(𝑡−𝑚+1)(𝑚𝑜𝑑 2)     (7) 

where 0≤ i ≤n-1, and 1, 2,....., m {0,1,...,22r+1-1}. Proof of 

this proposition can be found in Fredkin [12]. 

C. Secret sharing using LMCAs  

Using linear memory cellular automata, a secret sharing 

scheme has been proposed initially by [5]. As the scheme is a 

(t,n)-threshold one, the secret is considered as an initial 

configuration of a t-order LMCA, while remaining (t-1) 

configurations are randomly generated. By evolving the 

constructed LMCA, n consecutive configurations are created 

to define the n different shares distributed among the n 

participants. When secret's reconstruction is desired, the 

LMCA is running backward starting from any set of t 

consecutive shares, permitting a perfect reconstruction of the 

initially shared secret in a linear time with respect to the size 

of secret.  

Suppose that the secret is defined by the initial 

configuration C0. Remaining t-1 configurations C1,C2,...Ct-1 

that are necessary to run the designed t-order LMCA are 

generated randomly (if the scheme share a  unique secret) or 

are defined by the remaining secrets (if the scheme handle 

multiple secret). The set {C0,C1,.....,Ct-1} is then used to build 

an (n+t-1)-th order evolution of the LMCA to obtain a set of n 

consecutive configuration  {Ct,Ct+1,.....,Cn+t-1} distributed 

among the n participants. When required, any set of t 

consecutive configurations {Ct+,Ct++1,.....,C2t+-1} is used to 

define a set {𝐶̃(0), 𝐶̃(1), … , 𝐶̃(𝑡−1)} as the initial configuration 

to run the inverse LMCA backward for +t  iterations and 

recover the secret [5]. The set of t-1 transition rules used for 

the LMCA evolution 1, 2,....., t-1 is generated initially by 

the dealer and made public without affecting the security of 

the scheme. 

Even if the LMCA's based secret sharing provides linear 

time complexity sharing and reconstruction with respect to 

existing schemes, it  does not define a robust (t,n)-threshold 

mechanism since not all subsets of t participants can recover 

the secret, but only those having consecutive shares 

(configurations) (as explained in the introduction section). 

Several enhancements have been proposed later in [6,7,8] and 

[9], but they all targeted the enhancements of other sharing 

aspects such as multi-secrets support, share's verifiability, t-

consistence and  traceability. The main robustness's drawback 

of LMCA's based sharing scheme has not been addressed yet. 

In the present work, we present for the first time a solution 

to the robustness problem of LMCAs based sharing schemes. 

The basic idea is simple: instead of defining the share of each 

participant by only one configuration, a subset of 

configuration is attributed to each participant such that the 

union set of t subsets from t different participants contain a 

unique sequence of t consecutive configurations, while the 

union of any less number of subsets do not permit to obtain 

such sequence. Details and proofs of the proposed scheme are 

presented in the following sections. 

III. THE PROPOSED SCHEME 

In this section, we present a new secret sharing scheme 

based on one dimensional LMCA. The proposed (t,n)-

threshold scheme (2<t<n-1) is robust, such that any subset of 

at less t participant can fully recover the shared secret when 

pooling their shares together. As usual, three main phases are 

necessary for the secret sharing scheme: (1) the setup phase, 

during which the dealer generates parameters of the scheme 

and defines the t-order LMCA; (2) the sharing phase, when the 

dealer creates the n different shares using the defined LMCA 

and the secret' data, and finally (3) the reconstruction phase 
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permitting to recover the secret from any  set of t different 

shares. Note that in the proposed work, we used LMCA have a 

radius r=3, so the transition rules belong to the set {0,...,127}.  

 

A. Construction of the assignment matrix 

As mentioned above, the dealer need an assignment matrix 

in order to distributed the LMCA's configuration among the n 

participants. The assignment matrix is used to decide which 

set of  configurations should be given to each user, such that 

each one obtains configurations having as indexes the 

elements of  the participant's corresponding column.  

