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Abstract: Radio Frequency Identification (RFID) is a 

technology that is very popular due to the simplicity in its 
technology and high adaptability in a variety of areas. The 
simplicity in the technology, however, comes with a caveat 
– RFID tags have severe resource restrictions, which make 
them vulnerable to a range of security attacks. Such 
vulnerability often results in the loss of privacy of the tag 
owner and other attacks on tags. Previous research in 
RFID security has mainly focused on authenticating 
entities such as readers / servers, which communicate with 
the tag. Any security mechanism is only as strong as the 
encryption keys used. Since RFID communication is 
wireless, critical messages such as key exchange messages 
are vulnerable to attacks. Therefore, we present a mutual 
authentication protocol that relies on independent 
generation and dynamic updates of encryption keys 
thereby removing the need for key exchange, which is 
based on the concept of gene mutation and transfer. We 
also present an enhanced version of this protocol, which 
improves the security offered by the first protocol.  The 
novelty of the proposed protocols is in the independent 
generation, dynamic and continuous updates of encryption 
keys and the use of the concept of gene mutation / transfer 
to offer mutual authentication of the communicating 
entities. The proposed protocols are validated by 
simulation studies and security analysis. 
 

Index terms: RFID security, RFID authentication, mutual 
authentication, genetic mutation, encryption key generation and 
management 

 

I. INTRODUCTION 

Radio Frequency Identification (RFID) technology is an 
emerging wireless technology that finds application in nearly 
all domains. Be it uniquely identifying objects in the retail 
industry, or tracking an object or an entity through a 
manufacturing line, or managing patients in healthcare, or the 
recent concept of “Internet of Things”, RFID has opened the 
doors for a wide range of applications. 

An RFID system typically comprises of electronic circuits  
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known as RFID tags, devices to read data on these tags known 
as RFID readers, and enterprise servers that store data about 
the object the tag represents. RFID tags store an identifier (a 
number) to uniquely identify the objects to which they are 
attached. To read the data on these tags, RFID readers transmit 
radio-frequency electromagnetic signals, which energize the 
tags and allow them to respond with the identifier. The readers 
then forward this information to the enterprise server 
requesting for more information about the object the tag 
represents. The server retrieves and forwards relevant 
information to the reader after validating the reader, either 
through wired or wireless networks [1]. 

RFID Tags can be broadly categorized as passive tags, 
semi-passive tags, and active tags [1]. This categorization is 
based on the availability of an on-chip power supply or 
battery, which either facilitate or not facilitate the tags to 
initiate communication with readers. Passive tags do not have 
an on-chip battery, which necessitates the reader to initiate 
communication. Active tags, on the other hand, have an on-
chip battery, which allows them to initiate communication 
with readers as well as respond to requests from them. Semi-
passive tags have an on-chip battery, however, requiring 
energy from readers to broadcast their message. 

Passive RFID tags are typically required to perform one 
basic function — respond to queries by any readers, and when 
required, perform data update tasks as instructed by the reader 
(inherently by the enterprise server). However, they do not 
have adequate resources for performing sophisticated 
authentication of the entity giving them the instructions. This 
makes passive RFID tags vulnerable to a range of attacks such 
as replay attack, tag killing, tag over-writing, etc. Furthermore, 
readers with high signal strength can also be used as “rogue” 
readers, can read information from any tag, even if separated 
by a large distance. This further increases the vulnerability of 
the tags, increasing doubts in their widespread acceptance. 

Research on strengthening data privacy and security of 
RFID tags has therefore, assumed focus in recent years. 
Existing work has focused extensively on using pre-shared 
secret keys and performing simple bitwise operations such as 
XOR (exclusive-OR) to perform symmetric encryption and 
authentication. It has to be noted that the reason for RFID tags 
to use encryption is to authenticate entities, as significant 
information is stored securely in the server. However, one 
thing to note is that the tag, even with the capability to 
perform minimal computations, does not authenticate either 
the reader or the server, or does so in very a trivial manner. 
The reader queries themselves do not pose much threat to tags. 
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However, since readers are a medium for the server to 
communicate important updates, such as security key updates, 
from the enterprise server, it becomes a necessity for the tag to 
validate (or, authenticate) the server. This is based on the 
premise that even though there can be rogue RFID readers, 
they cannot extract any valuable information from the tags 
themselves, since all important information is stored in the 
server. We present a mutual authentication protocol that 
focuses on authentication between the tag and the server, using 
mechanisms to dynamically update the encryption key 
independently at both the tag and the server. 

The mechanism used to update the encryption key 
introduces an inherent authentication feature. This protocol is 
based on the concept of genetic mutation and gene transfer. 
Gene transfer is the process of propagation of characteristics 
or genes from one generation of an organism to the next. 
Mutations are changes introduced in this set of characteristics 
or genes. Our protocol is based employing this concept for 
generation of encryption keys, and to provide authentication as 
an implicit feature. We then present an enhancement to this 
protocol, which further increases the security offered. Prior 
research has examined the need for key exchange messages 
over a wireless channel to be authentic [2][3], and many of the 
RFID protocols use key management / encryption for 
authentication. Our protocols remove the need for key 
exchange messages by introducing independent key 
generation, and provide an inherent mutual authentication 
feature. The presented protocols are validated using key 
similarity analysis, complexity evaluation and security 
evaluation. 

We hypothesize that: 

H1: The encryption keys are updated with every instance (or, 
every communicated frame); and, 

H2: The encryption keys generated for each frame will be least 
similar to each other (with similarity quantified by a number in 
the range 0–1). 

The rest of this paper is organized as follows: we present 
the background and related work in the section II, followed by 
a description of the proposed protocols in section III. 
Following the description of the protocols, we discuss the 
methodology used for evaluating them and present the 
experimental results / analyses in sections IV and V, 
respectively. We then present a discussion of our work 
presented here, and discuss some benefits and challenges in 
section VI, following which we conclude the paper in section 
VII. 

II. BACKGROUND AND RELATED WORK 

A. RFID Security 

Security in passive RFID tag based systems is always a 
critical factor, since passive tags impose several resource and 
computational restrictions. This makes complex algorithms, 
which require a high degree of computation for achieving 
security. On the other end of the scale, simple algorithms may 
prove easier for an adversary to crack. Much of the current 
work focus on employing key updates being sent by the server, 

to synchronize with and update the keys in the tags. However, 
one scheme focuses on pseudonyms and focuses on updating 
the identity of the key with each query. We discuss these 
schemes in this section. 

