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In this paper, optimal control strategies for temperature trajectory determination in 
order to maximize thermophilic bacteria in a fed-batch solid-state fermentation reactor 
are proposed. This process is modeled by nonlinear differential equations, which has 
been previously validated experimentally with scale reactor temperature profiles. The 
dynamic input aeration rate of the reactor is determined to increase microorganisms 
growth of a selective substrate for edible mushroom cultivation. In industrial practice, the 
process is comprised of three thermal stages with constant input air flow and three types 
of microorganisms in a 150-hour lapse. Scytalidium thermophilum and actinobacteria are 
desired in order to obtain a final biomass composition with acceptable microorganisms 
concentration. The Steepest Descent gradient algorithm in continuous time and the Gra-
dient Projection algorithm in discrete-time are used for the process optimal control. A 
comparison of simulation results in the presence of disturbances is presented, where the 
resulting temperature trajectories exhibit similar tendencies as industrial data.
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Introduction

The solid-state fermentation (SSF) is a process 
in which microorganisms grow on solid materials or 
inside solid porous particles in the absence of free 
water; the final result is a nutritionally enriched 
product, with a higher content of proteins and vita-
mins than the original substrate1. In recent decades, 
there has been a growing interest in SSF technology 
to obtain a wide variety of products, such as en-
zymes, pigments, aromatic compounds, flavoring, 
hormones, acids, alcohols, proteins, antibiotics, 
spores, among others.2,3 There are research results 
on new applications of SSF for the control of the 
environment, treatment and biodegradation of haz-
ardous or undesirable compounds, and detoxifica-
tion of agro-industrial waste.4,5 An interesting indus-
trial application of SSF, known as “Phase 2”, is the 
preparation of a selective substrate employed in A. 
bisporus mushroom cultivation.6,7 Edible mush-
rooms are widely cultivated for use in gastronomy. 

In the SSF industrial process (phase 2), the row 
substrate is packaged in a convection forced batch 
bioreactor without overturning. Cultivation takes a 
150-hour lapse and is divided into 3 isothermal 
stages: preconditioning (40 °C, 40 h), pasteurization 
(55 °C, 10 h) and conditioning (40 °C, 40 h).8 Air is 
supplied in a homogenous manner for controlling 
the reactor temperature and humidity; the air is fed 
to the volume of the reaction by manipulating fresh-
air flow and/or the recirculation ratio guaranteeing 
aerobic conditions. The air and temperature condi-
tions are experimentally determined and validated 
in industry, based on restricted knowledge of the 
SSF phenomena. The objective is to produce micro-
bial populations, which encourages growth of the A. 
bisporus during the cultivation stage, such as the 
Scytalidium thermophilum and some Actinobacteria 
whilst eliminating competitors and inhibitors.9 
However, the mentioned temperature profiles do 
not necessarily guarantee that the selective substrate 
will have an acceptable yield, due to the complexity 
of the SSF phenomena, such as mass and energy 
transfer, biological behavior, and operating condi-*Corresponding author: joel.gurubel@cutonala.udg.mx
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tions. In the literature, several models for forced 
aeration SSF bioreactor using a distributed parame-
ter model or lumped-parameter model to reproduce 
its main operating features have been proposed.10–13 
These mathematical models are designed for con-
trol strategy application, state estimation, and pa-
rameter optimization for many different operating 
conditions investigated via simulations. These ap-
proaches provide a good technical and economic 
starting point for large-scale experimental work. 
The major challenge in the SSF process scale-up is 
the heat removal from the bed of solids with in-
ter-particle air.11,12 For large-scale SSF bioreactor 
design, evaporation is one of the most effective heat 
removal mechanisms. However, continued evapora-
tion can dry the bed out to water activities enough 
to restrict growth rates and product formation.12 
Therefore, the maintenance of the water activity of 
the bed becomes a consideration, which guides de-
sign and operation. In SSF reactors, the air phase 
plays a central role in heat removal and in the oxy-
gen supply to the surface of the particles. Therefore, 
the general scale-up problem focuses on heat re-
moval as the key scale-up criterion and maintenance 
of water activity.13,14 In Chen et al.14 an experimen-
tal SSF system for cellulase production through pe-
riodical control of air pressure pulsation and inter-
nal air circulation is proposed. Although, it 
enhances the heat transfer and reduces temperature 
gradients in the process, this technique is operated 
in open loop and recalculations are required at dif-
ferent operating conditions. An optimal control al-
gorithm for optimal temperature trajectory determi-
nation to maximize thermophilic fungi and 
actinobacteria production in a SSF reactor is pro-
posed in Gonzalez-Figueredo et al.15 Performance 
of the control algorithm for a 250-hour process 
lapse via simulation is presented. Temperature pro-
files calculation are similar to experimental ones 
and an increase in the thermophilic fungi and acti-
nobacteria concentration is obtained. However, 
transient state during the first 60 hours is observed 
and disturbances are not considered in the process. 
In Sanchez et al.16 a continuous second-order slid-
ing mode controller to track temperature profiles in 
a FSS dynamic model describing the behavior of 
relevant system states is proposed. The goal is to 
obtain a maximum S. thermophilum concentration, 
which guarantees better mushroom yields in shorter 
operating times. The performance of the closed-
loop scheme is presented via simulations. The re-
sults show a good approximation of the experimen-
tal temperature profiles observed in a pilot-plant 
reactor, but the convergence time is large and an 
increase in control action (aeration rate), which rep-
resent energy excess consumption, is displayed. 
This paper describes: a) a reduced-scale SSF 

