
RFID Mutual Authentication Protocols based on
Gene Mutation and Transfer

Raghav V. Sampangi, and Srinivas Sampalli

Abstract: Radio Frequency Identification (RFID) is a

technology that is very popular due to the simplicity in its
technology and high adaptability in a variety of areas. The
simplicity in the technology, however, comes with a caveat
– RFID tags have severe resource restrictions, which make
them vulnerable to a range of security attacks. Such
vulnerability often results in the loss of privacy of the tag
owner and other attacks on tags. Previous research in
RFID security has mainly focused on authenticating
entities such as readers / servers, which communicate with
the tag. Any security mechanism is only as strong as the
encryption keys used. Since RFID communication is
wireless, critical messages such as key exchange messages
are vulnerable to attacks. Therefore, we present a mutual
authentication protocol that relies on independent
generation and dynamic updates of encryption keys
thereby removing the need for key exchange, which is
based on the concept of gene mutation and transfer. We
also present an enhanced version of this protocol, which
improves the security offered by the first protocol. The
novelty of the proposed protocols is in the independent
generation, dynamic and continuous updates of encryption
keys and the use of the concept of gene mutation / transfer
to offer mutual authentication of the communicating
entities. The proposed protocols are validated by
simulation studies and security analysis.

Index terms: RFID security, RFID authentication, mutual
authentication, genetic mutation, encryption key generation and
management

I. INTRODUCTION

Radio Frequency Identification (RFID) technology is an
emerging wireless technology that finds application in nearly
all domains. Be it uniquely identifying objects in the retail
industry, or tracking an object or an entity through a
manufacturing line, or managing patients in healthcare, or the
recent concept of “Internet of Things”, RFID has opened the
doors for a wide range of applications.

An RFID system typically comprises of electronic circuits

Manuscript received December 15, 2012; revised February 22,

2013.
This work has been funded by the Boeing Company.
Authors are with the Faculty of Computer Science, Dalhousie

University, Canada. E-mails: raghav@cs.dal.ca, srini@cs.dal.ca.

known as RFID tags, devices to read data on these tags known
as RFID readers, and enterprise servers that store data about
the object the tag represents. RFID tags store an identifier (a
number) to uniquely identify the objects to which they are
attached. To read the data on these tags, RFID readers transmit
radio-frequency electromagnetic signals, which energize the
tags and allow them to respond with the identifier. The readers
then forward this information to the enterprise server
requesting for more information about the object the tag
represents. The server retrieves and forwards relevant
information to the reader after validating the reader, either
through wired or wireless networks [1].

RFID Tags can be broadly categorized as passive tags,
semi-passive tags, and active tags [1]. This categorization is
based on the availability of an on-chip power supply or
battery, which either facilitate or not facilitate the tags to
initiate communication with readers. Passive tags do not have
an on-chip battery, which necessitates the reader to initiate
communication. Active tags, on the other hand, have an on-
chip battery, which allows them to initiate communication
with readers as well as respond to requests from them. Semi-
passive tags have an on-chip battery, however, requiring
energy from readers to broadcast their message.

Passive RFID tags are typically required to perform one
basic function — respond to queries by any readers, and when
required, perform data update tasks as instructed by the reader
(inherently by the enterprise server). However, they do not
have adequate resources for performing sophisticated
authentication of the entity giving them the instructions. This
makes passive RFID tags vulnerable to a range of attacks such
as replay attack, tag killing, tag over-writing, etc. Furthermore,
readers with high signal strength can also be used as “rogue”
readers, can read information from any tag, even if separated
by a large distance. This further increases the vulnerability of
the tags, increasing doubts in their widespread acceptance.

Research on strengthening data privacy and security of
RFID tags has therefore, assumed focus in recent years.
Existing work has focused extensively on using pre-shared
secret keys and performing simple bitwise operations such as
XOR (exclusive-OR) to perform symmetric encryption and
authentication. It has to be noted that the reason for RFID tags
to use encryption is to authenticate entities, as significant
information is stored securely in the server. However, one
thing to note is that the tag, even with the capability to
perform minimal computations, does not authenticate either
the reader or the server, or does so in very a trivial manner.
The reader queries themselves do not pose much threat to tags.

44 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 1, MARCH 2013

1845-6421/03/8268 © 2013 CCIS

FESB
Typewritten Text
 Original scientific paper

However, since readers are a medium for the server to
communicate important updates, such as security key updates,
from the enterprise server, it becomes a necessity for the tag to
validate (or, authenticate) the server. This is based on the
premise that even though there can be rogue RFID readers,
they cannot extract any valuable information from the tags
themselves, since all important information is stored in the
server. We present a mutual authentication protocol that
focuses on authentication between the tag and the server, using
mechanisms to dynamically update the encryption key
independently at both the tag and the server.

The mechanism used to update the encryption key
introduces an inherent authentication feature. This protocol is
based on the concept of genetic mutation and gene transfer.
Gene transfer is the process of propagation of characteristics
or genes from one generation of an organism to the next.
Mutations are changes introduced in this set of characteristics
or genes. Our protocol is based employing this concept for
generation of encryption keys, and to provide authentication as
an implicit feature. We then present an enhancement to this
protocol, which further increases the security offered. Prior
research has examined the need for key exchange messages
over a wireless channel to be authentic [2][3], and many of the
RFID protocols use key management / encryption for
authentication. Our protocols remove the need for key
exchange messages by introducing independent key
generation, and provide an inherent mutual authentication
feature. The presented protocols are validated using key
similarity analysis, complexity evaluation and security
evaluation.

We hypothesize that:

H1: The encryption keys are updated with every instance (or,
every communicated frame); and,

H2: The encryption keys generated for each frame will be least
similar to each other (with similarity quantified by a number in
the range 0–1).

The rest of this paper is organized as follows: we present
the background and related work in the section II, followed by
a description of the proposed protocols in section III.
Following the description of the protocols, we discuss the
methodology used for evaluating them and present the
experimental results / analyses in sections IV and V,
respectively. We then present a discussion of our work
presented here, and discuss some benefits and challenges in
section VI, following which we conclude the paper in section
VII.

II. BACKGROUND AND RELATED WORK

A. RFID Security

Security in passive RFID tag based systems is always a
critical factor, since passive tags impose several resource and
computational restrictions. This makes complex algorithms,
which require a high degree of computation for achieving
security. On the other end of the scale, simple algorithms may
prove easier for an adversary to crack. Much of the current
work focus on employing key updates being sent by the server,

to synchronize with and update the keys in the tags. However,
one scheme focuses on pseudonyms and focuses on updating
the identity of the key with each query. We discuss these
schemes in this section.