A protocol with the tags storing encrypted versions of their 
IDs, with their original IDs stored in the database on the server 
was proposed by Osaka et al. [4]. In this protocol, readers 
transmit a random number along with their queries, and the 
tags respond with a number comprising of the mathematically 
hashed value of the random number received XOR-ed with the 
encrypted ID. The reader forwards this combination along 
with the random number to the server, which authenticates the 
tag and releases information about the object the tag represents 
after validating the reader. The protocol can be configured to 
work either with or without a change in the symmetric key 
used for encryption by the tag. The scheme further supports 
ownership transfer, thereby supporting privacy protection. It is 
our understanding that the tag reply consisting of a constant 
entity (the encrypted ID) coupled with the server transmitting 
key updates to the tag would reduce the security offered by the 
scheme, as it opens up avenues to use cryptanalytic techniques 
to break the key sequence. If one key is retrieved, the 
succeeding conversations and thus, the system are vulnerable 
to attacks. 

Osaka et al.'s work was slightly modified by Gui et al. [5], 
to support forward security and prevention of denial of service 
(DoS) attacks. Their protocol facilitates mutual authentication 
between the tag and the reader, with the reader / server 
considered as the same entity to illustrate secure 
communication channel between the reader and the server. 
They have introduced an additional XOR computation and 
hashing at the tag, to verify the reader, and have hence, 
updated the work proposed by Osaka et al. Their protocol 
generates number a, that is computed and sent by the tag 
(using the random number sent by the reader, similar to the 
Osaka scheme [4]), and numbers e and m, computed using the 
updated encrypted ID and a random number b. The reader 
verifies the tag using a, while the tag uses m to authenticate 
the reader, and e and m to update its encrypted ID. It has to be 
noted that with e, m and b being transmitted in the open, and 
the new key being a combination of the numbers so 
transmitted and the previously agreed key, the system could 
still be vulnerable to attacks if one of the keys are recovered 
by standard cryptanalytic techniques. 

Yu et al. [6] proposed a protocol based on XTEA 
encryption, which addressed the issue associated with the 
unsecure radio frequency (RF) channel used for 
communication between RFID tags and readers. The nature of 
the RF channel makes communication vulnerable to attacks 
such as interception, data capture, data analysis, etc. Their 
protocol presents a way of encryption and exchange of 
messages using a non-volatile ID for the tag, a dynamically 
updated key set (128 bits). Their work is based on the 
assumption that the least significant 30 bits of a tag's ID can 
represent a tag uniquely. Server replies to each tag response 
with an acknowledgement, and instructs the tag to update its 
key set. For the purposes of authentication, least significant 30 
bits of the tag ID are sent along with the message sent by the 
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server. It is to be noted that if the protocol reduces the number 
of bits that are significant for an authentication process (by 
employing the least significant 30 bits), it is also reducing the 
security and the uniqueness aspect, since it reduces the number 
of possible combinations of tag IDs. 

The work proposed by Molnar et al. [7] employs the 
concept of pseudonyms and time limited delegation. The tag 
generates a different pseudonym, or a pseudo-random number, 
that enables the server to authenticate the tag. The server is 
referred to as a trusted center in the protocol and it delegates 
the responsibility of authenticating the tag to a reader by 
giving it a set of pseudonyms that it can use to verify the tag 
for a specified amount of time. 

Their work has a central concept of “tree of secrets”, 
where nodes of a binary secret tree has secret keys in each 
node. Each tag has a counter, which points to a leaf of the tree, 
which in turn represents a pseudonym. Therefore, a particular 
pseudonym can be used to represent one tag, depending on its 
present state and the pseudonym. This protocol necessitates 
the use of a trusted center, and assumes a protected channel of 
communication between the reader and the server, which 
might not always be the case. 

A protocol for mutual authentication and privacy 
protection that conforms to EPC Class 1 Generation 2 stanard 
was proposed by Chen et al. [8]. This protocol necessitates a 
registration phase, where tags and readers have to register with 
the server, and a communication phase. The registration phase 
requires tags and readers to independently register with the 
server, which generates unique identifiers to represent their 
IDs. Further, each reader is assigned a set of tags, and it can 
only communicate with the assigned tags. This makes this 
protocol not employable in RFID systems with mobile readers, 
since such a system allows any reader to communicate with 
any tag. 

During the communication phase of this protocol, tags use 
random numbers, XOR operations and CRC operations to 
authenticate the reader and vice versa. The protocol focuses on 
ensuring security and privacy by using a list of valid readers 
and tags, and by restricting the ability of readers to 
communicate with any tag in the system. 

Vajda et al. [9] present multiple authentication protocols 
for RFID systems. One of their proposed protocols is based on 
a simple XOR operation that uses different encryption keys for 
securing the communication between tag and reader. The 
session keys are updated with each frame transmission. A 
block stream generator with a secret key is used to generate 
the session keys. The key used by the tag, however, remains a 
constant, which is also the seed used by the reader. The seed is 
either permuted or expanded by the block stream generator, 
and it uses recursive permutation of halves of the seed in case 
of the former. The resultant number is used as the updated key. 
The tag uses the seed it stores to verify the reader. In their 
analysis of lightweight authentication protocols, Defend et al. 
[10] critically analyze their work. 

To summarize, we can say that most approaches require 
the server to perform key updates; all use random numbers, 
and one using time-limited delegation of responsibilities. 

One thing to note is that any approach that requires key 
updates to be performed by the server places makes the 
network vulnerable as there is a possibility, no matter how 
least likely, of an adversary cracking the updated keys and 
hijacking the sessions. 

B. Biomimetics 

Biomimetics is the use of concepts existing in biological 
sciences, such as the working mechanism of a neuron, the 
ascent of sap in plants and so on, in other fields such as 
engineering, robotics, electronics and so on to create new 
systems [11]. Traditionally, biomimetics has been used by 
several known people and organizations, such as Leonardo da 
Vinci (for his design of flying machines based on birds), 
Velcro (design derived from the hooked seeds of the burdock 
plant), anti-reflective surfaces (created using polythene sheets, 
based on insect eyes, wings and leaves of plants), and many 
more. 

Although no framework exists to specifically use the 
concepts of biological sciences in other disciplines, one can 
choose to carefully understand the concept and design the 
system accordingly. The adoptability of any particular concept 
is however, subject to the prevailing conditions and 
requirements in the discipline where it is adopted. 