lumped-parameter model with forced convection to 
selective substrate production for edible A. bisporus 
mushroom cultivation, b) optimal control strategy 
application to optimize phase 2 of the SSF industri-
al process. The non-linear model is represented by 
ordinary differential equations, which considers es-
tequiometric and chemical kinetics of the microbial 
reaction for three categories of microorganisms. 
The model also considers heat transfer, mass trans-
fer with microbial reaction, oxygen concentration 
and internal temperature.

Materials and methods

SSF lumped-parameter model

The model is based on a first-principle 
lumped-parameter mathematical model that esti-
mates the non-isothermal dynamical behavior of a 
pilot-plant SSF reactor employed for phase II com-
posting of substrate for the A. bisporus cultivation 
under controlled conditions. The experimental reac-
tor has a rectangular shape with dimensions of 0.8 × 
0.6 × 0.5 m, 80 kg substrate capacity and isolated 
by a 5cm glass fiber jacket. The substrate composed 
of organic material residues (wheat straw, soy flour, 
and poultry manure) is packed into the reactor and 
remains static without tipping. Fresh air is fed 
through a manifold, with evenly distributed diffus-
ers inside the reactor, to maintain homogeneous 
conditions of temperature and oxygen concentra-
tion. Input air flow is controlled by a valve placed 
before the manifold. Rotameters measure the input 
air flow after the valve and at the inlet point of each 
diffuser. Output gases flow through a duct placed at 
the upper lid of the reactor. Bulk temperature is 
continuously measured at 10 points within the bed 
using pt-100 RTDs. Excess water is drained by 
gravity from the bottom of the reactor. Figure 1 
shows a scheme of the SSF experimental reactor.

Microbial growth is obtained from a FSS labo-
ratory scaled reactor under controlled conditions, 
employed in the preparation of compost for Agari-
cus bisporus mushroom cultivation.10,15 In a previ-
ous research,15 the following features of the experi-
mental FSS process for phase II composting of 
substrate for A. bisporus cultivation have been es-
tablished: The heat internal generation facilitates 
water evaporation. The steam is taken up by air 
flow. As the air approximates the top of the com-
post, it comes to be saturated and the loss of latent 
heat is minimal. Temperature gradients measured in 
each of the compost zones are not significant. Based 
on the above features, the following suppositions 
were adopted to model a fed batch SSF reactor with 
homogeneous forced aeration:



K. J. Gurubel et al., A Comparative Study of Temperature Optimal Control…, Chem. Biochem. Eng. Q., 31 (1) 101–114 (2017)	 103

–  Solid, liquid, and gaseous phases coexist in a 
representative part of the volume, phase changes 
(evaporation and condensation), and microbial  
reactions occur in a uniform way throughout the re-
actor.

–  Temporary change in the substrate height is 
proportional to its weight and follows the Maxwell 
viscoelastic model.15

–  Initial concentration for each microorganism 
considered in the model is the same, and there is no 
competition among them. Temperature profile pres-
ents more influence from the reaction enthalpies.10

–  Parameters remain constant throughout the 
culture. Temperature and water activity do not af-
fect kinetic parameters.10

–  Solid and liquid fractions in the substrate are 
assumed constant throughout the time.

–  Input air humidity is maintained constant.
The developed nonlinear model consists of six 

ordinary differential equations, which describes the 
matter transport, microorganisms kinetics and ener-
gy balance as follows16:

 
 
 
 
 
		  (1) 
 
 
 
 
 

where x1, x2, x3 (kg m–3) are states which represent 
Actinobacteria, S. thermophilum, and inhibitor mi-
croorganism concentration, respectively; x4 (kg m–3) 
is the substrate state, x5 (kg m–3) is the oxygen state, 
and x6 (°C) is the internal temperature. m is the mi-
crobial growth specific rate, l is the mortality spe-
cific rate, g1 represents the substrate production co-
efficient, fi is the oxygen consumption coefficient, 
V is the volume of the reactor (m3), u (m3 h–1) is the 
input fresh air flow of the reactor, ϕ is a constant 
relating to the solid and humid content of the sub-
strate, ψ  (kJ m–3 h–1 °C–1) is a heat transfer constant 
to the outside, δ  (kJ kg–1) is the heat generation co-
efficient, ζ is the coefficient relating to air density 
and reactor volume (kg), p and pf (kJ kg–1) are func-
tions that depend on the saturation enthalpy and 
damp heat, respectively.