A protocol with the tags storing encrypted versions of their
IDs, with their original IDs stored in the database on the server
was proposed by Osaka et al. [4]. In this protocol, readers
transmit a random number along with their queries, and the
tags respond with a number comprising of the mathematically
hashed value of the random number received XOR-ed with the
encrypted ID. The reader forwards this combination along
with the random number to the server, which authenticates the
tag and releases information about the object the tag represents
after validating the reader. The protocol can be configured to
work either with or without a change in the symmetric key
used for encryption by the tag. The scheme further supports
ownership transfer, thereby supporting privacy protection. It is
our understanding that the tag reply consisting of a constant
entity (the encrypted ID) coupled with the server transmitting
key updates to the tag would reduce the security offered by the
scheme, as it opens up avenues to use cryptanalytic techniques
to break the key sequence. If one key is retrieved, the
succeeding conversations and thus, the system are vulnerable
to attacks.

Osaka et al.'s work was slightly modified by Gui et al. [5],
to support forward security and prevention of denial of service
(DoS) attacks. Their protocol facilitates mutual authentication
between the tag and the reader, with the reader / server
considered as the same entity to illustrate secure
communication channel between the reader and the server.
They have introduced an additional XOR computation and
hashing at the tag, to verify the reader, and have hence,
updated the work proposed by Osaka et al. Their protocol
generates number a, that is computed and sent by the tag
(using the random number sent by the reader, similar to the
Osaka scheme [4]), and numbers e and m, computed using the
updated encrypted ID and a random number b. The reader
verifies the tag using a, while the tag uses m to authenticate
the reader, and e and m to update its encrypted ID. It has to be
noted that with e, m and b being transmitted in the open, and
the new key being a combination of the numbers so
transmitted and the previously agreed key, the system could
still be vulnerable to attacks if one of the keys are recovered
by standard cryptanalytic techniques.

Yu et al. [6] proposed a protocol based on XTEA
encryption, which addressed the issue associated with the
unsecure radio frequency (RF) channel used for
communication between RFID tags and readers. The nature of
the RF channel makes communication vulnerable to attacks
such as interception, data capture, data analysis, etc. Their
protocol presents a way of encryption and exchange of
messages using a non-volatile ID for the tag, a dynamically
updated key set (128 bits). Their work is based on the
assumption that the least significant 30 bits of a tag's ID can
represent a tag uniquely. Server replies to each tag response
with an acknowledgement, and instructs the tag to update its
key set. For the purposes of authentication, least significant 30
bits of the tag ID are sent along with the message sent by the

SAMPANGI AND SAMPALLI: RFID MUTUAL AUTHENTICATION PROTOCOLS 45

server. It is to be noted that if the protocol reduces the number
of bits that are significant for an authentication process (by
employing the least significant 30 bits), it is also reducing the
security and the uniqueness aspect, since it reduces the number
of possible combinations of tag IDs.

The work proposed by Molnar et al. [7] employs the
concept of pseudonyms and time limited delegation. The tag
generates a different pseudonym, or a pseudo-random number,
that enables the server to authenticate the tag. The server is
referred to as a trusted center in the protocol and it delegates
the responsibility of authenticating the tag to a reader by
giving it a set of pseudonyms that it can use to verify the tag
for a specified amount of time.

Their work has a central concept of “tree of secrets”,
where nodes of a binary secret tree has secret keys in each
node. Each tag has a counter, which points to a leaf of the tree,
which in turn represents a pseudonym. Therefore, a particular
pseudonym can be used to represent one tag, depending on its
present state and the pseudonym. This protocol necessitates
the use of a trusted center, and assumes a protected channel of
communication between the reader and the server, which
might not always be the case.

A protocol for mutual authentication and privacy
protection that conforms to EPC Class 1 Generation 2 stanard
was proposed by Chen et al. [8]. This protocol necessitates a
registration phase, where tags and readers have to register with
the server, and a communication phase. The registration phase
requires tags and readers to independently register with the
server, which generates unique identifiers to represent their
IDs. Further, each reader is assigned a set of tags, and it can
only communicate with the assigned tags. This makes this
protocol not employable in RFID systems with mobile readers,
since such a system allows any reader to communicate with
any tag.

During the communication phase of this protocol, tags use
random numbers, XOR operations and CRC operations to
authenticate the reader and vice versa. The protocol focuses on
ensuring security and privacy by using a list of valid readers
and tags, and by restricting the ability of readers to
communicate with any tag in the system.

Vajda et al. [9] present multiple authentication protocols
for RFID systems. One of their proposed protocols is based on
a simple XOR operation that uses different encryption keys for
securing the communication between tag and reader. The
session keys are updated with each frame transmission. A
block stream generator with a secret key is used to generate
the session keys. The key used by the tag, however, remains a
constant, which is also the seed used by the reader. The seed is
either permuted or expanded by the block stream generator,
and it uses recursive permutation of halves of the seed in case
of the former. The resultant number is used as the updated key.
The tag uses the seed it stores to verify the reader. In their
analysis of lightweight authentication protocols, Defend et al.
[10] critically analyze their work.

To summarize, we can say that most approaches require
the server to perform key updates; all use random numbers,
and one using time-limited delegation of responsibilities.

One thing to note is that any approach that requires key
updates to be performed by the server places makes the
network vulnerable as there is a possibility, no matter how
least likely, of an adversary cracking the updated keys and
hijacking the sessions.

B. Biomimetics

Biomimetics is the use of concepts existing in biological
sciences, such as the working mechanism of a neuron, the
ascent of sap in plants and so on, in other fields such as
engineering, robotics, electronics and so on to create new
systems [11]. Traditionally, biomimetics has been used by
several known people and organizations, such as Leonardo da
Vinci (for his design of flying machines based on birds),
Velcro (design derived from the hooked seeds of the burdock
plant), anti-reflective surfaces (created using polythene sheets,
based on insect eyes, wings and leaves of plants), and many
more.

Although no framework exists to specifically use the
concepts of biological sciences in other disciplines, one can
choose to carefully understand the concept and design the
system accordingly. The adoptability of any particular concept
is however, subject to the prevailing conditions and
requirements in the discipline where it is adopted.

III. PROPOSED PROTOCOLS

In this section, we describe the security protocol based on
the gene mutation and transfer proposed in [12] 1

There may be instances when genes alter, perhaps due to
factors in the environment external or internal to an organism.
In such cases, there is a very high probability that this
alteration is passed on to the next generation, and for
subsequent generations of the organism. Such alterations in
genetic pattern are referred to as mutations. Let us consider the
example of a pea plant. If there are seven peas in one pea pod,
and one of them has a small genetic abnormality that has
resulted in a dark brown patch on its surface, then, when this
pea germinates and grows into a plant, the peas that grow from
this plant will have a very high probability of having the
brown patch. This depends on the characteristic gene being

 (Protocol A),
and an enhanced version of the same (Protocol B).

A. Overview of Gene Mutation and Transfer

Deoxyribonucleic Acid (DNA) is the basic molecular
structure in all living organisms, which contains genetic
instructions that help in the organisms carrying out the various
functions such as development and other activities. DNA is
also responsible for propagating the genetic instructions from
the parent generation to the progeny, thereby playing a
significant role in the continuity of each species and in
preserving characteristic elements (typically hereditary
characteristics) of each species. The process by which genetic
information is passed from one generation to the next is
referred to as gene transmission [13][14].