III. PROPOSED PROTOCOLS 

In this section, we describe the security protocol based on 
the gene mutation and transfer proposed in [12] 1

There may be instances when genes alter, perhaps due to 
factors in the environment external or internal to an organism. 
In such cases, there is a very high probability that this 
alteration is passed on to the next generation, and for 
subsequent generations of the organism. Such alterations in 
genetic pattern are referred to as mutations. Let us consider the 
example of a pea plant. If there are seven peas in one pea pod, 
and one of them has a small genetic abnormality that has 
resulted in a dark brown patch on its surface, then, when this 
pea germinates and grows into a plant, the peas that grow from 
this plant will have a very high probability of having the 
brown patch. This depends on the characteristic gene being 

 (Protocol A), 
and an enhanced version of the same (Protocol B). 

A. Overview of Gene Mutation and Transfer 

Deoxyribonucleic Acid (DNA) is the basic molecular 
structure in all living organisms, which contains genetic 
instructions that help in the organisms carrying out the various 
functions such as development and other activities. DNA is 
also responsible for propagating the genetic instructions from 
the parent generation to the progeny, thereby playing a 
significant role in the continuity of each species and in 
preserving characteristic elements (typically hereditary 
characteristics) of each species. The process by which genetic 
information is passed from one generation to the next is 
referred to as gene transmission [13][14]. 

                                                 
1 A preliminary version of this work has been published in the proceedings of 
the 2012 IEEE Symposium of Computational Intelligence for Security and 
Defence Applications (CISDA) [12]. 
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Figure 1. Overview of the proposed protocols. 

 

 
either dominant (resulting in the patch being visible) or 
recessive (resulting in the patch not being visible). 

Thus, in general, characteristics of a generation of any 
organism are transferred from one generation to another by 
means of gene transmission and the transferred characteristics 
may include abnormalities (or, mutations) as well. 

B. Mutual Authentication Protocol based on Gene Transfer 
and Genetic Mutation (Protocol A) 

This protocol mimics the concept of generations and 
genetic mutation that was described in the previous section. 
We consider its application on light-weight to heavyweight 
RFID tags, which have the capacity to perform minimally 
complex computations, such as the mathematical one-way 
hash function, and have sufficient storage capability. 

Listed below are the assumptions of this protocol: 

• RFID tags are initially loaded with the data by the owner. 
The owner of the tag is the organization where the tag will 
be deployed. 

• The data contained on the tag is an encrypted identifier 
(ID) uniquely identifying the object it is associated with. 
For example, if 1234 is the ID associated with an object, 
the data stored on the tag will be ENCRYPTED (1234), 
encrypted using any standard encryption scheme by the 
enterprise server. We denote this as ENC_ID. 

• We denote the ENC_ID subjected to one round of simple 
encryption as the encrypted message, em. 

• The tag and the server share a pre-loaded 128-bit initial 
encryption key (IK). 

• The tag and the server store states of the three (3) 
previously used keys in their memory to retrieve the 
previously saved synchronization state in case of dropped 
messages. These are referred to as the key states. 

• Key states include the seeds of the random number 
generator, integer numbers (parent, generation) and the 
keys. These are required by the communicating entities to 

restore state in case of dropped messages, as will be 
explained in the sections below. 

• The tag and the server store a pre-loaded 128-bit 
authentication-synchronization vector (ASV), which is 
used to authenticate the tag and synchronize with the 
server for the very first message. The ASV is unique for 
all tags deployed in the said environment, and is updated 
with every key update. The ASV helps in identifying loss 
of synchronization or any attempt of data modification. 

• The authentication of readers with servers is beyond the 
purview of this work. The readers are assumed to use any 
standard authentication mechanism for this purpose. 

Protocol A works as follows. The reader queries the tag, to 
which the tag responds with an encrypted version of ENC_ID. 
The ENC_ID is encrypted using the initial key (IK) to 
generate em. Following the encryption, the tag updates its 
encryption key to the new key (NK), and generates the ASV 
during the key update. The tag transmits a message that 
consists of two integers, parent and generation, which indicate 
the current state of the tag, the em, and the mathematically 
hashed ASV. 

On receiving this message, the reader forwards it to the 
server. The server then authenticates the tag by first verifying 
the state of the tag using the parent and generation, then the 
encrypted message and finally the hashed ASV, and validates 
the tag. After the tag is validated (and implicitly, the reader is 
validated), the server retrieves and releases information about 
the object the tag represents to the reader, along with an 
encrypted acknowledgement (Eki+1(ACK)) message. The key 
used for encrypting the acknowledgement is the updated key, 
which is generated at the server during the tag authentication 
and key update process. On reception of Eki+1(ACK), the tag 
authenticates the server, and performs key updates (if needed 
for synchronization) and is ready for the next query. This 
operation is summarized in Figure 1. 

Updates to the encryption key and the ASV is achieved in our 
protocol using bitwise operations, which are used to mimic the 
action of genetic mutation and gene transmission across 
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generations of keys. Figure 2(a) illustrates the details of 
Protocol A. The operation to generate Kx in Figure 2(a) can be 
optimized and can be achieved with the help of one OR 
operation instead of a combination of XOR operations. This is 
illustrated in Figure 2(b). We have included Figure 2(a) to 
illustrate the concept of preserving the 1 bits of the parent key 
and applying mutations on the other bits. Note that the 2:1 
MUX (the multiplexer) is an illustration for the logical 
operation to choose an appropriate key based on the condition 
being satisfied. The following paragraphs describe the scheme 
in detail. 

B.1 Key Generation and Management 

The novelty of our protocol is in using the concept of gene 
transfer and genetic mutation to generate the keys. In RFID 
systems, the simplicity of tags allows for adversaries to clone 
tags or to track tags using the responses. Some of the protocols 
described earlier [4][5][6] try to overcome this flaw by 
employing key refreshes and updates, i.e. the server transmits 
keys in either acknowledgement messages or explicit key 
refresh messages. On the other hand, the pseudonym protocol 

generates a new identifier (ID) using a generator that is 
synchronized with the server [7]. One aspect common to all 
these protocols is the transmission of keys, either from the 
server to the tag or from server to the reader. 