The microbial growth specific rates are de-
scribed by pseudo-Michaelis-Menten kinetic ex-
pression on the substrate and oxygen concentra-
tions.10 With this assumption, the microbial growth 
equation for each microorganism category is stated 
as follows, i = 1: Actinobacteria, i = 2: S. thermo-
philum and i = 3: Inhibitor microorganisms
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where mmax,i  (h
–1) is the microbial growth maximum 

rates depending on the temperature, Ksi (kg m–3) is 
the substrate saturation constant, and Koi (kg m–3) is 
the oxygen saturation constant. Death specific rates 
are described using standard Arrhenius equation10

	 ( )( ), , 6exp 273 , 1,2,3i d i d ia b x il = − + = 	 (3)

where ad,i (h–1) and bd,i (K) are constants, and the 
death equation for each microorganism category is 
stated as for the microbial growth ones. The param-
eter values calculation for the dynamic states are 
found in Sanchez et al.16 The operating conditions 
are shown in Table 1.

Ta b l e  1 	–	Parameter values

Initial conditions Cost functional

State Value Unit Parameter Value Unit

x1,k 0.1 kg m–3 R 0.1 –

x2,k 0.1 kg m–3 Q 0.12 –

x3,k 0.1 kg m–3 t 0.5 h

x4,k 40 kg m–3

x5,k 0.3 kg m–3

x6,k 30 °C

u(0)
k 0.1 m3 h–1
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Fig. 1  Experimental reactor scheme. A: Wall, B: Headspace, 

C: Substrate, xi = Dynamical states, uk = Input air flow 

 

 

 

 

 

Microbial growth is obtained from a FSS laboratory scaled reactor under 

controlled conditions, employed in the preparation of compost for Agaricus 

bisporus mushroom cultivation.10,15 In a previous research,15 the following 

features of the experimental FSS process for phase II composting of substrate for 

A. bisporus cultivation have been established: The heat internal generation 

facilitates water evaporation. The steam is taken up by air flow. As the air 

approximates the top of the compost, it comes to be saturated and the loss of 

latent heat is minimal. Temperature gradients measured in each of the compost 

zones are not significant. Based on the above features, the following suppositions 

were adopted to model a fed batch SSF reactor with homogeneous forced 

aeration: 

F i g .  1 	–	 Experimental reactor scheme. A: Wall, B: Head-
space, C: Substrate, xi = Dynamical states, uk = Input air flow

( )
( )
( )

( )

( ) ( ) ( )( )( )

1 1 1 1

2 2 2 2

3 3 3 3

3

4
1

3

5 5 5
1

3

6 6 6 6 6
1

1

1

1

i

i i i
i

i i i ss
i

ss i i i f
i

x x

x x

x x

x x

x x x x u
V

x x x x x x u

m l

m l

m l

m l
g

f m

j ψ δ m ζ p p

=

=

=

= −

= −

= −

 
= − +  

 

= + −


= − − + − −



∑

∑

∑















104	 K. J. Gurubel et al., A Comparative Study of Temperature Optimal Control…, Chem. Biochem. Eng. Q., 31 (1) 101–114 (2017)

The development of the proposed lumped-pa-
rameter FSS mathematical model has been a key 
issue in the design, scale-up, and control of fermen-
tation technology.10,15,16 Different approaches have 
been applied considering selective substrate, operat-
ing conditions, and sensitivity analysis. A sensitivi-
ty analysis for stoichiometric, kinetic, and mass 
transfer parameters is presented in Gonza-
lez-Figueredo et al.10 The performed analysis re-
vealed the kinetic parameters with the largest influ-
ence on the model. Some of these parameters are 
the reaction enthalpies δi, which, even when adjust-
ed for a better approximation, are considered con-
stant throughout the process and independent of the 

compost composition and microbial category, af-
fecting considerably the maximum temperature at-
tainable. The proposed model accurately predicts 
temperature trajectories and the complex microbial 
dynamics taking place in the SSF reactor. The stan-
dard deviation of the kinetic parameter is presented 
in Table 2.

The temperature profile is obtained with exper-
imental data of the scale reactor monitored through-
out the process and is compared with the mathemat-
ical model described above. The comparative result 
is illustrated in Figure 2.

As can be seen in Figure 2, an acceptable 
agreement between experimental and simulated 
temperature profiles is exhibited. For this control 
policy, the “on-set” and “heat-peak” periods are of 
similar duration with a maximum calculated tem-
perature of 52.7 °C, thus promoting the growing of 
the thermophilic microorganism. The model pres-
ents transient errors in the range of 120 to 200 
hours, which may require a better characterization 
of the process; however, with this result it is possi-
ble to guarantee a good approximation of the actual 
process response. Figure 3 shows the results of the 
SSF model experimental validation with a constant 
input air flow equal to 0.8 m3 h–1.

20

 

 200 

 

Fig. 2  Temperature profile comparison 

 

 

As can be seen in Figure 2, an acceptable agreement between experimental and 

simulated temperature profiles is exhibited. For this control policy, the “on-set” 

and “heat-peak” periods are of similar duration with a maximum calculated 

temperature of 52.7 °C, thus promoting the growing of the thermophilic 

microorganism. The model presents transient errors in the range of 120 to 200 

hours, which may require a better characterization of the process; however, with 

this result it is possible to guarantee a good approximation of the actual process 

response. Figure 3 shows the results of the SSF model experimental validation 

with a constant input air flow equal to 0.8 m3 h-1.  