1 A preliminary version of this work has been published in the proceedings of
the 2012 IEEE Symposium of Computational Intelligence for Security and
Defence Applications (CISDA) [12].

46 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 1, MARCH 2013

Figure 1. Overview of the proposed protocols.

either dominant (resulting in the patch being visible) or
recessive (resulting in the patch not being visible).

Thus, in general, characteristics of a generation of any
organism are transferred from one generation to another by
means of gene transmission and the transferred characteristics
may include abnormalities (or, mutations) as well.

B. Mutual Authentication Protocol based on Gene Transfer
and Genetic Mutation (Protocol A)

This protocol mimics the concept of generations and
genetic mutation that was described in the previous section.
We consider its application on light-weight to heavyweight
RFID tags, which have the capacity to perform minimally
complex computations, such as the mathematical one-way
hash function, and have sufficient storage capability.

Listed below are the assumptions of this protocol:

• RFID tags are initially loaded with the data by the owner.
The owner of the tag is the organization where the tag will
be deployed.

• The data contained on the tag is an encrypted identifier
(ID) uniquely identifying the object it is associated with.
For example, if 1234 is the ID associated with an object,
the data stored on the tag will be ENCRYPTED (1234),
encrypted using any standard encryption scheme by the
enterprise server. We denote this as ENC_ID.

• We denote the ENC_ID subjected to one round of simple
encryption as the encrypted message, em.

• The tag and the server share a pre-loaded 128-bit initial
encryption key (IK).

• The tag and the server store states of the three (3)
previously used keys in their memory to retrieve the
previously saved synchronization state in case of dropped
messages. These are referred to as the key states.

• Key states include the seeds of the random number
generator, integer numbers (parent, generation) and the
keys. These are required by the communicating entities to

restore state in case of dropped messages, as will be
explained in the sections below.

• The tag and the server store a pre-loaded 128-bit
authentication-synchronization vector (ASV), which is
used to authenticate the tag and synchronize with the
server for the very first message. The ASV is unique for
all tags deployed in the said environment, and is updated
with every key update. The ASV helps in identifying loss
of synchronization or any attempt of data modification.

• The authentication of readers with servers is beyond the
purview of this work. The readers are assumed to use any
standard authentication mechanism for this purpose.

Protocol A works as follows. The reader queries the tag, to
which the tag responds with an encrypted version of ENC_ID.
The ENC_ID is encrypted using the initial key (IK) to
generate em. Following the encryption, the tag updates its
encryption key to the new key (NK), and generates the ASV
during the key update. The tag transmits a message that
consists of two integers, parent and generation, which indicate
the current state of the tag, the em, and the mathematically
hashed ASV.

On receiving this message, the reader forwards it to the
server. The server then authenticates the tag by first verifying
the state of the tag using the parent and generation, then the
encrypted message and finally the hashed ASV, and validates
the tag. After the tag is validated (and implicitly, the reader is
validated), the server retrieves and releases information about
the object the tag represents to the reader, along with an
encrypted acknowledgement (Eki+1(ACK)) message. The key
used for encrypting the acknowledgement is the updated key,
which is generated at the server during the tag authentication
and key update process. On reception of Eki+1(ACK), the tag
authenticates the server, and performs key updates (if needed
for synchronization) and is ready for the next query. This
operation is summarized in Figure 1.

Updates to the encryption key and the ASV is achieved in our
protocol using bitwise operations, which are used to mimic the
action of genetic mutation and gene transmission across

SAMPANGI AND SAMPALLI: RFID MUTUAL AUTHENTICATION PROTOCOLS 47

generations of keys. Figure 2(a) illustrates the details of
Protocol A. The operation to generate Kx in Figure 2(a) can be
optimized and can be achieved with the help of one OR
operation instead of a combination of XOR operations. This is
illustrated in Figure 2(b). We have included Figure 2(a) to
illustrate the concept of preserving the 1 bits of the parent key
and applying mutations on the other bits. Note that the 2:1
MUX (the multiplexer) is an illustration for the logical
operation to choose an appropriate key based on the condition
being satisfied. The following paragraphs describe the scheme
in detail.

B.1 Key Generation and Management

The novelty of our protocol is in using the concept of gene
transfer and genetic mutation to generate the keys. In RFID
systems, the simplicity of tags allows for adversaries to clone
tags or to track tags using the responses. Some of the protocols
described earlier [4][5][6] try to overcome this flaw by
employing key refreshes and updates, i.e. the server transmits
keys in either acknowledgement messages or explicit key
refresh messages. On the other hand, the pseudonym protocol

generates a new identifier (ID) using a generator that is
synchronized with the server [7]. One aspect common to all
these protocols is the transmission of keys, either from the
server to the tag or from server to the reader.

In our protocol, we eliminate key exchange messages and
key update messages. Using simple logical operations and
pseudorandom numbers, we ensure that the tags and servers
are able to:

• Generate keys independently

• Synchronize the keys

• Ensure mutual (or, bilateral) authentication

The tag uses the encryption keys so generated to further
encrypt the already encrypted ID. It has to be noted that in
RFID systems, encryption is used as a way of authenticating
the entities, since RFID tags by themselves do not store any
critical information. The tag and server are pre-loaded with an
initial key (IK). When the tag is queried for the first time by a
reader, the tag is energized and it encrypts ENC_ID to
generate em. Following this, it initiates the process of
generating the new key (NK).

New key generation process is as follows. The system first
generates a mask of the IK, to preserve the pattern of its 1 bits
by computing its one's complement. This is akin to the
preserving the genetic characteristics of an organism. The tag
has a synchronized pseudorandom number generator (PRNG)
with the server, having a Fibonacci number as seed. A 128 bit
pseudorandom sequence is generated by this PRNG, referred
to as NumX. The protocol performs a bitwise AND operation
on NumX with the mask to give a mutation pattern, which is a
pattern of 1s and 0s (NumX ') to fill the 0 bits of the IK,
without modifying the 1 bits. Finally, NumX ' is XOR-ed with
the IK to generate KX. This is analogous to applying mutation
to an existing pattern. Please note that in an optimized version
of the protocol illustrated in Figure 2(b), this set of operations
to generate KX can be achieved using one logical OR
operation between the IK and NumX. The Fibonacci number is
updated to obtain a new seed for the PRNG, in order to
generate a new pattern for the subsequent communication.

By using a mask, we preserve the characteristics of the IK,
which is similar to preserving the characteristics of each
generation during gene transfer. By introducing a new pattern
to occupy the 0-bit positions of the IK, we are introducing
“mutations”, and the KX represents the “mutated” pattern. The
variable generation keeps track of the modifications on the
particular key.