In our protocol, we eliminate key exchange messages and 
key update messages. Using simple logical operations and 
pseudorandom numbers, we ensure that the tags and servers 
are able to: 

• Generate keys independently 

• Synchronize the keys 

• Ensure mutual (or, bilateral) authentication 

The tag uses the encryption keys so generated to further 
encrypt the already encrypted ID. It has to be noted that in 
RFID systems, encryption is used as a way of authenticating 
the entities, since RFID tags by themselves do not store any 
critical information. The tag and server are pre-loaded with an 
initial key (IK). When the tag is queried for the first time by a 
reader, the tag is energized and it encrypts ENC_ID to 
generate em. Following this, it initiates the process of 
generating the new key (NK). 

New key generation process is as follows. The system first 
generates a mask of the IK, to preserve the pattern of its 1 bits 
by computing its one's complement. This is akin to the 
preserving the genetic characteristics of an organism. The tag 
has a synchronized pseudorandom number generator (PRNG) 
with the server, having a Fibonacci number as seed. A 128 bit 
pseudorandom sequence is generated by this PRNG, referred 
to as NumX. The protocol performs a bitwise AND operation 
on NumX with the mask to give a mutation pattern, which is a 
pattern of 1s and 0s (NumX ') to fill the 0 bits of the IK, 
without modifying the 1 bits. Finally, NumX ' is XOR-ed with 
the IK to generate KX. This is analogous to applying mutation 
to an existing pattern. Please note that in an optimized version 
of the protocol illustrated in Figure 2(b), this set of operations 
to generate KX can be achieved using one logical OR 
operation between the IK and NumX. The Fibonacci number is 
updated to obtain a new seed for the PRNG, in order to 
generate a new pattern for the subsequent communication. 

By using a mask, we preserve the characteristics of the IK, 
which is similar to preserving the characteristics of each 
generation during gene transfer. By introducing a new pattern 
to occupy the 0-bit positions of the IK, we are introducing 
“mutations”, and the KX represents the “mutated” pattern. The 
variable generation keeps track of the modifications on the 
particular key. 

The genLimit pattern is used to decide whether KX will be 
used as the updated key. If KX is different from genLimit, KX 
will be used as the key for the next encryption cycle. In such a 
case, each key acts as the parent to the next key, and its bit 
pattern is preserved in the new key. When KX becomes the 
same as the genLimit, the protocol decides in favor of 
abandoning KX and generating a new - unrelated - key. In this 
case, the next usable 128 bit sequence from the PRNG is 
generated, and is AND-ed with KX to generate KY. This is 
when a new parent key is generated, which is recorded in the 
key state being updated by incrementing the parent and 

 
Figure 2 (a).  Illustration of the working of the protocol (Protocol A) 

 

 
Figure 2 (b).  Optimized version of Protocol A 
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resetting the generation to 0. All subsequent new key 
generations will follow the same procedure, making the 
protocol generate a set of "generations" of keys for each parent 
key. The variable parent can be imagined as keeping track of 
the number of evolutions in the key generation cycle. An 
evolution in this context is when the key changes from its 
predecessor to an extent that the similarity is very low between 
them. This is analogous to evolution of species which means 
that the characteristics of one species changes to an extent 
where the changes are more than similarities between 
generations. Therefore, our protocol ensures that keys are 
generated in a manner that they are linked to the previously 
generated keys, demonstrating the concept of gene transfer 
and genetic mutation. This is a key step in ensuring mutual 
authentication between the server and the tag. 

The tag (and the server) performs new key generation for 
every communication, i.e. every time a tag responds to a query 
(and every time a server authenticates the tag). The tag and the 
server synchronize their keys when the server sends the 
acknowledgement (described in detail in the synchronization 
section). 

B.2 Data Encryption 

As described earlier, the tag ID that is stored in the tag 
memory is already encrypted by the server, at the time of 
deployment. This is the first layer of security to protect the 
identity of the tag. However, we have to note that if this is not 
further encrypted, and if the encryption keys used for this 
encryption are not continuously updated, the tag is vulnerable 
to attacks such as tag tracking. In tag tracking, an adversary 
can track the presence of a particular tag among a set of other 
tags and / or objects. This would be a violation of privacy. 

To protect the tag from such attacks, our protocol 
introduces an additional layer of simple encryption, with 
continuous key updates. This encryption process generates the 
encrypted message, em. Our protocol ensures that encryption 
keys are updated for every communicated frame, when the 
server and tag are synchronized. This ensures that the tag’s 
susceptibility to tracking attacks is reduced significantly. 
Furthermore, it has to be noted that if the key update is 
continuous and stable, the encryption process can be simple, 
such as XOR, which would mean that resource utilization in 
RFID tags is at a minimum. 

B.3 Synchronization 

In our protocol, synchronization is an important activity, 
given that there are no key exchanges and that the server and 
the tag need to be in the same state to successfully authenticate 
each other. If the server and the tag states are not 
synchronized, it is highly likely that the protocol might fail 
due to de-synchronization. To avoid this, the protocol provides 
an inherent synchronization feature. This works as follows. 

On receiving the reader query, the tag encrypts ENC_ID 
with the current key. Furthermore, the tag stores two 
immediate previous keys (prevKey1 and prevKey2), and their 
associated states (Fibonacci seed, parent and generation) in the 
tag memory. When the tag generates a new key, it replaces the 
oldest key in memory with the current key in the following 

manner - prevKey1 is assigned to prevKey2, currentKey is 
assigned to prevKey1 and the new key becomes the 
currentKey. On receiving the tag's response, the server 
authenticates the tag, updates its key, and responds to the 
reader with the tag information and an encrypted 
acknowledgement frame. The server also maintains three keys 
as in the tag. 

Synchronization is necessary because in a wireless 
environment, either of the following can occur: 

• The tag’s response to a reader query can be lost enroute to 
the server 

• The server’s acknowledgement can be lost enroute to the 
tag 

Ideally, we would assume that there are no such losses. 
However, practical deployment environments for such systems 
may mean that some frames may be lost in transmission. 
However, even in such scenarios, we assume that even if 
frames are lost, they may not be lost more than three times 
consecutively, since the system would sense that there is either 
an attempt to desynchronize or an error in the channel. Hence, 
our protocol mandates that three keys (and their states) are 
stored by the tag (and the server). 

Along with its response, the tag sends its ASV as the 
"tagSignature" as shown in Figure 3. On reception of this 
frame, the server first shortlists the set of tags with the 
identical parent and generation values, following which it 
attempts to generate sequences similar to the received em from 
these tag-states. If a match is found, it means that the key is 
within the three recently generated keys of one of these tags. 
The server then uses the ASV to find the exact tag in question. 
On reception of the encrypted acknowledgement, and 
synchronizes its key states. 

