
 
 

 

  
Abstract: The log-cumulant estimator is proposed to estimate 

the parameters of Weibull distribution based on second-kind 
statistics. With the explicit closed form expressions, the 
log-cumulant estimator is computationally efficient. Parameter 
estimation results from Monte Carlo simulation and real synthetic 
aperture radar (SAR) image demonstrate that the log-cumulant 
estimator leads to better performance when compared to the 
moment estimator. 
 

Index Terms: Weibull distribution, parameter estimation, 
second-kind statistics, log-cumulant estimator 
 

I. INTRODUCTION 
The Weibull distribution has been widely applied to 

synthetic aperture radar (SAR) images of sea, land, weather, 
and sea-ice clutter, and it contains the classical Rayleigh and 
exponential distributions as special cases [1-5]. With two 
parameters (shape parameter and scale parameter), the Weibull 
distribution can fit the experimental data better than the 
one-parameter distributions such as Rayleigh [1, 6]. For 
example, the Rayleigh distribution describes the early 
low-resolution SAR images well enough, but for the higher 
resolution SAR images, the two-parameter Weibull distribution 
can characterize the image contrast precisely [1].  

In order to use the Weibull model in practical applications, 
its parameters should be estimated accurately. The estimation 
methods of Weibull distribution are summarized in [7], 
including linear estimator, maximum likelihood estimator, 
moment estimator, and Bayesian estimator. The linear 
estimator is the linear combinations of order statistics with 
suitably chosen coefficients. However, the determination of the 
coefficients is very difficult owing to a huge amount of 
computation, so it usually requires table look-ups. The 
maximum likelihood estimator is the parameter value that 
maximizes the likelihood function, given the data available. 
However, the maximum likelihood estimator has to solve the  
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nonlinear equation, which usually requires the iterative method. 
The moment estimator estimates the parameters by directly 
using the statistical moments of Weibull distribution, but it 
does not have the explicit closed form and needs some 
numerical optimization techniques. The Bayesian estimator is 
the value of parameter that maximizes the posterior density in 
terms of the Bayesian theorem. However, the Bayesian 
estimator requires the prior distribution, which is not easy to 
determine.  

In this letter, the log-cumulant estimator is proposed for the 
Weibull distribution based on second-kind statistics, which 
relies on the Mellin transform [8, 9]. We compare the 
log-cumulant estimator with the moment estimator, and we 
have observed that the performance of the moment estimator is 
degraded seriously for the small values of the shape parameter, 
but the log-cumulant estimator leads to high estimation 
accuracy no matter what values are chosen for the shape 
parameter, which is validated by parameter estimation results 
from Monte Carlo simulation and real SAR image experiment. 
Consequently, we recommend the log-cumulant estimator 
instead of the moment estimator. 

This letter is organized as follows. The Weibull distribution 
is introduced in Section II. The moment estimator is briefly 
introduced in Section III, and the log-cumulant estimator based 
on second-kind statistics is proposed in Section IV, including 
the derivation process, Monte Carlo simulations, and real SAR 
image experiment. Lastly, this letter is concluded in Section V. 

 

II. WEIBULL DISTRIBUTION 
The Weibull distribution has the following probability 

density function (pdf) [1] 

( )
1

, exp , 0
cc

c b c

cx xf x x
bb

− ⎡ ⎤⎛ ⎞= − ≥⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

,               (1) 

where c  ( 0c > ) is the shape parameter and b  ( 0b > ) is the 
scale parameter. The appearance of Weibull pdf is determined 
by the shape parameter c . When 1c < , the pdf curve is 
J-shaped. When 1c > , the pdf curve becomes skewed 
unimodal [7]. Denoting X  as the Weibull-distributed random 
variable with parameters c  and b , it can be demonstrated that 

the new random variable X
b

 is still Weibull-distributed with 

the shape parameter c  and the unit scale parameter ( 1b = ).
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This means that the Weibull distribution can be readily 
normalized. For various values of c , the pdf of Weibull 
distribution is plotted in Fig. 1. Obviously, the value of c  
controls the shape of the pdf. It should be noted that the Weibull 
distribution reduces to the exponential distribution when 1c =  
and to the Rayleigh distribution when 2c = . 

The Weibull distribution can be simulated by [7] 

( ) 1
log

c
X b Y= −⎡ ⎤⎣ ⎦ ,                           (2) 

where X  is the Weibull random variable with shape parameter 
c  and scale parameter b , and Y  is the random variable 
uniformly distributed in the interval ( )0,1 . With the help of (2), 
the Weibull-distributed samples can be simulated, which are 
shown in Fig. 2 for various values of c . It is apparent that the 
Weibull samples with 0.15c =  show much severer 
impulsiveness than the ones with 2c = . In general, the smaller 
the value of c  is, the more impulsive the Weibull samples are. 
Since the Weibull-distributed samples can be simulated readily, 
we can use the Monte Carlo simulation to compare the 
performance of various parameter estimators. 
 