The genLimit pattern is used to decide whether KX will be
used as the updated key. If KX is different from genLimit, KX
will be used as the key for the next encryption cycle. In such a
case, each key acts as the parent to the next key, and its bit
pattern is preserved in the new key. When KX becomes the
same as the genLimit, the protocol decides in favor of
abandoning KX and generating a new - unrelated - key. In this
case, the next usable 128 bit sequence from the PRNG is
generated, and is AND-ed with KX to generate KY. This is
when a new parent key is generated, which is recorded in the
key state being updated by incrementing the parent and

Figure 2 (a). Illustration of the working of the protocol (Protocol A)

Figure 2 (b). Optimized version of Protocol A

48 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 1, MARCH 2013

resetting the generation to 0. All subsequent new key
generations will follow the same procedure, making the
protocol generate a set of "generations" of keys for each parent
key. The variable parent can be imagined as keeping track of
the number of evolutions in the key generation cycle. An
evolution in this context is when the key changes from its
predecessor to an extent that the similarity is very low between
them. This is analogous to evolution of species which means
that the characteristics of one species changes to an extent
where the changes are more than similarities between
generations. Therefore, our protocol ensures that keys are
generated in a manner that they are linked to the previously
generated keys, demonstrating the concept of gene transfer
and genetic mutation. This is a key step in ensuring mutual
authentication between the server and the tag.

The tag (and the server) performs new key generation for
every communication, i.e. every time a tag responds to a query
(and every time a server authenticates the tag). The tag and the
server synchronize their keys when the server sends the
acknowledgement (described in detail in the synchronization
section).

B.2 Data Encryption

As described earlier, the tag ID that is stored in the tag
memory is already encrypted by the server, at the time of
deployment. This is the first layer of security to protect the
identity of the tag. However, we have to note that if this is not
further encrypted, and if the encryption keys used for this
encryption are not continuously updated, the tag is vulnerable
to attacks such as tag tracking. In tag tracking, an adversary
can track the presence of a particular tag among a set of other
tags and / or objects. This would be a violation of privacy.

To protect the tag from such attacks, our protocol
introduces an additional layer of simple encryption, with
continuous key updates. This encryption process generates the
encrypted message, em. Our protocol ensures that encryption
keys are updated for every communicated frame, when the
server and tag are synchronized. This ensures that the tag’s
susceptibility to tracking attacks is reduced significantly.
Furthermore, it has to be noted that if the key update is
continuous and stable, the encryption process can be simple,
such as XOR, which would mean that resource utilization in
RFID tags is at a minimum.

B.3 Synchronization

In our protocol, synchronization is an important activity,
given that there are no key exchanges and that the server and
the tag need to be in the same state to successfully authenticate
each other. If the server and the tag states are not
synchronized, it is highly likely that the protocol might fail
due to de-synchronization. To avoid this, the protocol provides
an inherent synchronization feature. This works as follows.

On receiving the reader query, the tag encrypts ENC_ID
with the current key. Furthermore, the tag stores two
immediate previous keys (prevKey1 and prevKey2), and their
associated states (Fibonacci seed, parent and generation) in the
tag memory. When the tag generates a new key, it replaces the
oldest key in memory with the current key in the following

manner - prevKey1 is assigned to prevKey2, currentKey is
assigned to prevKey1 and the new key becomes the
currentKey. On receiving the tag's response, the server
authenticates the tag, updates its key, and responds to the
reader with the tag information and an encrypted
acknowledgement frame. The server also maintains three keys
as in the tag.

Synchronization is necessary because in a wireless
environment, either of the following can occur:

• The tag’s response to a reader query can be lost enroute to
the server

• The server’s acknowledgement can be lost enroute to the
tag

Ideally, we would assume that there are no such losses.
However, practical deployment environments for such systems
may mean that some frames may be lost in transmission.
However, even in such scenarios, we assume that even if
frames are lost, they may not be lost more than three times
consecutively, since the system would sense that there is either
an attempt to desynchronize or an error in the channel. Hence,
our protocol mandates that three keys (and their states) are
stored by the tag (and the server).

Along with its response, the tag sends its ASV as the
"tagSignature" as shown in Figure 3. On reception of this
frame, the server first shortlists the set of tags with the
identical parent and generation values, following which it
attempts to generate sequences similar to the received em from
these tag-states. If a match is found, it means that the key is
within the three recently generated keys of one of these tags.
The server then uses the ASV to find the exact tag in question.
On reception of the encrypted acknowledgement, and
synchronizes its key states.

With the server not having resource restrictions, our
protocol places the onus on synchronization on it.
Furthermore, the unlikely event that a frame is lost, may be
frequent with the acknowledgement frame since a mobile
reader may change its zones thereby making it difficult for it
to follow-up on the successful reception of a forwarded
acknowledgement. This may not be with the tag information
request, since the reader needs this information and will query
the server until it receives the response. Therefore, we can say
that the states will be synchronized with almost every frame at
the server, and if there is any de-synchronization, it might be
at the tag. Therefore, our protocol requires the tag and the
server to store three keys in memory for synchronization in
such situations. The reason behind the number "3" is to give
enough room for the tag-server pair to accommodate any lost
frames, while not so as to facilitate repeat or replay attacks.
When the server and the tag are synchronized, they retain only
the synchronized key (and its associated state), and discards
the rest.

Figure 3. Format of the tag’s response to a reader’s query

SAMPANGI AND SAMPALLI: RFID MUTUAL AUTHENTICATION PROTOCOLS 49

B.4 Mutual Authentication

Mutual authentication is the central aspect of our protocol.
In an RFID system, the tag needs to ascertain that its
deployment environment is authentic before it can either
respond to queries or perform key updates / refreshes as
instructed by the reader, and the server needs to verify that all
tags in a specific zone are authentic. For this purpose, our
protocol provides a simple inherent mutual authentication
process with the key generation mechanism.

The tagSignature (Figure 3) is used by the tag to
authenticate the server. The ASV (which becomes the
tagSignature) is generated as follows - the system first
generates the XOR of NumX and patternASV, and performs a
mathematical hash of this value. patternASV is a specific
(constant) pattern that is chosen for the application by the
server. This is used by the server to uniquely authenticate each
tag. This ASV is sent as the tagSignature along with the
encrypted message, em.

On receiving the data frame, the server uses the parent and
generation to retrieve the value of the encrypted ID and the
encryption keys of the tags, and regenerate em. The server
may contain identical values for parent and generation for
several tags. Therefore, it first retrieves the states of and
generates em for them, and this serves as the first level of filter
for tag authentication. If the generated em matches that sent by
the tag, the server updates the encryption key. Then, it
generates the ASV and compares it with the tag signature. If
they match, it means that the tag is authentic. On
authenticating the tag, the server synchronizes the values of
the current parent, generation and the encryption key for the
tag in question and discards the previous values. This is
because once synchronized, the previous keys are not required
by either the tag or the server, and any future query by a reader
with one of the previous keys would imply that it is an attempt
at a replay attack [15]. If however, there is any scenario when
the received states match, but the ASV does not match, it
implies that either there has been an attempt of changing the
data, or that there has been an error in transmission.