F i g .  2 	–	 Temperature profile comparison

F i g .  3 	–	 SSF Model validation with constant airflow rate

Ta b l e  2 	–	Sensitive parameter 

Parameter Average value Unit Standard 
deviation

di 26 644 kJ kg–1 1 723
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The calculated final concentrations of S. ther-
mophilum (x2) and Actinobateria (x1) are 3.01 kg m–3 
and 2.09 kg m–3 respectively. Its ratio is within the 
expected range17 giving a positive indication of a 
good prediction of concentration values. Substrate 
is exhausted after 250 hours. The objective of this 
work is to maximize the S. thermophilum microor-
ganisms concentration calculating optimal tempera-
ture trajectory.

Steepest Descent Gradient algorithm

In order to apply the steepest descendent opti-
mization algorithm let us consider the nonlinear 
system:
	 ( ), ,t i t tx f x u= 	 (4)

For this system, the following cost functional is 
defined

	 ( ) ( )
0

, d
f

f

t

t t t
t

J h x g x u t= + ∫ 	 (5)

Then, the associated Hamiltonian is determined 
as follows
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,
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H g x u p x
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and the respective costates as the Hamiltonian de-
rivative

	 ( )
,

, ,m
t,i t t t

t i

Hp x u p
x

∂
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∂
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In order to guarantee the optimal values, the 
following conditions should be satisfied:

	
( ) 0, , 0 ,m

t t t f
t

H x u p t t t
u

∂  = ∈ ∂
	 (8)

The algorithm is described in Figure 4, which 
is initialized by proposing a constant control signal 
u(0) along the horizon of evaluation. Subsequently, 
the state equations are solved and the results are 
stored. Then, the costates are calculated and the 
Hamiltonian derivative is solved and matched to a 
pre-selected positive small constant. If the stopping 
criterion is met, the optimization procedure ends, 
and if it is not satisfied, a new given control vector 
function is generated by

	 1 0,..... 1
k k

k

i
i i m
t t

t

Hu u k N
u

t+ ∂
= − = −

∂
	 (9)

where 1
k

i
tu +  is the new control signal to calculate the 

states and costates of the system. t is a weighting 
parameter calculated by the secant method.

Theorem 1. If J is convex in (u, x) where  
pt < 0 and a(xt,ut) is convex in (u, x) (or pt > 0 and 
a(xt,ut) is concave in (u, x)), then Hm, is convex 
(concave) in (u, x) which ensures optimality of the 
solution ( * * *, ,t t tx u p ).18

Gradient Projection algorithm

The gradient projection algorithm is an itera-
tive numerical procedure for determining an extre-
mum of an objective function of several variables, 
which should satisfy various linear constraints.18 In 
order to apply the gradient projection optimization 
algorithm, first let us consider the nonlinear system 
(4) and then, a cost functional composed of states 
and input variable is designed (5). The objective is 
to find an admissible control signal u* which forces 
the system, with known initial state x(t0) = x0, to 
track an admissible trajectory x* minimizing the 
cost functional.

Since the gradient projection is an algorithm 
for minimizing a function of several variables, we 
must approximate the optimal control problem to be 
solved by a discrete-time one. To accomplish this, 
the state differential equations are approximated by 
difference equations, and the integral term in the 

F i g .  4  – Steepest descent gradient flow chart
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cost functional by a summation. Then, equations (4) 
and (5) are rewritten as

	 ( )1 ,k k t tx x f x u T+ = + 	 (10)

	 ( ) ( )
1

0
,

N

k N k k
k

J l x T g x u
−

=

= + ∑ 	 (11)

where T is the sampling time used for the approxi-
mate difference equations. The required calculations 
by the gradient projection algorithm are
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∂   	

(16)

The cost functional Jk is entirely expressed in 
terms of the control values. To achieve this, we sub-
stitute (10) into (11). The gradient of Jk with respect 
to uk is evaluated on the (i + l)st trajectory. The pro-
jection matrix Pq at some point i

ku  is formed by the 
linearly independent unit normal n1,…, nq vectors 
which are orthogonal to hyperplanes (linear bound-
ary) of the search region R. This equation is import-
ant because it indicates the procedure for changing 
uk along the boundary of R in the direction of the 
projected gradient. In order to change uk in the di-
rection of the projected gradient, it is necessary to 
know the maximum step size which can be used 
without violating any of the constraints. zi rep-
resents the unit vector on the direction of the pro-
jected gradient. ' 1  is the most distant point from  

i
ku  along the gradient projection for which no con-

straints are violated. In order to determine whether 
the maximum step size tm should be used, we form 
the inner product (16); if it is negative, the maxi-
mum step is not taken, and interpolation is used to 
determine the point where the gradient is orthogo-
nal to hyperplanes of R.