With the server not having resource restrictions, our 
protocol places the onus on synchronization on it. 
Furthermore, the unlikely event that a frame is lost, may be 
frequent with the acknowledgement frame since a mobile 
reader may change its zones thereby making it difficult for it 
to follow-up on the successful reception of a forwarded 
acknowledgement. This may not be with the tag information 
request, since the reader needs this information and will query 
the server until it receives the response. Therefore, we can say 
that the states will be synchronized with almost every frame at 
the server, and if there is any de-synchronization, it might be 
at the tag. Therefore, our protocol requires the tag and the 
server to store three keys in memory for synchronization in 
such situations. The reason behind the number "3" is to give 
enough room for the tag-server pair to accommodate any lost 
frames, while not so as to facilitate repeat or replay attacks. 
When the server and the tag are synchronized, they retain only 
the synchronized key (and its associated state), and discards 
the rest. 

 
Figure 3.  Format of the tag’s response to a reader’s query 

 

SAMPANGI AND SAMPALLI: RFID MUTUAL AUTHENTICATION PROTOCOLS 49



B.4 Mutual Authentication 

Mutual authentication is the central aspect of our protocol. 
In an RFID system, the tag needs to ascertain that its 
deployment environment is authentic before it can either 
respond to queries or perform key updates / refreshes as 
instructed by the reader, and the server needs to verify that all 
tags in a specific zone are authentic. For this purpose, our 
protocol provides a simple inherent mutual authentication 
process with the key generation mechanism. 

The tagSignature (Figure 3) is used by the tag to 
authenticate the server. The ASV (which becomes the 
tagSignature) is generated as follows - the system first 
generates the XOR of NumX and patternASV, and performs a 
mathematical hash of this value. patternASV is a specific 
(constant) pattern that is chosen for the application by the 
server. This is used by the server to uniquely authenticate each 
tag. This ASV is sent as the tagSignature along with the 
encrypted message, em. 

On receiving the data frame, the server uses the parent and 
generation to retrieve the value of the encrypted ID and the 
encryption keys of the tags, and regenerate em. The server 
may contain identical values for parent and generation for 
several tags. Therefore, it first retrieves the states of and 
generates em for them, and this serves as the first level of filter 
for tag authentication. If the generated em matches that sent by 
the tag, the server updates the encryption key. Then, it 
generates the ASV and compares it with the tag signature. If 
they match, it means that the tag is authentic. On 
authenticating the tag, the server synchronizes the values of 
the current parent, generation and the encryption key for the 
tag in question and discards the previous values. This is 
because once synchronized, the previous keys are not required 
by either the tag or the server, and any future query by a reader 
with one of the previous keys would imply that it is an attempt 
at a replay attack [15]. If however, there is any scenario when 
the received states match, but the ASV does not match, it 
implies that either there has been an attempt of changing the 
data, or that there has been an error in transmission. 

On reception of the acknowledgement frame, the tag is 
momentarily energized. The tag regenerates the received frame 
using the acknowledgement pattern and keys stored in its 
memory. The tag stores the updated key and two previous keys 
and their respective states to re-synchronize in case of dropped 
frames. If the generated encrypted acknowledgement so 
generated matches the received acknowledgement, the server 
is authentic. If the key used to generate the pattern is not the 
same as the current key, it updates the key generator states 
with the corresponding values of parent, generation and 
Fibonacci seed. If this process fails, the tag will assume that 
the server is not authentic, and will not respond to any further 
queries. 

 

C. Enhanced Mutual Authentication Protocol based on Gene 
Transfer and Genetic Mutation (Protocol B) 

Although the protocol presented in the previous section is 
secure, is able to generate unique keys for almost all the 
communicated frames and facilitates mutual authentication 
between the communicating entities, the manner in which new 

keys are linked to their parent keys could be security 
vulnerability. This is because keys converge at the bit pattern 
of all 1s (the generation limit) before the parent key changes. 
This may not pose a severe security issue when this protocol is 
used as a standalone authentication protocol, however, since 
RFID systems (or any other system) might employ 
authentication to be a part of the key generation / management 
process, this is significant. Considering this issue, we present 
an improved version of the previous protocol in this section. 

In this protocol, the manner of linking keys to subsequent 
keys has been modified and the generation limit has been 
changed to a count rather than a pattern to offer better security. 
Figure 4(a) shows working of the enhanced protocol. The 
operation to generate the New Key in Figure 4(a) can be 
optimized and can be achieved with the help of one OR 
operation instead of a combination of XOR operations. This is 
illustrated in Figure 4(b). We have included Figure 4(a) to 
illustrate the concept of preserving the 1 bits of the parent key 
and applying mutations on the other bits. The working of this 
protocol is as follows. In this protocol, we save an extra 
number in the memory, called parent key (parentKey). For the 
very first communicated frame, the initial key becomes the 
parent key, and the parent key is updated whenever a new 
parent is generated, i.e. the parent is updated. Furthermore, 
generationLimit is now an integer number between 0 and 4, 
which means that there can be a maximum of five generations 
per parent key. The next change defines the enhancement – we 
do not have linked “generations” of keys, but one parent key 
having either zero or multiple “children” keys. There can, 
however, be a maximum of generationLimit number of 
children for each parent. 

After performing the simple encryption process to generate 
the encrypted message, em, this key generation module first 
generates a random number between 0 and 1. 
• If the random number is 0, the system then proceeds to 

check if the number of children (indicated by the 
generation variable) for the current parentKey is five. 

o If the number of children is not 5, a new child key is 
generated as follows. The parentKey pattern is first 
preserved by inverting the bits and a mutation pattern 
is generated by AND-ing this pattern with a new 
random number (n bits for an n-bit key). Note that the 
generation of the mutation pattern is the same as the 
previous protocol. The mutation pattern is then XOR-
ed with the parentKey to generate the new key. The 
generation variable is now incremented to update the 
number of children for this parentKey. The new key 
update and storage in memory then proceeds as in the 
previous protocol. 

o If the number of children is 5 (i.e. generation = 
generationLimit = 5) then, we force a parentKey 
change as discussed next. 