On reception of the acknowledgement frame, the tag is
momentarily energized. The tag regenerates the received frame
using the acknowledgement pattern and keys stored in its
memory. The tag stores the updated key and two previous keys
and their respective states to re-synchronize in case of dropped
frames. If the generated encrypted acknowledgement so
generated matches the received acknowledgement, the server
is authentic. If the key used to generate the pattern is not the
same as the current key, it updates the key generator states
with the corresponding values of parent, generation and
Fibonacci seed. If this process fails, the tag will assume that
the server is not authentic, and will not respond to any further
queries.

C. Enhanced Mutual Authentication Protocol based on Gene
Transfer and Genetic Mutation (Protocol B)

Although the protocol presented in the previous section is
secure, is able to generate unique keys for almost all the
communicated frames and facilitates mutual authentication
between the communicating entities, the manner in which new

keys are linked to their parent keys could be security
vulnerability. This is because keys converge at the bit pattern
of all 1s (the generation limit) before the parent key changes.
This may not pose a severe security issue when this protocol is
used as a standalone authentication protocol, however, since
RFID systems (or any other system) might employ
authentication to be a part of the key generation / management
process, this is significant. Considering this issue, we present
an improved version of the previous protocol in this section.

In this protocol, the manner of linking keys to subsequent
keys has been modified and the generation limit has been
changed to a count rather than a pattern to offer better security.
Figure 4(a) shows working of the enhanced protocol. The
operation to generate the New Key in Figure 4(a) can be
optimized and can be achieved with the help of one OR
operation instead of a combination of XOR operations. This is
illustrated in Figure 4(b). We have included Figure 4(a) to
illustrate the concept of preserving the 1 bits of the parent key
and applying mutations on the other bits. The working of this
protocol is as follows. In this protocol, we save an extra
number in the memory, called parent key (parentKey). For the
very first communicated frame, the initial key becomes the
parent key, and the parent key is updated whenever a new
parent is generated, i.e. the parent is updated. Furthermore,
generationLimit is now an integer number between 0 and 4,
which means that there can be a maximum of five generations
per parent key. The next change defines the enhancement – we
do not have linked “generations” of keys, but one parent key
having either zero or multiple “children” keys. There can,
however, be a maximum of generationLimit number of
children for each parent.

After performing the simple encryption process to generate
the encrypted message, em, this key generation module first
generates a random number between 0 and 1.
• If the random number is 0, the system then proceeds to

check if the number of children (indicated by the
generation variable) for the current parentKey is five.

o If the number of children is not 5, a new child key is
generated as follows. The parentKey pattern is first
preserved by inverting the bits and a mutation pattern
is generated by AND-ing this pattern with a new
random number (n bits for an n-bit key). Note that the
generation of the mutation pattern is the same as the
previous protocol. The mutation pattern is then XOR-
ed with the parentKey to generate the new key. The
generation variable is now incremented to update the
number of children for this parentKey. The new key
update and storage in memory then proceeds as in the
previous protocol.

o If the number of children is 5 (i.e. generation =
generationLimit = 5) then, we force a parentKey
change as discussed next.

• If the random number is 1, it means that we are forcing a
parentKey change. In this case, the system generates a
new random number (n bits) and XORs it with the current
parentKey to generate the new parentKey. All future
children (or generations of) keys will now use the new
parentKey.

50 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 1, MARCH 2013

TABLE I
TEST CONFIGURATION USED FOR ANALYSIS OF THE PROPOSED PROTOCOLS

Config.
ID Initial Key Key

Size

Initial
Fibonacci

Seed
C1 92eb8d6ecf7f808a705d1a4566991af0 128 bit 2178309

C2 12f03c157890a08a501d5d37bb10aae9 128 bit 2178309

C3 42f5876eaf9f8066b05ff140067b1a51 128 bit 2178309

C4 92eb8d6ecf7f808a705d1a4566991af0 128 bit 39088169

C5 12f03c157890a08a501d5d37bb10aae9 128 bit 39088169

C6 42f5876eaf9f8066b05ff140067b1a51 128 bit 39088169

C7 42f5876eaf9f8066 64 bit 2178309

C8 c157890a08a501d5 64 bit 2178309

C9 2f03c157890a08a5 64 bit 2178309

C10 42f5876eaf9f8066 64 bit 39088169

C11 c157890a08a501d5 64 bit 39088169

C12 2f03c157890a08a5 64 bit 39088169

By updating the protocol in this manner, we ensure that the
keys do not converge to any specific pattern, that a unique
encryption key will be generated for every frame (H1) and that
consecutive keys will not be similar to each other (H2). Such
an update also gives us the flexibility to use any algorithm for
the seed generation, while the previous protocol required the
use of only Fibonacci numbers (or an algorithm that combined
numbers in a manner to Fibonacci number generation) as seed
generators.

The enhanced version of the protocol significantly
improves the security offered by Protocol A, improving its
generality and enables its adoption in a variety of applications.

IV. EVALUATION METHODOLOGY

We evaluated the protocols using a proof of concept
implementation in Java. To validate our hypotheses, we
performed similarity analysis between consecutive keys,
examined the number of unique keys generated, and evaluated
whether the keys would converge towards any specific pattern.

To analyze the similarity between pairs of keys, we considered
each key and examined how similar it was to the previous. We
compared the first key, however, with a pattern of all 1 bits
(i.e. 128 or 64 bits of 1s), assuming that we start at a state of
equal keys. The desirable behavior in this case is that each
new key is highly dissimilar to the predecessor.

To quantify the similarity between keys, we computed the
Sorensen’s Similarity Index (SSI) [16], which is a measure of
how similar the various pairs of keys are, and plotted the SSI
for 500 frames. For each pair of keys, SSI is the ratio of twice
the total similar characters in the two keys to the total size (in
characters) of each key. Equation (1) presents the equation to
compute the SSI.

𝑆𝑆𝑆𝑆𝑆𝑆 =
2 × 𝑛𝑛(𝐴𝐴 ∩ 𝐵𝐵)
𝑛𝑛(𝐴𝐴) + 𝑛𝑛(𝐵𝐵)

 (1)

where, 𝑛𝑛(𝐴𝐴 ∩ 𝐵𝐵) represents the number of characters (or,
numbers) in the key pair that are same, 𝑛𝑛(𝐴𝐴) and 𝑛𝑛(𝐵𝐵)
represent the total number of characters (or, numbers) in each
of the keys A and B of the key pair, respectively.

To analyze the stability of the scheme, and its ability to be
generalized to any key size, we considered ten configurations,
with different initial keys, different key sizes and different
Fibonacci initial seed for the PRNG. This is described in Table
I. For each configuration, we generated 500 keys, and
computed the SSI for each pair of keys.