The assignment matrix noted A has n column 

(corresponding to n participant) and 𝐶𝑛−2
𝑡−2 rows of integer 

elements. It is built in a way that satisfy the following 

conditions: 

(1) Combining t-1 columns does not permits to construct a 

sequence of t consecutive numbers; 

(2) Combining any t columns permits to construct a sequence 

of t consecutive numbers;  

Theoretically, building such matrix is a combinatorial hard 

problem. Hence, we have heuristically developed an algorithm 

that permits such construction and produces a matrix 

respecting the two conditions mentioned above. In addition, no 

restriction is imposed on the upper limit of the matrix's 

elements, and duplicated values are allowed. Each column i of 

the matrix correspond to a participant Pi for 1≤ i ≤ n.  The 

assignment matrix A is constructed according to the following 

steps : 

1. Initially , the matrix A having n columns and 𝐶𝑛−2
𝑡−2  rows 

is initialized  with zeros; let CS be the set of all possible 

𝐶𝑛−2
𝑡−2 combinations of (t-2)-uplet of indexes from the set 

{2,...,n-1} that is previously constructed, and let's suppose 

that an integer value id defines the smallest value 

permitted for matrix’s elements (can trivially be equal to 

1). The matrix is constructed row by row starting by the 

first one. 

2. The first elements of the row receives the value of id; then 

the first combination from CS is picked; 

3. Elements of the currently picked combination are used as 

indexes to fill up the current row of A: if the combination 

is defined by <i1,i2,…,it-2>  then we assign the value id+k 

to the each element A[ik]; 

4. Each one of the matrix’s elements at the current row 

having index higher than it-2 (the higher index value of the 

combination) receives the value id+t-1; 

5. A last verification step consists in looking over the 

elements of the current row from 2 to n-1 and testing: if 

the element is still equal to 0, then the element receives 

the value of the prior one; 

6. If all the 𝐶𝑛−2
𝑡−2  rows have been filled, then the algorithm 

ends. Otherwise, it increments the index of the current 

row, updates the value of id by id:=id+t+1 and returns to 

step 2. 

A  pseudo-algorithmic description of the matrix generation 

procedure is given in the following. We consider CS[0.. 𝐶𝑛−2
𝑡−2-

1] to be an array representing all possible t-2 combinations on 

the values {2,...,n-1} such that each element CS[k] is a 

possible combination <i1
k,i2

k,…,it-2
k>. 

Input : t,n :integers; CS ; id :integer (value of the smallest permitted 

element of the matrix);  

Output :The assignments matrix A having n columns and 𝐶𝑛−2
𝑡−2 rows; 

For i:=1 to  𝐶𝑛−2
𝑡−2  do 

     For j:=1 to n do {A[i,j]:=0;} 

For i:=1 to  𝐶𝑛−2
𝑡−2  do {A[i,1]:=id; 

      For k:=1 to t-2 do {A[i,CS[i][k]]:=id+k;} 

      For k:= CS[i][t-2]+1  to n do {A[i][k]:=id+t-1;} 

For k:=2 to n-1 do {if A[i][k]=0   then A[i][k]:=A[i][k-1];} 

         id:=id+t+1;   }; 

 

The proposed algorithm is designed to ensure the two 

conditions mentioned above. Incrementing the id value with a 

supplementary value 1 is performed from row to row in order 

to avoid that two consecutive rows contain a sequence of t 

consecutive elements by introducing a sequence gap. Let’s 

illustrate in the following an example of the matrix 

construction using values n=6 and t=4: 

Firstly, using the parameters values, it is clear that the 

matrix has 6 columns and 𝐶4
2 = 6 rows. The set CS of 𝐶4

2 

possible index’s combination form the set {2,3,4,5} is equal to 

{(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}. By applying the proposed 

algorithm, the following matrix is obtained : 

                          A =

[
 
 
 
 
 
1 2 3 4 4 4
6 7 7 8 9 9
11 12 12 12 13 14
16 16 17 18 19 19
21 21 22 22 23 24
26 26 26 27 28 29]

 
 
 
 
 

                     (8) 

We can easily verify that combining any 4 columns of the 

matrix permits to obtain a sequence of four consecutive 

numbers. For example combining the columns 1,2,3 and 4 

gives the sequence of consecutive values {1,2,3,4}, while 

combining the columns 2,3,5 and 6 gives the sequence of 

consecutive values {21,22,23,24}. In contrast, combining any 

three columns do not permits to get any sequence of four 

consecutive numbers. 

Another example can be illustrated for n=5 and t=3. Here, the 

set CS is simply the set of possible values from {2,3,4} having 

length one, that is trivially equal to the same set {2,3,4}. 