• If the random number is 1, it means that we are forcing a 
parentKey change. In this case, the system generates a 
new random number (n bits) and XORs it with the current 
parentKey to generate the new parentKey. All future 
children (or generations of) keys will now use the new 
parentKey. 
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TABLE I 
TEST CONFIGURATION USED FOR ANALYSIS OF THE PROPOSED PROTOCOLS 

Config. 
ID Initial Key Key 

Size 

Initial 
Fibonacci 

Seed 
C1 92eb8d6ecf7f808a705d1a4566991af0 128 bit 2178309 

C2 12f03c157890a08a501d5d37bb10aae9 128 bit 2178309 

C3 42f5876eaf9f8066b05ff140067b1a51 128 bit 2178309 

C4 92eb8d6ecf7f808a705d1a4566991af0 128 bit 39088169 

C5 12f03c157890a08a501d5d37bb10aae9 128 bit 39088169 

C6 42f5876eaf9f8066b05ff140067b1a51 128 bit 39088169 

C7 42f5876eaf9f8066 64 bit 2178309 

C8 c157890a08a501d5 64 bit 2178309 

C9 2f03c157890a08a5 64 bit 2178309 

C10 42f5876eaf9f8066 64 bit 39088169 

C11 c157890a08a501d5 64 bit 39088169 

C12 2f03c157890a08a5 64 bit 39088169 

 

By updating the protocol in this manner, we ensure that the 
keys do not converge to any specific pattern, that a unique 
encryption key will be generated for every frame (H1) and that 
consecutive keys will not be similar to each other (H2). Such 
an update also gives us the flexibility to use any algorithm for 
the seed generation, while the previous protocol required the 
use of only Fibonacci numbers (or an algorithm that combined 
numbers in a manner to Fibonacci number generation) as seed 
generators. 

The enhanced version of the protocol significantly 
improves the security offered by Protocol A, improving its 
generality and enables its adoption in a variety of applications. 

IV. EVALUATION METHODOLOGY 

We evaluated the protocols using a proof of concept 
implementation in Java. To validate our hypotheses, we 
performed similarity analysis between consecutive keys, 
examined the number of unique keys generated, and evaluated 
whether the keys would converge towards any specific pattern. 

To analyze the similarity between pairs of keys, we considered 
each key and examined how similar it was to the previous. We 
compared the first key, however, with a pattern of all 1 bits 
(i.e. 128 or 64 bits of 1s), assuming that we start at a state of 
equal keys. The desirable behavior in this case is that each 
new key is highly dissimilar to the predecessor. 

To quantify the similarity between keys, we computed the 
Sorensen’s Similarity Index (SSI) [16], which is a measure of 
how similar the various pairs of keys are, and plotted the SSI 
for 500 frames. For each pair of keys, SSI is the ratio of twice 
the total similar characters in the two keys to the total size (in 
characters) of each key. Equation (1) presents the equation to 
compute the SSI. 

𝑆𝑆𝑆𝑆𝑆𝑆 =  
2 × 𝑛𝑛(𝐴𝐴 ∩ 𝐵𝐵)
𝑛𝑛(𝐴𝐴) +  𝑛𝑛(𝐵𝐵)

 (1) 

where, 𝑛𝑛(𝐴𝐴 ∩ 𝐵𝐵) represents the number of characters (or, 
numbers) in the key pair that are same, 𝑛𝑛(𝐴𝐴) and 𝑛𝑛(𝐵𝐵) 
represent the total number of characters (or, numbers) in each 
of the keys A and B of the key pair, respectively. 

To analyze the stability of the scheme, and its ability to be 
generalized to any key size, we considered ten configurations, 
with different initial keys, different key sizes and different 
Fibonacci initial seed for the PRNG. This is described in Table 
I. For each configuration, we generated 500 keys, and 
computed the SSI for each pair of keys. 

To analyze the security offered by the proposed scheme, we 
consider a security analysis. We consider five security goals 
associated with protecting data during communication, namely 
— confidentiality, integrity, authentication, non-repudiation 
and forward security [17]. We also present a qualitative 
analysis of the performance of the protocols with respect to 
known attacks categorized by Mitrokotsa et al. [15]. We also 
present a discussion on the behavior of the system in case of 
dropped frames and de-synchronization attempts. 

 
Figure 4 (a).  Working of the Enhanced Mutual Authentication Protocol 

(Protocol B) 
 

 
Figure 4 (b).  Optimized version of Protocol B 
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TABLE II 
SECURITY ANALYSIS OF THE PROPOSED PROTOCOLS 

Security Goal Brief Description Status in proposed protocols 

Confidentiality 
Eavesdropping should 
not be fruitful 

Supported, since encrypted ID 
is further encrypted 

Integrity 
Message received 
must be the same as 
message sent 

Supported, since the 
encryption of the encrypted 
ID also acts as a message 
digest; only the tag with a 
relevant encrypted tag ID can 
send the appropriate message. 

Authentication Sender / receiver 
validation 

Supported; both tag and 
server authenticate each other 

Non-repudiation 
Source cannot deny 
that the message was 
sent by it 

Supported; with the keys 
being continuously updated, 
only a legitimate tag can send 
the valid encrypted message 

Forward Security 
Protection of 
previously transmitted 
data 

Supported; keys are 
continuously updated and the 
synchronization of the initial 
keys are only between the 
server and the tag at the time 
of deployment. 

 

Furthermore, we present a performance analysis for the 
protocols. Performance of an algorithm is mainly decided by 
the amount of system resources it utilizes. As part of analyzing 
the resources utilized by the proposed protocols, we consider 
an algorithm complexity analysis presenting the total number 
of arithmetic and logical operations that are involved. This 
will help in estimating the computational overhead, which will 
in turn impact the performance of the system, and hence, 
represent the time complexity of the system. 

V. ANALYSIS 

A. Analysis of Similarity 

To make data presentable and to help in analysis, we 
consider the first 100 frames of the results of configuration C1 
for both protocols A and B. 

Figure 5 shows the ability of protocols A and B to generate 
new keys for every frame. We observe that Protocol A 
generates 89 new keys, while Protocol B generates 100 new 
keys, in 100 frames. Over 500 frames, Protocol A generates 
431 new keys, while Protocol B generates 500. It must be 
noted that the desired behavior for Protocol A was that the 
keys are similar to the previous key, because we want to 
mimic the gene mutation and transfer concept. 