To analyze the security offered by the proposed scheme, we
consider a security analysis. We consider five security goals
associated with protecting data during communication, namely
— confidentiality, integrity, authentication, non-repudiation
and forward security [17]. We also present a qualitative
analysis of the performance of the protocols with respect to
known attacks categorized by Mitrokotsa et al. [15]. We also
present a discussion on the behavior of the system in case of
dropped frames and de-synchronization attempts.

Figure 4 (a). Working of the Enhanced Mutual Authentication Protocol

(Protocol B)

Figure 4 (b). Optimized version of Protocol B

SAMPANGI AND SAMPALLI: RFID MUTUAL AUTHENTICATION PROTOCOLS 51

TABLE II
SECURITY ANALYSIS OF THE PROPOSED PROTOCOLS

Security Goal Brief Description Status in proposed protocols

Confidentiality
Eavesdropping should
not be fruitful

Supported, since encrypted ID
is further encrypted

Integrity
Message received
must be the same as
message sent

Supported, since the
encryption of the encrypted
ID also acts as a message
digest; only the tag with a
relevant encrypted tag ID can
send the appropriate message.

Authentication Sender / receiver
validation

Supported; both tag and
server authenticate each other

Non-repudiation
Source cannot deny
that the message was
sent by it

Supported; with the keys
being continuously updated,
only a legitimate tag can send
the valid encrypted message

Forward Security
Protection of
previously transmitted
data

Supported; keys are
continuously updated and the
synchronization of the initial
keys are only between the
server and the tag at the time
of deployment.

Furthermore, we present a performance analysis for the
protocols. Performance of an algorithm is mainly decided by
the amount of system resources it utilizes. As part of analyzing
the resources utilized by the proposed protocols, we consider
an algorithm complexity analysis presenting the total number
of arithmetic and logical operations that are involved. This
will help in estimating the computational overhead, which will
in turn impact the performance of the system, and hence,
represent the time complexity of the system.

V. ANALYSIS

A. Analysis of Similarity

To make data presentable and to help in analysis, we
consider the first 100 frames of the results of configuration C1
for both protocols A and B.

Figure 5 shows the ability of protocols A and B to generate
new keys for every frame. We observe that Protocol A
generates 89 new keys, while Protocol B generates 100 new
keys, in 100 frames. Over 500 frames, Protocol A generates
431 new keys, while Protocol B generates 500. It must be
noted that the desired behavior for Protocol A was that the
keys are similar to the previous key, because we want to
mimic the gene mutation and transfer concept.

As an initial step, we chose to examine how the similarity
increases until the keys converge to a pattern of all 1 bits
(FFF…F – the generationLimit). However, in Protocol B, we
introduced another random choice between to check if there
will be a parent change and limited the number of child keys
of each parent key to 5. The difference in the algorithms can
be observed in the results.

Figure 6 (a) presents a plot of the SSI for the first 100 keys
generated using Protocol A, while Figure 6 (b) presents the
same plot for Protocol B. The differences in philosophies of
the algorithms discussed in the previous paragraphs can be
observed in these plots as well. We observe that the similarity
increases until a point when the keys reach the
generationLimit pattern in Protocol A, while the behavior is
much more random in Protocol B.

Our experiment revealed that this behavior is consistent
across the other configurations, C2 – C12. From the results
presented here, we can that hypothesis 1 was verified for
Protocol B, as it was able to generate unique keys for every
instance, while Protocol A generated 84% new keys on
average for all configurations. Furthermore, hypothesis 2 is
verified for both protocols as we are able to ensure that the
generated keys are not similar to the previous keys. However,
it has to be noted that because of the low values of similarity
in Protocol B(average SSI value of nearly 0.199), it is more
secure when compared to Protocol A (average SSI value of
nearly 0.613).

B. Security Analysis

Table II summarizes the security analysis of the proposed
scheme. Furthermore, the double encryption and continuously
updated keys ensure that tags are secure from tracking by
unauthorized readers. Note that the security analysis is the
same for both protocols A and B; although due to an update to
the mechanism of linking keys makes Protocol B
fundamentally more secure than Protocol A.

Presented below is a discussion on the performance of the
proposed protocols with respect to some of the known attacks.
These are some of the attacks that are relevant in RFID
systems, classified under various network attacks by
Mitrokotsa et al. [15].

• Eavesdropping: An attempt to extract the tag ID will
prove to be unsuccessful in the proposed protocols. This is
because encryption keys are updated with each
communicated frame. In Protocol A, even though we let
the keys grow until they converge at a point where all bits
are 1s, the protocol ensures that the parent keys and the
linking between keys are regularly refreshed. This
however is not an issue at all in Protocol B, where the
linking between consecutive keys is very minimal and
randomly determined. Regular changes in parent keys are

Figure 5. Unique key generation in the presented protocols

52 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 1, MARCH 2013

(a) (b)

Figure 6. Plots of the Sorensen’s Similarity Index (SSI) for the first 100 keys generated using Protocol A (6.a) and Protocol B (6.b)

similar to the concept of renewing the security association
between the communicating entities.

• Replay attack: In both protocols, if an adversary attempts
to replay any previously transmitted frames, the server or
the tag will immediately recognize, and will take
appropriate action as specified by the implementation.
However, if an acknowledgement is not received by the
tag, and the adversary attempts to replay one of the three
recent messages, there is a possibility of the tag not
recognizing the replay attack. Nevertheless, the server
will always recognize the attack.

• Man-in-the-middle attack: This attack will be recognized
by the tag and the server in both protocols. Regular
updates in the keys and the ASV ensure that any change in
the message is immediately identified by the tag and the
server. However, if the adversary just acts as a relay for
the communication, without making any changes, the
proposed scheme will not be able to identify. This relay
activity will not be fruitful as discussed in the replay
attack scenario.

• RFID tag tracking: The protocols protect the tag from
tracking. The ID stored is encrypted, and the response by
the tag is further encrypted with keys that are updated
with each transmitted frame. Continuously changing keys
and the absence of key exchange messages ensure that the
tag's response is different for each communicated frame.
Thus, there is little or no likelihood of tracking being
possible if the RFID application employs the proposed
scheme.

• Denial of service (DoS): To a certain extent, we can say
that DoS attack in the form of multiple queries being sent
to the tag is prevented by our protocols. This is because,
the tag will detect that the server is not synchronized if it
does not receive an acknowledgement frame after three
queries. The tag will not respond to further queries, and
the server and the application will know that there is a
problem. However, it has to be noted that if the tags are

flooded with queries, they will be overwhelmed and will
not be able to perform their tasks successfully. This will
result in denial of service by flooding.