Theorem 2. Assume that f is a convex function 
with continuous second partial derivatives in a 
closed and bounded convex region R of En. Let u* 
be a boundary point of R which lies on exactly q,  
1 < q < n, hyperplanes that are assumed to be lin-

early independent. Q’ denotes the intersection of 
these hyperplanes. The point u* is a constrained 
global minimum of f if, and only if,
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and

 
	

*1 ( ) 0T T k
q q q

k

J uN N N
u

−  ∂  − ≤   ∂  	
(18)

Proof of this theorem is given in Kirk18 and a 
flow chart of this procedure is shown in Figure 5.

Results and discussion

Steepest Descent application

The results of the SSF process model obtained 
with the steepest descendent algorithm subject to 
the conditions described in Table 1 are presented. 
Firstly, a cost functional based on the dynamic 
states and the control input to maximize the S. ther-
mophilum microorganisms production is estab-
lished. The objective is to obtain a selected substrate 
for edible mushroom cultivation using a weighted 
control effort, which represents saved energy. 
Therefore, the following cost functional is pro-
posed:

	 ( )
0

2 2
2 d ,ft

mt
J Qx R u t= − +∫ 	 (19)

which indicates a maximization of the x2,k variable 
with a uk weighted consumption. Q is a positive 
semidefinite real symmetric matrix, and Rm is a pos-
itive definite real symmetric matrix.18

Based on Theorem 1, it is verified that the cost 
functional is concave and the states are assumed 
concave for the state-control permissible values. 
The simulation horizon for the SSF process is 250 
hours, and after 12 iterations, the algorithm conver-
gence is reached maximizing the cost functional. 
The results of the optimization strategy are dis-
played in Figure 6.

As can be seen, the input air flow trajectory 
calculated by the optimization algorithm produces 
an optimal temperature profile. The achieved maxi-
mum S. thermophilum microorganisms production 
is 3.77 kg m–3, which is higher than the one obtained 
at constant air flow (Figure 3). The S. thermophilum 
production increases 25.66 % and the input air- 
flow reaches a maximum value of 2.43 m3 h–1 at 
105 hours. The temperature reaches its maximum 
value of 50.8 °C at 73 hours, which is very close to 
the experimental results (Figure 2). Actinobacteria 
production is 1.14 kg m–3, 45 % lower as compared 
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with the one at constant air flow. Inhibitor microor-
ganism concentration is 0.23 kg m–3, which rep-
resents a minimum growth as compared with the  
S. thermophilum ones. The calculated input air flow 
and the optimal temperature profile maximize  

S. thermophilum microorganisms concentration, 
which is the aim of the process. The convergence 
for a u(0) variety is a feature of the optimization al-
gorithm; the results at different initial trajectories 
for u(0) are presented in Figure 7.
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Fig. 5  Gradient Projection flow chart 
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Figure 7 shows a trajectory comparison for the 
input air flow, temperature profiles, and S. thermo-
philum microorganism concentration corresponding 
to different initial control trajectories. As can be 
seen, algorithm convergence for an initial control 
trajectory variety is verified. System response in the 
presence of disturbances, such as temperature vari-
ations of the input air flow and different initial con-
ditions of the model can be analyzed. The results 
via simulation of these scenarios are presented in 
Figures 8 and 9.

Figure 8 shows a comparison of the input air 
flow, process temperature, and S. thermophilum 
concentration for different temperature values of the 
input air flow (T0a). Algorithm convergence for 
these results is achieved after 14 iterations. The re-
sults show that a decrease in T0a (15 °C) produces a 
S. thermophilum concentration increase, reduces the 
control effort, and an inhibitor concentration in-
crease is obtained. A T0a increase produces a control 
effort increase without a greater production of S. 
thermophilum concentration, and the inhibitor con-

F i g .  7 	–	 FSS model optimal control with ut
(0) variety

F i g .  6 	–	 SSF model optimal control with ut
(0) = 0.1
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centration is decreased. According to these results, 
it is concluded that an appropriate temperature se-
lection for the input air flow could improve process 
performance.

SSF model with an initial condition values in-
crease is tested with the following values: x1,0 = 0.2; 
x2,0 = 0.3; x3,0 = 0.15, x4,0 = 45, x5,0 = 0.35, x6,0 = 35. 
Algorithm convergence is achieved after 14 itera-
tions, and the results are displayed in Figure 9.

The initial conditions play an important role in 
the SSF process; initial concentration of microor-
ganisms affects the reaction rate reaching a higher 
microorganism concentration. S. thermophilum mi-
croorganisms reached a maximum concentration of 
x2 = 4.7 kg m–3 with maximum control effort of  
ut = 3.22 m3 h–1 at 60 h. Actinobacteria microorgan-
isms concentration also increased with x1 = 2.05  
kg m–3 and inhibitors decreased with x3 = 0.11 kg m–3. 
Microorganism concentrations reach a maximum 
concentration at the end of the process.

In order to verify the effects of the parameter di 
on the optimization algorithm, the standard devia-
tion described in Table 2 is considered, and simula-
tions results are displayed in Figure 10.