Applying the algorithm gives the following assignment matrix 

having three rows and five columns: 

                                 A = [
1 2 3 3 3
5 5 6 7 7
9 9 9 10 11

]                                (9) 

The same properties exist in this matrix when grouping 

element of any three columns leads always to a sequence of 

three consecutive numbers.   

Let’s show in the following that for any values of the 

parameters n and t, the produced assignment matrix always 

verify conditions (1) and (2): 
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Lemma III.1. For any values of n and t, the assignment matrix 

constructed using the proposed algorithm has the following 

properties : 

1. The union set of elements for any t  columns contains 

always a sequence of t consecutive numbers; 

2. The union set of any t-1 or less columns do not contain 

any sequence of t consecutive numbers. 

Proof. 

We start by proofing the first assumption. Suppose having a 

combination B=<i1,i2,….,it> of t different columns from the 

matrix A (ikij 1k,jt). We also suppose that the 

combination’s elements are sorted in ascending order 

(i1<i2<….<it ).  

Let’s consider  B’=<i2,i3,….,it-1> the sub combination of B 

restricted on the t-2 elements by deleting the first and the last 

one, and let Ord(B’) be the order of B’ within the set CS.  

It is clear from the algorithm that since B’CS, t-2 following 

consecutive numbers: 

    {id+Ord(B’)*t+1, id+Ord(B’)*t+2, id+Ord(B’)*t+3,……,  

 id+Ord(B’)*t+t-2 }                            (10) 

will be affected to the indexes of B’ during the first loop of 

iteration number Ord(B’) (the iteration using B’ as 

combination base). In addition, the second loop will assign the 

value id+Ord(B’)*t+t-1 to remaining indexes higher than it-1, 

and since it>it-1, the value of the current row at the index it  will 

receive the value id+Ord(B’)*t+t-1. As a result we get t-1 

consecutive values {id+Ord(B’)*t+1, id+Ord(B’)*t+2, 

id+Ord(B’)*t+3,……, id+Ord(B’)*t+t-2 , id+Ord(B’)*t+t-1} 

for the indexes <i2,i2,….,it>. 

Now we consider the first index i1. In the same row 

(corresponding to iteration number Ord(B’)), unless i1 is equal 

to one (i1=1) and in this case the value of the row at position i1 

is certainly equal to id+Ord(B’)*t (since it is the initialization 

value of each row). Otherwise, if i1>1, and since by 

assumption i1<i2, no value will be assigned to the value of the 

current row at position i1 during the second loop (its value 

remain equal 0). During the third loop, this value will take the 

one of prior position than is certainly equal to the value of the 

first column in the current row id+Ord(B’)*t. As a 

consequence, in all cases, a sequence {id+Ord(B’)*t, 

id+Ord(B’)*t+1, id+Ord(B’)*t+2,……, id+Ord(B’)*t+t-1} can 

be constructed for the combination B and it is clearly a 

sequence of t consecutive numbers. 

Proofing the second assumption is easier : suppose we have 

a combination of t-1 columns < i1,i2,….,it-1> from A. It is clear 

that since a gap is introduced between each two consecutive 

rows (i.e. the value of the first element of the new row is 

always incremented with one according to the last value of the 

prior row), sequence of t consecutive numbers can only be 

obtained on a single row. Now since we have only t-1 different 

indexes for the t-1 columns, we can never collect a sequence 

of t numbers from the same row. Hence no t consecutive 

sequence of t numbers can be collected. 

Based on the assignment matrix constructed using the 

proposed algorithm for any two values t and n verifying 

2<t<n-1, we propose an LMCA-based secret sharing scheme 

in the next section. A subset of configurations is assigned to 

each participant using the indexes of his corresponding 

column of the matrix. Note that the algorithm returns a new 

value of the parameter id that represents the highest value of 

the matrix’s elements, and determines the number of LMCA’s 

configurations to be constructed. 

B. The setup phase 

During the setup phase, the dealer responsible for the shares 

generation should firstly define the parameters of the scheme. 

The following steps are performed during this phase: 

1. The dealer generates t-1 random integer from the set 

{0,...,127} in order to define the t-1 transition rules 1, 

2,....., t-1 defining the t-1 local transition functions f1, 

f2,....., ft-1. 