• De-synchronization attack: This attack is likely to affect
the performance of the protocols presented in this paper.
If consecutive acknowledgement frames by the server are
not be synchronized in their key states, even though they
may be in the same state. In the current implementation of
the scheme, the tag will not respond when more than a
predefined number (3) of acknowledgement frames are
not received. We had configured the protocol to not
respond for further queries in case of de-synchronization,
in our test and evaluation scenario. However, this aspect
of the protocol can be easily modified so that the entities
communicate with the last acknowledged key states, until
an acknowledgement is received. This requirement is
dependent on the application, since some applications
may necessitate the use of stringent action in case of
dropped frames (i.e. the “assume-guilty-until-proven-
innocent” model, where multiple dropped frames may be
assumed to be an attack on the system) or otherwise. We
assumed this worst case scenario in our test case.

• Dropped frames: In the description of the protocol, we

discussed briefly of the behavior of the system in case of
dropped frames. Frames may be dropped in two parts of
the system – (a) in the channel between the tag and the
reader, and (b) in the channel between the reader and the
server. Furthermore, such dropped frames may occur
either due to defects in the communication channel, or
due to selective packet dropping attack being performed
by an adversary. As described in the discussion on de-
synchronization attack, we assume a worst case scenario
and configure the tag not to respond in case of multiple
dropped frames. However, as discussed, the protocol may
be tweaked (as required by the deployment scenario) to
work with the previously acknowledged keys.

SAMPANGI AND SAMPALLI: RFID MUTUAL AUTHENTICATION PROTOCOLS 53

TABLE III
COMPUTATIONAL OVERHEAD ANALYSIS IN THE TAG

Operation Performed by the Tag Protocol A
(Figure 2(a))

Protocol A
(Figure 2(b))

Protocol B
(Figure 4(a))

Protocol B
(Figure 4(b))

Addition or Increment 2 + α 2 + α 2 2

Pseudorandom Number Generation 1 + α 1 + α 2 2

Logical Operations:

- NOT
- AND
- XOR
- OR

1
1 + α
1 + α

0

0
0
0

1 + α

1 (or 0)
1 (or 0)

2
0

0
0

2 (or 1)
1 (or 0)

Mathematical Hash (assumed to be one operation) 1 1 1 1

Encryption (assumed to be one operation) 1 1 1 1

TABLE IV
COMPUTATIONAL OVERHEAD SUMMARY

Operation Performed by the Tag Protocol A
(Figure 2(a))

Protocol A
(Figure 2(b))

Protocol B
(Figure 4(a))

Protocol B
(Figure 4(b))

Best case (a = 0) 8 6 8 7

Worst case (a = 1) 12 9 10 9

TABLE V
MEMORY OVERHEAD ANALYSIS IN THE TAG

Data on the Tag Protocol A Protocol B

Key set n x 3 n x 3

Fibonacci number set n x 4 n x 4

Parent ID set 8 x 3 8 x 3

Generation set 8 x 3 8 x 3

Encrypted ID n x 1 n x 1

ASV n x 1 n x 1

patternASV n x 1 n x 1

Total 10 n + 48 10 n + 48

C. Performance Analysis

Table III presents the computational overhead analysis in
the proposed protocols. We restrict our analysis to the
computational abilities of the tag, since the server in an RFID
system has no known restrictions in performing computations.
Please note that we have included both optimized (Figures
2(b) and 4(b)) and un-optimized versions (Figures 2(a) and
4(a)) of our protocols presented in this paper, to illustrate that
the computations are at a minimum in either case. We use the
variable α to indicate the presence of a parent key generation,
which necessitates an alternate key generation in Protocol A.
Table IV presents the best and worst case scenarios, denoted
by α = 0 and α = 1, respectively. Table V presents the memory
overhead for the protocols.

VI. DISCUSSION

This paper presented a new security protocol for RFID
systems (Protocol A) and an enhancement to the said protocol
(Protocol B), based on the concept of gene transfer and genetic
mutation that enables independent generation of encryption
keys at both the tag and the server, in turn ensures mutual
authentication.

It may be argued that such protocols work in single tag
environments alone. However, we need to note that every
acknowledged query updates the keys in the tag and in the
server, which in turn means that the parent / generation are
updated.

These updates, coupled with unique initial keys (pre-
loaded on each tag, synchronized with the server), mean that
this scheme can be applied in multi-tag environments as well.
There may be scenarios in such multi-tag environments where
the parent / generation values of several tags will be the same;
however, the encrypted data would then enable identifying the
exact tag in question.

Presented next are some benefits of the protocols presented
in this paper. The protocols offer improved security, since the
encryption keys are independently generated without the need
for key exchange or update messages. This makes reading
attempts by rogue readers futile, since the readers are assumed
to be paired with the server initially. Furthermore, the
presented protocols update encryption keys continuously,
thereby ensuring protection from tracking attacks. Finally, the
presented protocols have high generality, which means that
they offer flexibility in the size of the keys and in their
application. The protocols are flexible because of their
modular implementation, which allows us to change any
module of the protocol without any changes required in the

54 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 1, MARCH 2013

other modules. To present an example of the benefit of
modular implementation, let us consider the example of
encryption. XOR is used in the current implementation, which
can be changed with no effect or corresponding changes to any
other blocks in the protocols.

Linking keys to the previous keys, as has been done in the
presented protocols, gives us the important benefit of mutual
authentication. The layered filtering mechanism for
authentication, using the parent / generation numbers, em and
ASV, also allows the protocols to be scalable to tag / reader
intensive environments.

The challenges of this scheme include those imposed by
certain assumptions. We assume that the readers are valid, in
other words, paired with the server initially. This implies that
the onus is on the organization to ensure that the readers are
valid. However, with a slight modification, the current scheme
can be modified to include readers as an entity. Another
important challenge of these (or any protocol focusing on
continuous updates with synchronization) is the threat of de-
synchronization. This is present, as if multiple key
synchronization messages are dropped, the communicating
entities lose synchronization. However, with the two previous
key states saved, we reduce the chances of, but do not
completely avoid, de-synchronization, thereby giving some
chance to the entities to re-synchronize.

It could also be argued that the use of Fibonacci numbers
as seeds for the pseudorandom number generators limits the
security of the proposed protocols, as these numbers become
predictable after a certain time. However, our experiments also
showed that the seeds need not necessarily be Fibonacci
numbers, but, they need to update in the manner in which
Fibonacci numbers grow (i.e. new number is the sum of the
current and previous numbers). The need for using such
numbers as seeds only arose due to the need for randomness
and high unpredictability for the series of experiments to
verify the concept of Protocol A, where we allowed the keys to
update in a particular way until all the bits of the key
converged to a sequence of 1 bits. This restriction has been
removed in Protocol B. Preliminary tests have shown that
Protocol B performs as expected given any seed generation
algorithm. This is another benefit of having a modular design
for our protocols.

The memory and computational overhead analysis
described in tables III, IV and V illustrate that even though the
protocol appears complex, it is minimalistic in terms of
computations and memory utilization.