As an initial step, we chose to examine how the similarity 
increases until the keys converge to a pattern of all 1 bits 
(FFF…F – the generationLimit). However, in Protocol B, we 
introduced another random choice between to check if there 
will be a parent change and limited the number of child keys 
of each parent key to 5. The difference in the algorithms can 
be observed in the results. 

Figure 6 (a) presents a plot of the SSI for the first 100 keys 
generated using Protocol A, while Figure 6 (b) presents the 
same plot for Protocol B. The differences in philosophies of 
the algorithms discussed in the previous paragraphs can be 
observed in these plots as well. We observe that the similarity 
increases until a point when the keys reach the 
generationLimit pattern in Protocol A, while the behavior is 
much more random in Protocol B. 

Our experiment revealed that this behavior is consistent 
across the other configurations, C2 – C12. From the results 
presented here, we can that hypothesis 1 was verified for 
Protocol B, as it was able to generate unique keys for every 
instance, while Protocol A generated 84% new keys on 
average for all configurations. Furthermore, hypothesis 2 is 
verified for both protocols as we are able to ensure that the 
generated keys are not similar to the previous keys. However, 
it has to be noted that because of the low values of similarity 
in Protocol B(average SSI value of nearly 0.199), it is more 
secure when compared to Protocol A (average SSI value of 
nearly 0.613). 

 

B. Security Analysis 

Table II summarizes the security analysis of the proposed 
scheme. Furthermore, the double encryption and continuously 
updated keys ensure that tags are secure from tracking by 
unauthorized readers. Note that the security analysis is the 
same for both protocols A and B; although due to an update to 
the mechanism of linking keys makes Protocol B 
fundamentally more secure than Protocol A. 

Presented below is a discussion on the performance of the 
proposed protocols with respect to some of the known attacks. 
These are some of the attacks that are relevant in RFID 
systems, classified under various network attacks by 
Mitrokotsa et al. [15]. 

• Eavesdropping: An attempt to extract the tag ID will 
prove to be unsuccessful in the proposed protocols. This is 
because encryption keys are updated with each 
communicated frame. In Protocol A, even though we let 
the keys grow until they converge at a point where all bits 
are 1s, the protocol ensures that the parent keys and the 
linking between keys are regularly refreshed. This 
however is not an issue at all in Protocol B, where the 
linking between consecutive keys is very minimal and 
randomly determined. Regular changes in parent keys are 

 
Figure 5.  Unique key generation in the presented protocols 
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(a) (b) 

Figure 6. Plots of the Sorensen’s Similarity Index (SSI) for the first 100 keys generated using Protocol A (6.a) and Protocol B (6.b) 
 

 
similar to the concept of renewing the security association 
between the communicating entities. 

• Replay attack: In both protocols, if an adversary attempts 
to replay any previously transmitted frames, the server or 
the tag will immediately recognize, and will take 
appropriate action as specified by the implementation. 
However, if an acknowledgement is not received by the 
tag, and the adversary attempts to replay one of the three 
recent messages, there is a possibility of the tag not 
recognizing the replay attack. Nevertheless, the server 
will always recognize the attack. 

• Man-in-the-middle attack: This attack will be recognized 
by the tag and the server in both protocols. Regular 
updates in the keys and the ASV ensure that any change in 
the message is immediately identified by the tag and the 
server. However, if the adversary just acts as a relay for 
the communication, without making any changes, the 
proposed scheme will not be able to identify. This relay 
activity will not be fruitful as discussed in the replay 
attack scenario. 

• RFID tag tracking: The protocols protect the tag from 
tracking. The ID stored is encrypted, and the response by 
the tag is further encrypted with keys that are updated 
with each transmitted frame. Continuously changing keys 
and the absence of key exchange messages ensure that the 
tag's response is different for each communicated frame. 
Thus, there is little or no likelihood of tracking being 
possible if the RFID application employs the proposed 
scheme. 

• Denial of service (DoS): To a certain extent, we can say 
that DoS attack in the form of multiple queries being sent 
to the tag is prevented by our protocols. This is because, 
the tag will detect that the server is not synchronized if it 
does not receive an acknowledgement frame after three 
queries. The tag will not respond to further queries, and 
the server and the application will know that there is a 
problem. However, it has to be noted that if the tags are 

flooded with queries, they will be overwhelmed and will 
not be able to perform their tasks successfully. This will 
result in denial of service by flooding. 

• De-synchronization attack: This attack is likely to affect 
the performance of the protocols presented in this paper. 
If consecutive acknowledgement frames by the server are 
not be synchronized in their key states, even though they 
may be in the same state. In the current implementation of 
the scheme, the tag will not respond when more than a 
predefined number (3) of acknowledgement frames are 
not received. We had configured the protocol to not 
respond for further queries in case of de-synchronization, 
in our test and evaluation scenario. However, this aspect 
of the protocol can be easily modified so that the entities 
communicate with the last acknowledged key states, until 
an acknowledgement is received. This requirement is 
dependent on the application, since some applications 
may necessitate the use of stringent action in case of 
dropped frames (i.e. the “assume-guilty-until-proven-
innocent” model, where multiple dropped frames may be 
assumed to be an attack on the system) or otherwise. We 
assumed this worst case scenario in our test case. 

 
• Dropped frames: In the description of the protocol, we 

discussed briefly of the behavior of the system in case of 
dropped frames. Frames may be dropped in two parts of 
the system – (a) in the channel between the tag and the 
reader, and (b) in the channel between the reader and the 
server. Furthermore, such dropped frames may occur 
either due to defects in the communication channel, or 
due to selective packet dropping attack being performed 
by an adversary. As described in the discussion on de-
synchronization attack, we assume a worst case scenario 
and configure the tag not to respond in case of multiple 
dropped frames. However, as discussed, the protocol may 
be tweaked (as required by the deployment scenario) to 
work with the previously acknowledged keys. 
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TABLE III 
COMPUTATIONAL OVERHEAD ANALYSIS IN THE TAG 

Operation Performed by the Tag Protocol A 
(Figure 2(a)) 

Protocol A 
(Figure 2(b)) 

Protocol B 
(Figure 4(a)) 

Protocol B 
(Figure 4(b)) 

Addition or Increment 2 + α 2 + α 2 2 

Pseudorandom Number Generation 1 + α 1 + α 2 2 

Logical Operations:     

- NOT 
- AND 
- XOR 
- OR 

1 
1 + α 
1 + α 

0 

0 
0 
0 

1 + α 

1 (or 0) 
1 (or 0) 