2. The dealer divides the secret S on |S| byte into t parts 

PS1,PS2,...,PSt having sizes equal to [|S|/t], each part 

defines a configuration of LMCA as follows: 

           C0 = PS1, C
1 = PS2, … , Ct−1 = PSt           (11)   

If the value of |S| does not divide t, a padding scheme is 

used to complete cells in Ct-1.   

3. The dealer generates a public random integer number 

>n+1. This parameter is used to introduce a sufficient 

diffusion and confusion between the LMCA 

configurations and hence produces more randomness in 

the resulting shares.    

4. The dealer constructs an assignment matrix A using the 

parameters t, n and id=. The returned value of id (the 

highest element of the matrix) is assigned to a new 

parameter  used in the following steps. It is clear that  

is the smallest element of the matrix A, while  is the 

highest one. 

5. The dealer computes the evolution of ()-th order of the 

LMCA, starting from the initial configurations 

{C0,C1,.....,Ct-1}: 

           {C0, C1, … , Ct−1, Ct, … , Cn, … , Cα, … Cβ−1, Cβ}      (12) 

C. The sharing phase 

During the sharing phase, the dealer uses the -+1 

{C,C+1,....,C} last configurations generated during the setup 

phase to build the shares distributed among the n participants 

P1,P2, ...,Pn like the following:  

1. For each participant Pi, the dealer assigns a subset Sbi of 

configurations from the set {C,C+1,....,C}      having as 

indexes the values of the ith column  from the assignments 

matrix A: 

Sbi = {CA[1,i], CA[2,i], … . . , CA[Cn−2
t−2 −1,i], CA[Cn−2

t−2 ,i]  }  (13) 

Each participant will receive exactly 𝐶𝑛−2
𝑡−2 different 

configurations.   

2. For each participants Pi, the configurations of its 

corresponding set Sbi are concatenated to form the 
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corresponding share. The shares are finally distributed 

among the participants among a secure channel.  

Note that the number of all distributed configurations 

among all participants is equal to the number of elements of 

the matrix (equal to n* 𝐶𝑛−2
𝑡−2 ) that is lower than the number of 

total generated configurations equal to -+1. This difference 

is due to two factors: the gaps introduced between consecutive 

rows during matrix creation, and the repetition procedure 

introduced to satisfy combinations belonging to the same row. 

D. The reconstruction phase 

During the construction phase, the combiner reconstructs 

the secret from at least t different shares from t distinct 

participants {Pi1,Pi2,....,Pit} according to the following steps : 

1. For each participant Pik, the corresponding share is 

transformed into a set of configurations according to the 

values that correspond to elements of the (ik)th column of 

A. The share of participant Pik defines the following set of 

Cn−2
t−2  configurations: 

                      Sik
= {CA[1,ik], CA[2,ik], … . . , CA[Cn−2

t−2 ,ik]}          (14)       

2. The combiner constructs the union set SU of all the t 

participant’s subsets of configurations like the following :  

                                  SU = ⋃ Sii=i1….it                           (15) 

3. According to the Lemma III.1, there exists always a 

sequence of t consecutive numbers in each union of t 

different columns from the assignment matrix A. The 

combiner determines the set of consecutive indexes from 

the matrix noted Seq={v1,v2,...,vt}. Using Seq, The 

combiner construct the following sequence :  

                     {Cv1 , Cv2 , … . . , Cvt}            (16) 

that is a set of consecutive configurations in the set SU.  

4. Since the set Seq is ordered, v1 is the smallest integer of 

the sequence, the combiner than computes the (v1)-th 

order evolution of the inverse LMCA constructed during 

the sharing step (using the same transition rules i's). The 

inverse LMCA is run using the following configurations: 

          {Č0 =  Cvt , Č1 = Cvt−1 , … . . , Čt−1 = Cv1}         (17)     

and the inverse LMCA is run for v1 iteration to obtain  the t 

configurations representing the initially shared secret.    

According to the proposition II.1, the initial configurations 

can always be recovered. Hence the secret can be 

reconstructed by concatenating recovered configurations to 

build the initially shared secret. 

IV. SECURITY ANALYSIS OF THE PROPOSED SCHEME 

We show in the following that the proposed scheme verify 

robustness and secrecy. Robustness of the scheme means that 

only a set of at less t participants can recover the shared secret, 

while t-1 or less number of them cannot reveal any 

information about it. Secrecy of the scheme means that 

individual shares indistinguishable from randomly generated 

data. Robustness is shown in the following using theoretic 

assumptions, while secrecy of the scheme is experimentally 

demonstrated using randomness's  measurements of produced 

shares.  