 
Fig. 1. Pdfs of Weibull distribution ( 1b = ) 

 

 
(a) 0.15c =   

 
(b) 2c =  

Fig. 2. Weibull-distributed samples ( 1b =  and the number of samples 
is 200) 
 

III. MOMENT ESTIMATOR 
The n th order moment of Weibull distribution can be 

written as 

( ) 1 , 1,2,...n n nE X b n
c
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⎝ ⎠

,                (3) 

where X  is the Weibull random variable with parameters c  
and b , and ( )Γ ⋅  is the Gamma function. Hence, the moment 
estimator for the Weibull distribution is straightforward as 
follows [1, 7]: 
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By replacing the actual moments with the sample moments, 
parameters c  and b  can be subsequently estimated from (4) 
and (5), using some numerical optimization techniques such as 
bisection [10].  

The moment estimator was tested for various true values of 
parameter c  according to Monte Carlo simulation. The 
Weibull-distributed samples were simulated independently by 
using (2), and the number of samples is 10000. For each true 
parameter c , the Monte Carlo simulation experiment was 
repeated 100 times independently, and then the average and 
standard deviation of the estimates were computed. The results 
are shown in Table I with standard deviations in parentheses. 
Obviously, the performance of the moment estimator relies on 
the true values of c . For the larger values of c , the moment 
estimator can lead to high estimation accuracy (e.g., 2c = ). 
However, if the smaller values are chosen for the c  (e.g., 

0.15c = ), the moment estimator results in poor performance. 
In other words, the moment estimator is sensitive to samples. If 
the samples show severe impulsiveness, which corresponds to 
the small values of the shape parameter (e.g., 0.15c = ), the 
moment estimator cannot achieve high estimation accuracy. 
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TABLE I  
MONTE CARLO SIMULATION OF MOMENT ESTIMATOR (TRUE 1b = ) 

True Value 0.15c =
0.1819

(0.0178)

9.7405
(5.9173)

ĉ

b̂

0.2c = 0.25c = 0.5c = 1c = 2c =
0.2203

(0.0170)

2.2442
(1.0153)

0.2616
(0.0168)

1.3134
(0.3930)

0.5027
(0.0111)

1.0061
(0.0411)

1.0024
(0.0090)

0.9998
(0.0095)

2.0017
(0.0176)

0.9991
(0.0051)  

 

IV. LOG-CUMULANT ESTIMATOR 
In [8], the log-cumulant estimator was used for parameter 

estimation of the α - stable positive distributions due to its 
explicit expressions. The log-cumulant estimator is based on 
second-kind statistics, which relies on the Mellin transform. 
Denoting g  as a function defined over [ )0,+∞ , its Mellin 
transform is defined as 

( ) ( ) ( )1

0
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+∞ −=⎡ ⎤⎣ ⎦ ∫ ,                 (6) 

where s  is the complex variable of the transform. Specifically, 
for a pdf f  defined in [ )0,+∞ , analogous to the case of 
common statistics based on Fourier transform, the second-kind 
statistic functions are defined as follows [9]: 
·Second-kind first characteristic function 
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·Second-kind second characteristic function 

( ) ( )( )logs sΨ = Φ                             (8) 

· r th order second-kind cumulant (log-cumulant) 
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The first two log-cumulants 1k  and 2k  can be estimated 
empirically from N  samples iy  as follows [9]: 
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By substituting (1) into (7) and after some manipulation, the 
second-kind first characteristic function of Weibull distribution 
can be written as 
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Using the following identity [11] 
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one arrives at 
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Then, substituting (13) into (8) and subsequently into (9), the 
first and second orders log-cumulants for the Weibull 
distribution are obtained as follows: 
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Here, Ce  is the Euler’s constant. Replacing the actual 

log-cumulants 1k  and 2k  with the sample log-cumulants 1k̂  

and 2k̂  in (10) respectively, the log-cumulant estimator for the 
Weibull distribution is finally obtained as follows: 
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Obviously, after calculating the sample log-cumulants, the 
shape parameter c  can be estimated firstly, and then the scale 
parameter b  can be estimated. Compared to the moment 
estimator (equations (4) and (5)), the log-cumulant estimator 
does not need to solve the nonlinear equation due to its explicit 
closed form expressions, so it is computationally simple. 