VII. CONCLUDING REMARKS

In this paper, we presented a novel approach for mutual
authentication between the server and the tag, based on the
concepts of gene transfer and genetic mutation, and discussed
an enhancement to this protocol. The presented protocols use
encryption keys initially synchronized between the tag and the
server, validated readers, and independent key generation at
the tag and server to ensure mutual authentication and security.
The protocols ensure that the communicating entities update
their keys continuously. The key update mechanism mimics

the concept of genetic mutation and gene transfer, and uses
acknowledgement based synchronization of key states. The
protocols support saving previous key states for recovery and
re-synchronization in case of dropped frames.

With the presented protocols, we are able to realize the
following security goals – confidentiality, integrity,
authentication, non-repudiation and forward security. In their
current form, the protocols are applicable to any two entity
communication system such as the RFID tag and server.
However, the modular design of the protocols allows us to
include a third entity, such as the RFID reader, in the mutual
authentication protocols thereby making the protocols more
secure. The benefits of the protocols outweigh the challenges
and allow us to conclude that the presented protocols are
secure, simple and flexible, and can be generalized to other
application domains.

ACKNOWLEDGEMENT

This work has been funded by the Boeing Company. The
authors gratefully acknowledge the support and the feedback
given by the company. The authors would also like to thank
the anonymous reviewers for their valuable comments and
suggestions. These have resulted in a substantial improvement
in the quality of the paper.

REFERENCES

[1] R. Want, "An Introduction to RFID Technology," IEEE Pervasive
Computing, vol. 5, no. 1, pp. 25-33, 2006.

[2] N. Dottling, D. Lazich, J. M-Quade and A. S. de Almeida,
"Vulnerabilities of Wireless Key Exchange Based on Channel
Reciprocity," WISA 2012 LNCS 6513, pp. 206-230, Springer-
Verlag Berlin Heidelberg, 2011.

[3] A. Miyaji and M. S. Rahman, "KIMAP: Key-Insulated Mutual
Authentication Protocol for RFID," International Journal of
Automated Identification Technology (IJAIT), vol. 3, no. 2, pp.
61-74, 2011.

[4] K. Osaka, T. Takagi, K. Yamazaki and O. Takahashi, "An Efficient
and Secure RFID Security Method with Ownership Transfer," in
2006 International Conference on Computational Intelligence
and Security, Guangzhou, China, 2006.

[5] Y.-Q. Gui, J. Zhang and H. K. Choi, "An improved RFID security
method with ownership transfer," in 2011 International
Conference on ICT Convergence (ICTC), Seoul, South Korea,
2011.

[6] J. Yu, G. Khan and F. Yuan, "XTEA Encryption Based Novel
RFID Security Protocol," in 24th Canadian Conference on
Electrical and Computer Engineering (CCECE), 2011, Niagara
Falls, Canada, 2011.

[7] D. Molnar, A. Soppera and D. Wagner, A Scalable, Delegatable
Pseudonym Protocol Enabling Ownership Transfer of RFID Tags,
Cryptology ePrint Archive, 2005.

[8] C.-L. Chen and Y.-Y. Deng, "Conformation of EPC Class 1
Generation 2 standards RFID system with mutual authentication
and privacy protection," Engineering Applications of Artificial
Intelligence, vol. 22, pp. 1284-1291, 2009.

SAMPANGI AND SAMPALLI: RFID MUTUAL AUTHENTICATION PROTOCOLS 55

[9] I. Vajda and L. Buttyan, "Lightweight authentication protocols for
low-cost RFID tags," in Second Workshop on Security in
Ubiquitous Computing - Ubicomp, Seattle, USA, 2003.

[10] B. Defend, K. Fu and A. Juels, "Cryptanalysis of Two
Lightweight RFID Authentication Schemes," in Fourth IEEE
International Workshop on Pervasive Computing and
Communication Security, New York, USA, 2007.

[11] J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer
and A.-K. Pahl, "Biomimetics: Its Practice and Theory," Journal
of the Royal Society Interface, vol. 3, pp. 471-482, 2006.

[12] R. V. Sampangi and S. Sampalli, “Tag-Server Mutual
Authentication Scheme based on Gene Transfer and Genetic
Mutation,” 2012 IEEE Symposium on Computational
Intelligence for Security and Defence Applications (CISDA), pp.
1-8, July 2012.

[13] A. J. F. Griffiths, J. H. Miller, D. T. Suzuki, R. C. Lewontin and
W. M. Gelbart, An Introduction to Genetic Analysis, New York:
W. H. Freeman, 2000.

[14] Genetic Science Learning Center, "Tour of the Basics,"
Learn.Genetics, Utah, USA, 1969.

[15] A. Mitrokotsa, M. R. Rieback and A. S. Tanenbaum,
"Classifying RFID Attacks and Defenses," Information Systems
Frontiers, vol. 12, no. 5, pp. 491-505, 2010.

[16] T. Sörensen, "A method of establishing groups of equal
amplitude in plant sociology based on similarity of species
content and its application to analyses of the vegetation on
Danish commons," Biologiske Skrifter Kongelige Danske
Videnskabernes Selskab, vol. 5, no. 4, pp. 1-34, 1957.

[17] W. Stallings, Cryptography and Network Security: Principles
and Practices, Prentice Hall, 2006.

[18] A. Juels, "RFID Security and Privacy: A Research Survey," IEEE
Journal on Selected Areas in Communications, vol. 24, no. 2, pp.
381-394, 2006.

Raghav Sampangi is pursuing his Ph.D.
in the area of Security in Radio
Frequency Identification (RFID) Systems
and Mobile Devices, at the Faculty of
Computer Science, Dalhousie University,
Canada. His research interests include
security and reliability in emerging
wireless networks such as, RFID based
networks, Wireless Body Area Networks

(WBAN), and Vehicular Ad-Hoc Networks (VANET). He is
currently involved in research in RFID based systems and
Wireless Body Area Networks. Specifically, he is interested in
identifying security loopholes, and contributing to the research
on security by addressing such issues. Raghav is an active
member of the student body at the Faculty of Computer
Science, involved in organizing the computer science in-house
conference series and representing the graduate student body
at the student society. He is a member of the IEEE and the
ACM.

Dr. Srinivas (“Srini”) Sampalli is a
professor and 3M National Teaching
Fellow in the Faculty of Computer
Science, Dalhousie University, Halifax.
His research is in emerging wireless
technologies, especially in the
intersection of smartphones, near field
communications (NFC) and mobile cloud
computing. He has investigated protocol

vulnerabilities, security best practices, risk mitigation and
analysis, design of intrusion detection and prevention systems,
and applications in healthcare and mobile commerce. He has
recently co-founded a startup company in NFC along with his
students. His projects have been sponsored by NSERC,
Industry Canada and NRC. Dr. Sampalli has received many
teaching awards at the Faculty, University, provincial and
national levels, including a named teaching award and 3M
National Teaching Fellowship, Canada’s most prestigious
teaching acknowledgement.

56 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 1, MARCH 2013