A. Robustness of the scheme 

Robustness of the proposed scheme relays on the following 

facts :  

a) A t-order LMCA's mechanism can reconstruct initial t 

configurations from any subset of t consecutive ones 

using the corresponding inverse LMCA with defined 

linear transitions rules; 

b) Reconstruction of initial t configurations of an LMCA is 

impossible when using any t-1 or less number of 

configurations; 

c) The assignment matrix constructed using the proposed 

corresponding algorithm ensures that union of the 

elements of any t columns permits to build a sequence of t 

consecutive values, while the union of any t-1 or less 

columns does not permits it. 

The first fact is established by the proof of the proposition 

II.1 form section 2. Is has been shown in [12] that LMCA 

constructed according to equations (6) and (7) are always 

reversible, while their inversion using t-1 or less 

configurations is a computationally hard problem. Hence the 

facts (a) and (b) are proofed. 

The fact (c) can be shown using Lemma III.1 from section 

3. We have established that the proposed matrix construction 

algorithm produces always valid matrices. Their validity is 

considered with respect to the two constraints of the lemma, 

that correspond exactly to the requirement of the fact (c). By 

combining the verifiability of the three facts (a),(b) and (c), we 

conclude that the proposed scheme is robust. 

B. Illustrative experiments and secrecy analysis 

In order to illustrate the steps of the proposed scheme and to 

experimentally show the secrecy of the produced shares, we 

develop in the following an illustrative example of secret 

sharing using the proposed approach. We choose to apply the 

scheme to share the digital (512x512) color image illustrated 

in figure 1. Digital images sharing is one of the most active 

research area related to secret sharing due to their specific 

characteristics such as redundancy, bulky data capacity and 

high correlation across blocks of pixels. 

Let’s build a (3,7)-threshold secret sharing scheme (i.e t=3 

and n=7). We firstly define the parameters of the scheme by 

generating the transition rules. Two values 1 and 2 are 

chosen from {0,…,127}: let’s assume 1=45 and 2=138. We 

also assign a random value to the parameter  (to ensure a 

sufficient diffusion and randomization of the shares), so let’s 

choose  =25. 

The assignment matrix A having 7 columns and 𝐶7−2
3−2 =

𝐶5
1 = 5 rows is generated using the proposed algorithm: the 

set CS of t-2=1 possible combinations on the set {2,3,4,5,6} is 
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trivially CS={2,3,4,5,6} (since the length of combinations is 

equal to one). We consequently obtain the following matrix:                                                                             

                   

         P1  P2  P3  P4  P5  P6  P7

A =

[
 
 
 
 
25 26 27 27 27 27 27
29 29 30 31 31 31 31
33 33 33 34 35 35 35
37 37 37 37 38 39 39
41 41 41 41 41 42 43]

 
 
 
 
               (18) 

when each column correspond to a given participant. As 

output of the algorithm, we obtain the value of the parameter 

=43 (the highest value of the matrix’s elements).  

The secret image is then decomposed into three blocks 

defining the three configurations of the LMCA C0,C1 and C2. 

Since the image contain 512x512=262144 pixel each one on 3 

bytes (the image is a 24bit color one), the size of each 

configuration is 262144*3/3=262144 byte. We finally 

construct the 3-order LMCA and evolve it using the 

configurations C0,C1 and C2 for   = 42 iteration using the rules 

1 and 2 . We finally obtain a set of 42 consecutive 

configurations {C0,C1,….,C42}.  

Using the assignment matrix A, obtained configurations are 

assigned according to equation (13) in order to construct the 

different participant’s shares Si (1i7) like the following : 
 

S1 = {C25 , C29, C33 , C37 , C41} 

S2 = {C26, C29, C33, C37 , C41} 

S3 = {C27 , C30, C33, C37, C41} 

                  S4 = {C27, C31, C34, C37 , C41}                      (19) 

S5 = {C27 , C31, C35, C38, C41} 

S6 = {C27, C31 , C35 , C39, C42} 

S7 = {C27, C31 , C35 , C39, C43} 

For each participant, the configurations are assembled and 

concatenated to form the final share. Since each configuration 

is on 262144 byte, the size of the share is equal to 

262144*5=1310720 byte, and can then be represented as a 

color image of 661x661 pixels (using a padding scheme to 

complete remaining 14 pixels). Figure 2 illustrates the 

obtained seven shares when sharing the image of figure 1 

using the proposed approach with respect to a (3,7)-threshold 

sharing scheme. 