As can be seen, the sensitive parameter modi-
fies the transient state and the maximum attainable 
point of the temperature. Considering the nominal 

di value with positive standard deviation, the tem-
perature state increases to reach 52 °C where it re-
mains for 40 h. The S. thermophilum concentration 
decreases due to the suboptimal temperature range. 
On the other hand, considering the nominal di value 
with the negative standard deviation, the maximum 
temperature reaches 50 °C in a short time and then 
decreases quickly. An S. thermophilum increased 
concentration is reached due to the optimal tem-
perature range. According to these results, it is con-
cluded that an appropriate di value could improve 
process performance.

Gradient Projection application

The results of the SSF process model obtained 
with the gradient projection algorithm subject to the 
conditions described in Table 1 are presented. First-
ly, the cost functional (19) and SSF model (1) are 
discretized, and then the methodology used with the 
previous algorithm is applied. According to conver-
gence requirements, the control trajectory must re-
main in a concave region and the cost functional 
should be concave. The cost functional (19) is found 
concave and each component of f(xt, ut) is assumed 
concave or convex for admissible state-control tra-
jectories. Then, control linear restrictions are estab-
lished to search the optimal control trajectory in a 

F i g .  8 	–	 SSF model trajectories comparison for temperature disturbance on ut
(0)
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bounded and concave region. Previously, on the de-
scending gradient results it had been noticed that 
the control variable remained in a positive range not 
greater than 4 m3 h–1; based on this fact, the follow-
ing linear restrictions are established

	 0 4, 0,1,..., 1.ku k N≤ ≤ = − 	 (20)

By the proof of convex set, it is clear that the 
control linear restriction is a convex set.18 The sim-
ulation horizon for the SSF process is 250 hours, 
and after 10 iterations, the algorithm convergence is 
reached maximizing the cost functional. The results 
of the optimization strategy are displayed in Figure 
11.

The calculated input air flow trajectory with 
this control strategy produces an optimal tempera-
ture profile in order to reach a S. thermophilum pro-
duction of 3.753 kg m–3. Comparing this result with 

the one using steepest descent gradient, a higher 
concentration of 0.47 % is obtained. The input air 
flow reaches a maximum value of 2.57 m3 h–1 at 
108 hours, and the temperature reaches 50.97 °C at 
75 hours. The Actinobacteria microorganism pro-
duction is 1.238 kg m–3, which is a decrease of 
40.85 % compared to achieved production at con-
stant air flow. Inhibitor microorganism growth is 
0.21 kg m–3, which represents a minimum growth 
compared with S. thermophilum ones. The results of 
this control optimization method are very similar to 
the steepest descent ones, emphasizing a smaller it-
eration number to optimize the SSF process. Algo-
rithm convergence occurs for a variety of initial tra-
jectories (u(0)), as presented in Figure 12.

Figure 12 shows a comparison of the input air 
flow trajectories, temperature profiles and S. ther-
mophilum microorganisms concentration, for differ-

F i g .  9 	–	 SSF model response with initial conditions increase

F i g .  1 0 	 –	 SSF model response with sensitive parameter di
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ent initial control trajectories. As can be seen algo-
rithm convergence for an initial control trajectory 
variety is verified. Thus, system response in the 
presence of disturbances, such as temperature vari-
ations of the input air flow and different initial con-
ditions of the model can be analyzed. The results 
via simulation of these scenarios are presented in 
Figures 13 and 14.

Figure 13 shows a comparison of the input air 
flow, process temperature and S. thermophilum con-

centration for different temperature values of the 
input air flow (T0a). Algorithm convergence for 
these results is achieved after 14 iterations. As in 
the previous test with the steepest descent gradient 
algorithm, the results show that a decrease in T0a 
(15 °C) produces a S. thermophilum concentration 
increase, reduces the control effort, and an inhibitor 
concentration increase is obtained. A T0a increase 
produces a control effort increase without a greater 
production of S. thermophilum concentration, and 

F i g .  11 	 –	 SSF model optimal control with uk
(0) = 0.1

F i g .  1 2 	 –	 SSF model optimal control with uk
(0) variety
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the inhibitor concentration is decreased. According 
to these results, it is concluded that an appropriate 
temperature selection for the input air flow could 
improve process performance.

The control strategy is evaluated with an initial 
condition values increase as the one used with 
steepest descent gradient algorithm. Algorithm con-
vergence is achieved after 14 iterations, and the re-
sults are displayed in Figure 14.

As in previous results for the steepest descent 
algorithm, an increase in microorganisms concen-

tration produces a higher microorganism concentra-
tion. Figure 14 indicates that the S. thermophilum 
microorganisms achieve a 4.7 kg m–3 production with 
a maximum control effort of 3.22 m3 h–1 at 55 h. 
The Actinobacteria concentration achieves a maxi-
mum of 2.05 kg m–3 and the inhibitor concentration 
is decreased achieving 0.11 kg m–3.

As above, in order to verify the effects of pa-
rameter di on the optimization algorithm, the stan-
dard deviation described in Table 2 is considered, 
and simulations results are displayed in Figure 15.