2 
0 

0 
0 

2 (or 1) 
1 (or 0) 

Mathematical Hash (assumed to be one operation) 1 1 1 1 

Encryption (assumed to be one operation) 1 1 1 1 
 

TABLE IV 
COMPUTATIONAL OVERHEAD SUMMARY 

Operation Performed by the Tag Protocol A 
(Figure 2(a)) 

Protocol A 
(Figure 2(b)) 

Protocol B 
(Figure 4(a)) 

Protocol B 
(Figure 4(b)) 

Best case (a = 0) 8 6 8 7 

Worst case (a = 1) 12 9 10 9 
 

 

 

TABLE V 
MEMORY OVERHEAD ANALYSIS IN THE TAG 

Data on the Tag Protocol A Protocol B 

Key set n x 3 n x 3 

Fibonacci number set n x 4 n x 4 

Parent ID set 8 x 3 8 x 3 

Generation set 8 x 3 8 x 3 

Encrypted ID n x 1 n x 1 

ASV n x 1 n x 1 

patternASV n x 1 n x 1 

Total 10 n + 48 10 n + 48 
 

 

 

C. Performance Analysis 

Table III presents the computational overhead analysis in 
the proposed protocols. We restrict our analysis to the 
computational abilities of the tag, since the server in an RFID 
system has no known restrictions in performing computations. 
Please note that we have included both optimized (Figures 
2(b) and 4(b)) and un-optimized versions (Figures 2(a) and 
4(a)) of our protocols presented in this paper, to illustrate that 
the computations are at a minimum in either case. We use the 
variable α to indicate the presence of a parent key generation, 
which necessitates an alternate key generation in Protocol A. 
Table IV presents the best and worst case scenarios, denoted 
by α = 0 and α = 1, respectively. Table V presents the memory 
overhead for the protocols.  

VI. DISCUSSION 

This paper presented a new security protocol for RFID 
systems (Protocol A) and an enhancement to the said protocol 
(Protocol B), based on the concept of gene transfer and genetic 
mutation that enables independent generation of encryption 
keys at both the tag and the server, in turn ensures mutual 
authentication. 

It may be argued that such protocols work in single tag 
environments alone. However, we need to note that every 
acknowledged query updates the keys in the tag and in the 
server, which in turn means that the parent / generation are 
updated. 

These updates, coupled with unique initial keys (pre-
loaded on each tag, synchronized with the server), mean that 
this scheme can be applied in multi-tag environments as well. 
There may be scenarios in such multi-tag environments where 
the parent / generation values of several tags will be the same; 
however, the encrypted data would then enable identifying the 
exact tag in question. 

Presented next are some benefits of the protocols presented 
in this paper. The protocols offer improved security, since the 
encryption keys are independently generated without the need 
for key exchange or update messages. This makes reading 
attempts by rogue readers futile, since the readers are assumed 
to be paired with the server initially. Furthermore, the 
presented protocols update encryption keys continuously, 
thereby ensuring protection from tracking attacks. Finally, the 
presented protocols have high generality, which means that 
they offer flexibility in the size of the keys and in their 
application. The protocols are flexible because of their 
modular implementation, which allows us to change any 
module of the protocol without any changes required in the 
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other modules. To present an example of the benefit of 
modular implementation, let us consider the example of 
encryption. XOR is used in the current implementation, which 
can be changed with no effect or corresponding changes to any 
other blocks in the protocols. 

Linking keys to the previous keys, as has been done in the 
presented protocols, gives us the important benefit of mutual 
authentication. The layered filtering mechanism for 
authentication, using the parent / generation numbers, em and 
ASV, also allows the protocols to be scalable to tag / reader 
intensive environments. 

The challenges of this scheme include those imposed by 
certain assumptions. We assume that the readers are valid, in 
other words, paired with the server initially. This implies that 
the onus is on the organization to ensure that the readers are 
valid. However, with a slight modification, the current scheme 
can be modified to include readers as an entity. Another 
important challenge of these (or any protocol focusing on 
continuous updates with synchronization) is the threat of de-
synchronization. This is present, as if multiple key 
synchronization messages are dropped, the communicating 
entities lose synchronization. However, with the two previous 
key states saved, we reduce the chances of, but do not 
completely avoid, de-synchronization, thereby giving some 
chance to the entities to re-synchronize. 

It could also be argued that the use of Fibonacci numbers 
as seeds for the pseudorandom number generators limits the 
security of the proposed protocols, as these numbers become 
predictable after a certain time. However, our experiments also 
showed that the seeds need not necessarily be Fibonacci 
numbers, but, they need to update in the manner in which 
Fibonacci numbers grow (i.e. new number is the sum of the 
current and previous numbers). The need for using such 
numbers as seeds only arose due to the need for randomness 
and high unpredictability for the series of experiments to 
verify the concept of Protocol A, where we allowed the keys to 
update in a particular way until all the bits of the key 
converged to a sequence of 1 bits. This restriction has been 
removed in Protocol B. Preliminary tests have shown that 
Protocol B performs as expected given any seed generation 
algorithm. This is another benefit of having a modular design 
for our protocols. 

The memory and computational overhead analysis 
described in tables III, IV and V illustrate that even though the 
protocol appears complex, it is minimalistic in terms of 
computations and memory utilization. 

VII. CONCLUDING REMARKS 

In this paper, we presented a novel approach for mutual 
authentication between the server and the tag, based on the 
concepts of gene transfer and genetic mutation, and discussed 
an enhancement to this protocol. The presented protocols use 
encryption keys initially synchronized between the tag and the 
server, validated readers, and independent key generation at 
the tag and server to ensure mutual authentication and security. 
The protocols ensure that the communicating entities update 
their keys continuously. The key update mechanism mimics 

the concept of genetic mutation and gene transfer, and uses 
acknowledgement based synchronization of key states. The 
protocols support saving previous key states for recovery and 
re-synchronization in case of dropped frames. 

With the presented protocols, we are able to realize the 
following security goals – confidentiality, integrity, 
authentication, non-repudiation and forward security. In their 
current form, the protocols are applicable to any two entity 
communication system such as the RFID tag and server. 
However, the modular design of the protocols allows us to 
include a third entity, such as the RFID reader, in the mutual 
authentication protocols thereby making the protocols more 
secure. The benefits of the protocols outweigh the challenges 
and allow us to conclude that the presented protocols are 
secure, simple and flexible, and can be generalized to other 
application domains. 
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