It is clear from figure 2 that obtained shares have random 

aspect and hence do not reveal any useful information about 

the originally shared secret. In order to approve this fact, 

several statistical experiments have been performed on the 

shares in order to show that they are indistinguishable from 

random noise. The shares have been analyzed using both 

 
(a)                                           (b)   

 
                     (c)                                            (d)                  

 
                     (e)                                         (f)        

                         
                    (g) 

Fig 2. Obtained shares (661x661) for the secret image of figure 

(a),(b),(c),(d),(e),(f) and (g) are respectively the shares of 

P1,P2,P3,P4,P5,P6 and P7. 

 

Fig. 1.  The secret image (512x512) used to illustrate the proposed 

scheme. 
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Diehard and ENT statistical Tests batteries [13], when 

obtained results are averaged and reported in Tables 1 and 2. 

We can easily note from the results that the shares content has 

very good statistical properties since it pass majority of 

applied tests. Such results imply that the shares are 

indistinguishable from random images, and as a result, the 

sharing scheme ensures secrecy. 

Now suppose that a given subset of participants colludes to 

recover the secret image. Since the scheme is (3,7)-threshold 

one, at least the shares of three different participant are 

required. Let’s suppose that P2,P4 and P7 are those participants, 

so the combiner uses the shares illustrated by figures 2.(b), 

2.(d) and 2.(g). Each share is decomposed into its composing 

configurations, to get the three configuration’s sets  S2,S4 and 

S7 defined in equation (19). The combiner then uses the public 

assignment matrix and construct the union set SU=S2S4S7. 

It is clear that after ordering, the set SU is defined by: 

 

   SU = {C26, C27, C29, C31, 𝐂𝟑𝟑 , 𝐂𝟑𝟒, 𝐂𝟑𝟓, C37, C39, C41, C43}   (20) 

The set SU contains the sequence of three consecutive 

configurations C33,C34 and C35. According to the 

reconstruction scheme, and since 33 is the smallest 

configuration’s index, the combiner run the inverse LMCA 

(using the same public transition rules 1 and 2) for 33 

iteration starting from the initial configurations C35,C34 and 

C33 (in inverse order) to reconstruct the configurations C2,C1 

and C0 that define the initially shared secret image. When 

applied on the shares of figures 2.(b), 2.(d) and 2.(g), the 

reconstruction scheme recover exactly the same image of 

figure 1 since the proposed approach is lossless.  

C. Share's size and efficacy analysis 

Since the proposed scheme assigns multiple configurations 

to the same participant, the size of the share is always higher 

than the size of the secret. According to the sharing scheme, if 

we consider that the size of the secret is given by |S|, the 

threshold and the number of participants are t and n 

respectively, then the estimated size of each share is given by : 

                                  |Share| =
Cn−2

t−2 ∗|𝑺|

t
                               (21) 

 

 Depending of the threshold and the participants number, 

the size of the share may differ and be extremely high for 

some combinations of t and n. We have experimentally studied 

the evolution of the share’s size with respect to the parameters 

of the scheme in order to define its efficiency conditions. 

Figure 3 shows the evolution of the scaling factor between the 

secret’s size and the share’s size with respect to t and n. It is 

clear that the scheme is effective in a sufficiently large region 

of the space and becomes impractical in the mentioned region. 

According to these results, we conclude that using the 

proposed scheme is conditioned by the relation between the 

values of t and n, and even if the scheme ensures a full 

robustness, it is largely non-ideal when t is in the 

neighborhood of n/2. So in general, LMCS-based sharing 

scheme can ensures either a full robustness without ideality or 

ensures ideality without robustness like provided with existing 

LMCA-based schemes.   

For further illustrations of the proposed scheme properties 

and capabilities, a comparative study is given in table 3. The 

scheme is compared to some recent existing threshold sharing 

schemes with respect to several performances parameters. It is 

clear that with respect to CA-based schemes, the proposed one 

is the only that ensures robustness, while ideality is only 

ensured if t and n do not belongs to the impractical region. 