F i g .  1 3 	 –	 SSF model trajectories comparison for temperature disturbance on uk
(0)

F i g .  1 4 	 –	 SSF model response with initial conditions increase
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In this case, the gradient projection algorithm 
presents a variation in the transient state and the 
maximum attainable point of the temperature as 
compared with the previous algorithm. Considering 
the nominal di value with positive standard devia-
tion, temperature state increases to reach 51.6 °C 
where it remains for 10 h. The S. thermophilum 
concentration presents a minor decrease due to sub-
optimal temperature range. On the other hand, con-
sidering the nominal di value with the negative stan-
dard deviation, the maximum temperature reached 
is 51.9 °C in a short time, and then decreases quick-
ly. A S. thermophilum increased concentration is 
reached due to optimal temperature range. Accord-
ing to these results, it is concluded that an appropri-
ate di value could improve process performance.

Conclusions

In this paper, optimal control strategies to de-
termine temperature profiles, for a solid substrate 
fermentation reactor of selective substrate produc-
tion have been developed and compared. The non-
linear model includes dynamics of three different 
microorganisms types, heat transfer, mass transfer 
with microbial reaction, input air balance and dy-
namic internal temperature. System stability is veri-
fied via simulation in open loop. The predicted re-
actor temperature behavior has been previously 
validated experimentally. The steepest decent gradi-
ent and gradient projection optimization algorithms 
are used to determine the dynamic input aeration 
rate of the system in order to control the tempera-
ture, which stimulates microorganisms growth to 
obtain a selective substrate for edible mushroom 
cultivation. The optimization algorithms optimize a 
concave cost functional, which is related to the fu-

ture behavior of the system, which depends on the 
control trajectories calculated in the defined time 
interval. The proposed optimization strategies cal-
culated an optimum input air flow trajectory in the 
presence of disturbances that maximize the desired 
S. thermophilum microorganism production with a 
weighted control effort. The steepest descent calcu-
lates an input air flow trajectory that allows a 25.66 % 
higher production than the process with a constant 
air flow. The gradient projection algorithm calcu-
lates a similar input air flow trajectory that allows a 
25.06 % higher production than that obtained at 
constant air flow. It is concluded that the optimiza-
tion strategies determine optimal trajectories in the 
presence of disturbances. The advantages of the ap-
plied algorithms are that they can work with highly 
nonlinear systems, convergence occurs for a variety 
of initial conditions, and few iterations are required. 
As future work, optimal control trajectories will be 
implemented in a real-time process.

A b b r e v i a t i o n s  a n d  s y m b o l s

x	 –  dynamic states
x0	 –  initial state
x1	 –  actinobacteria, kg m–3

x2	 –  Scytalidium thermophilum, kg m–3

x3	 –  inhibitors, kg m–3

x4 	 –  substrate, kg m–3

x5 	 –  oxygen, kg m–3

x6 	 –  temperature, °C
m 	 –  microbial growth specific rate, h–1

l 	 –  mortality specific rate, h–1

gi 	 –  substrate yield coefficient
fi 	 –  oxygen consumption coefficient

F i g .  1 5 	 –	 SSF model response with sensitive parameter di
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V 	 –  volume of the reactor, m3

u 	 –  input fresh air flow, m3 h–1

ϕ 	 –  constant which relates the solid and humid con- 
  tained of the substrate

ψ 	 –  heat transfer constant to the outside, kJ m–3 h–1 °C–1

δ 	 –  heat generation coefficient, kJ kg–1

ζ 	 –  coefficient that relates the air density and the re- 
  actor volume, kg

p 	 –  function that depends on the saturation enthalpy,  
  kJ kg–1

pf 	 –  function that depends on the damp heat, kJ kg–1

J 	 –  cost functional
Hm 	 –  Hamiltonian
pt 	 –  costates
t 	 –  time, h
t0 	 –  initial time, h
tf 	 –  final time, h
k 	 –  discrete time, h
T 	 –  sampling time, h
Pq 	 –  projection matrix
Nq 	 –  hyperplanes
Q’ 	 –  intersection of hyperplanes
zi 	 –  unit vector on the direction of the projected gradi- 

  ent
tm 	 –  maximum step size
R 	 –  real space
En 	 –  Euclidean space
Rm 	 –  positive definite real symmetric matrix
Q 	 –  positive semidefinite real symmetric matrix

R e f e r e n c e s

1.	Bhargav, S., Panda, B. P., Ali, M., Javed, S., Solid-state fer-
mentation: An overview, Chem. Biochem. Eng. Q. 22 
(2008) 49.

2.	Thomas, L., Larroche, C., Pandey, A., Current develop-
ments in solid-state fermentation, Biochem. Eng. J. 81 
(2013) 146.
doi: https://doi.org/10.1016/j.bej.2013.10.013

3.	Arce-Cervantes, O., Saucedo-García, M., Lara, H. L., 
Ramírez-Carrillo, R., Cruz-Sosa, F., Loera, O., Alternative 
supplements for Agaricus bisporus production and the re-
sponse on lignocellulolytic enzymes, Sci. Hortic. 192 
(2015) 375.
doi: https://doi.org/10.1016/j.scienta.2015.06.030

4.	Savoie, J. M., Mata, G., Chapter 5 – Growing Agaricus bis-
porus as a Contribution to Sustainable Agricultural Devel-
opment, Mushroom Biotechnology, Academic Press, San 
Diego, 2016, pp 69–91.