Linear computational complexity is another advantage of the 

scheme that is not ensured by almost all non-LMCA schemes 

having at least a polynomial complexity. 

TABLE I 

AVERAGED RESULTS OF THE DIEHARD TESTS BATTERY APPLIED ON 

THE PRODUCED SHARES 

Test Name Averaged P-value 
Interpret-

ation 

BIRTHDAY SPACINGS  

OVERLAPPING PERMUTATION   

RANK TEST 31x31   

RANK TEST 32x32   

MONKEY DNA   

COUNT-THE-1's TEST   

PARKING LOT   

MINIMUM DISTANCE   

RUNDOM SPHERE   

The SQEEZE test   

OVERLAPPING SUMS   

The RUNS -up test, down test-   

CRAPS -no of wins ,thrwos/game-    

RANK TEST  

MONKEY 20 BITS PER WORD   

MONKEY OPSO, OQSO   

0 .910134 

0 .982213 

0 .692522 

0 .562338 

0 .781003 

0 .578523 

0 .359782 

0 .294752 

0.568922 

0 .847215 

0.684211 

0 .920325 0.531017 

    0 .875423 0.72087 

0.835214 

0.870254 

0.915472 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

TABLE II 

AVERAGED RESULTS OF THE ENT TESTS BATTERY APPLIED ON THE 

PRODUCED SHARES 

Test Value Norm 

Entropy   

Arithmetic mean  

Monte Carlo    
Serial correlation coefficient 

Optimum compression  

7.999925 

127.209 

3.1485967(error=0.24%) 
0.00059 

0.00001 

Max=8.0 

127.5=random 

 value 
0.0 

0.0 

 

 

 

Fig. 3.  Estimated scaling factor between the secret’s size and the 

share’s size with respect to possible values of t and n. 
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V. CONCLUSIONS  

The present paper aims to solve the robustness problem of 

cellular automata based threshold secret sharing schemes. 

While all existing CA-based schemes provide linear 

computational complexity for sharing and reconstructing 

secrets, they all fail to ensure a robust sharing mechanism 

since only the shares defined by consecutive shares can be 

used to recover the secret. Hence, a very large number of 

authorized participant’s subsets are unable to reconstruct the 

initially shared data. To solve the problem, we proposed to 

assign multiple configurations to each user in order to permit 

to each subset of at least t participants to get an access to the 

full secret reconstruction. A specific assignment matrix is 

heuristically generated using a proposed algorithm, and used 

to define a new sharing/reconstruction mechanisms. The 

proposed scheme has been shown to be robust, and has 

undergo several experimental benchmarking to illustrate the 

secrecy of its produced shares. Security of the proposed 

scheme is established, and conditions of its ideality are 

illustrated with respect to the values of the parameters t and n.  

With respect to exiting non-CA secret sharing schemes, the 

proposed one ensures a linear sharing/reconstruction 

complexities that leads to faster and scalable performances, 

while it provides a full robustness property compared to 

exiting CA-based schemes. However, an expensive cost of 

large shares size with respect to the secret size can arias for 

some values of t and n, inducing a non-ideality of the scheme.  

We conclude according to our studies that cellular 

automaton cannot provide an ideal solution to the sharing 

problem without losing robustness, and we are working as 

future works on optimization of the assignment matrix to find 

a solution with less row’s number that can further optimize the 

size of the produced shares.  
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TABLE III 

COMPARISON AMONG EXISTING (T,N)-THRESHOLD SECRET SHARING SCHEMES 

(t,n) Sharing Scheme Sharing complexity 
Reconstruction 

complexity 
Lossless 

Scalability for 

large data 
Robustness 

Thien et al.[14] 
Yang  et al.[15] 

Lin et al. [16] 

Hadian et al.[17] 
Eslami  et al.[8] 

Wu et al. (2012)[9] 

Wu et al. (2013) [18] 

Proposed 

O(|S|*nlog2n) 
O(|S|*nlog2n) 

O(|S|*nlog2n) 

O(|S|*nlog2n) 
O(|S|*n) 

O(|S|*n) 

O(|S|*n) 
O(|S|*n) 

O(|S|*tlog2t) 
O(|S|*tlog2t) 

O(|S|*tlog2t) 

O(|S|*tlog2t) 
O(|S|*t) 

O(|S|*t) 

O(|S|*t) 
O(|S|*t) 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

No 

No 

Yes 
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