5.	Lin, Y., Ge, X., Li, Y., Solid-state anaerobic co-digestion of 
spent mushroom substrate with yard trimmings and wheat 

straw for biogas production, Bioresource Technol. 169 
(2014) 468.
doi: https://doi.org/10.1016/j.biortech.2014.07.020

6.	Reis, F. S., Barros, L., Martins, A., Ferreira, I. C., Chemical 
composition and nutritional value of the most widely appre-
ciated cultivated mushrooms: an inter-species comparative 
study, Food Chem. Toxicol. 50 (2012) 191.
doi: https://doi.org/10.1016/j.fct.2011.10.056

7.	Miles, P. G., Chang, S. T., Mushrooms: cultivation, nutri-
tional value, medicinal effect, and environmental impact, 
CRC press, New York, 2004, pp 221–235.

8.	Straatsma, G., Gerrits, J. P., Thissen, J. T., Amsing, J. G., 
Loeffen, H., Van Griensven, L. J., Adjustment of the com-
posting process for mushroom cultivation based on initial 
substrate composition, Bioresource Technol. 72 (2000) 67.
doi: https://doi.org/10.1016/S0960-8524(99)00088-7

9.	Coello-Castillo, M. M., Sánchez, J. E., Royse, D. J., Pro-
duction of Agaricus bisporus on substrates pre-colonized 
by Scytalidium thermophilum and supplemented at casing 
with protein-rich supplements, Bioresource Technol. 100 
(2009) 4488.
doi: https://doi.org/10.1016/j.biortech.2008.10.061

10.	Gonzalez-Figueredo, C., de La Torre, L. M., Sanchez, A., 
Dynamic Modelling and Experimental Validation of a Solid 
State Fermentation Reactor, IFAC Proceedings Volumes, 43 
(2010) 221.

11.	Mitchell, D. A., Berovič, M., Krieger, N., Solid-state fer-
mentation bioreactors: fundamentals of design and opera-
tion, Springer Berlin, Heidelberg, 2006, pp 295–362.
doi: https://doi.org/10.1007/3-540-31286-2_22

12.	Raghavarao, K. S. M. S., Ranganathan, T. V., Karanth, N. 
G., Some engineering aspects of solid-state fermentation, 
Biochem. Eng. J. 13 (2003) 127.
doi: https://doi.org/10.1016/S1369-703X(02)00125-0

13.	von Meien, O. F., Luz Jr, L. F., Mitchell, D. A., Perez-Cor-
rea, J. R., Agosin, E., Fernández-Fernández, M., Arcas, J. 
A., Control strategies for intermittently mixed, forcefully 
aerated solid-state fermentation bioreactors based on the 
analysis of a distributed parameter model, Chem. Eng. Sci. 
59 (2004) 4493.
doi: https://doi.org/10.1016/j.ces.2004.06.027

14.	Chen, H. Z., Xu, J., Li, Z. H., Temperature control at differ-
ent bed depths in a novel solid-state fermentation system 
with two dynamic changes of air, Biochem. Eng. J. 23 
(2005) 117.
doi: https://doi.org/10.1016/j.bej.2004.11.003

15.	González-Figueredo, C., Ayala, O. R., Aguilar, S., Aroche, 
O., Loukianov, A., Sanchez, A., Optimal temperature track-
ing of a solid state fermentation reactor, Comput. Aided 
Chem. Eng. 29 (2011) 839.
doi: https://doi.org/10.1016/B978-0-444-53711-9.50168-1

16.	Sánchez, A., Loukianov, A. G., Aroche, O., Continuous Slid-
ing Mode Temperature Tracking of a Solid State Fermenta-
tion Reactor for Substrate Production, IFAC Proceedings 
Volumes, 46 (2013) 18.

17.	Wiegant, W. M., Growth characteristics of the thermophilic 
fungus Scytalidium thermophilum in relation to production 
of mushroom compost, Appl. Environ. Microb. 58 (1992) 
1301.

18.	Kirk, D. E., Optimal control theory: an introduction, Couri-
er Corporation, New York, 2012, pp 329–409.

https://doi.org/10.1016/j.bej.2013.10.013
https://doi.org/10.1016/j.scienta.2015.06.030
https://doi.org/10.1016/j.biortech.2014.07.020
https://doi.org/10.1016/j.fct.2011.10.056
https://doi.org/10.1016/S0960-8524%2899%2900088-7
https://doi.org/10.1016/j.biortech.2008.10.061
https://doi.org/10.1007/3-540-31286-2_22
https://doi.org/10.1016/S1369-703X%2802%2900125-0
https://doi.org/10.1016/j.ces.2004.06.027
https://doi.org/10.1016/j.bej.2004.11.003
https://doi.org/10.1016/B978-0-444-53711-9.50168-1