Firstly, the log-cumulant estimator was tested on Monte 
Carlo simulations. From equation (10), it is obvious that the 
sample size N  is an important factor that determines the 
performance of the log-cumulant estimator, which is illustrated 
in Fig. 3. For each sample size chosen, the Monte Carlo 
simulation was repeated 100 times independently, and the 
average and standard deviation of all estimated parameter 
values were selected as the final estimation results. In general, 
when the sample size is getting larger, the estimated parameter 
values approach to the true parameter, and the standard 
deviations are becoming lower. This means that the larger 
sample size leads to the higher performance of the 
log-cumulant estimator. For Monte Carlo simulations, the 
Weibull-distributed samples are generated randomly according 
to (2), so the Monte Carlo simulation should be independently 
repeated many times, and the average of all estimated 
parameters should be selected as the final estimated parameter 
value. This indicates that the running times is another important 
factor that determines the estimation accuracy of the 
log-cumulant estimator, which is illustrated in Fig. 4. 
Obviously, more running times leads to higher estimation 
accuracy. For various true values of the shape parameter c , 
Table II illustrates the average and standard deviation values (in 
parentheses) of Monte Carlo simulation results based on the 
log-cumulant estimator, and Fig. 5 shows the performance 
comparison of the log-cumulant estimator and the moment 
estimator as a function of true c . For each true parameter c , 
the Monte Carlo simulation experiment was repeated 100 times 
independently, and the number of samples was 10000 for each 
time. Obviously, the log-cumulant estimator leads to high 
estimation accuracy no matter what values are chosen for the 
true c . Therefore, the log-cumulant estimator is robust and not 
sensitive to samples. Even for the samples with severe 
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impulsiveness (e.g., 0.15c = ), the log-cumulant estimator can 
achieve high estimation accuracy. For the moment estimator, 
on the other hand, the estimated parameters may be close to that 
of the log-cumulant estimator for the larger values of c . 
However, as shown in Table I, the performance of the moment 
estimator is deteriorated for the smaller values of c  (e.g., 

0.15c = ). In a word, the log-cumulant estimator is superior to 
the moment estimator, which is validated by the Monte Carlo 
simulations.  

Secondly, the log-cumulant estimator was tested on the real 
SAR image in Fig. 6 which was obtained from the Sandia 
National Laboratories. Modeling the Fig. 6 with the Rayleigh 
distribution and the Weibull distribution whose parameters 
were estimated from the moment estimator and the 
log-cumulant estimator respectively, the results are shown in 
Fig. 7, and the estimated parameters and the corresponding K-S 
fit probability are provided in Table III [1, 10] (It should be 
noted that the Rayleigh distribution is just the Weibull 
distribution in (1) when 2c = ). The K-S fit probability 
describes the fitness of statistical distribution to real SAR 
image. The larger value of the K-S fit probability, the better fit 
of distribution to the image. In this letter, the K-S fit probability 
is selected as a quantitative measure to test the estimation 
accuracy of various estimators. The larger the K-S fit 
probability is, the higher estimation accuracy the estimator has. 
Compared to the moment estimator, the log-cumulant estimator 
leads to the Weibull distribution that fits the SAR image well 
enough especially the high peak, so the log-cumulant estimator 
corresponds to the larger value of K-S fit probability. This 
indicates that the log-cumulant estimator has higher estimation 
accuracy compared to the moment estimator. In addition, it is 
obvious that the Rayleigh distribution cannot describe the 
statistical characteristics of the high-resolution SAR image, 
which results in the lowest K-S fit probability. 

 
 

 
(a) ĉ  varying with sample size 

 
(b) Standard deviation of ĉ  

 
(c) b̂  varying with sample size 

 
(d) Standard deviation of b̂  

Fig. 3. Performance of log-cumulant estimator as a function of sample 
size (true 1.5c = , 1b = ) 
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(a) ĉ  varying with running times 

 
(b) b̂  varying with running times 

Fig. 4. Estimation accuracy of log-cumulant estimator as a function of 
running times (true 1.5c = , 1b = ) 

 
 

TABLE II  
MONTE CARLO SIMULATION OF LOG-CUMULANT ESTIMATOR (TRUE 

1b = ) 
True Value 0.15c =

0.1503
(0.0015)

1.0010
(0.0761)

ĉ

b̂

0.2c = 0.25c = 0.5c = 1c = 2c =
0.2004

(0.0023)

0.9998
(0.0487)

0.2504
(0.0025)

0.9994
(0.0404)

0.4995
(0.0051)

1.0012
(0.0193)

1.0012
(0.0105)

1.0001
(0.0120)

2.0000
(0.0228)

0.9996
(0.0059)  

 
(a) ĉ  as a function of true c  

 
(b) b̂  as a function of true c  

Fig. 5. Monte Carlo simulation comparison of log-cumulant estimator 
and moment estimator (true 1b = ) 

 

 
Fig. 6. High-resolution SAR image (Kirtland Air Force Base, 
Albuquerque, NM, 1-ft resolution) 
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Fig. 7. Modeling Fig. 6 with Rayleigh and Weibull distributions 

 
TABLE III  

ESTIMATED PARAMETERS AND K-S FIT PROBABILITY OF VARIOUS 
DISTRIBUTIONS FOR FIG. 7 

Estimated Parameters Probability

Weibull (moment estimator) ˆˆ 3.3126 75.4865c b= = 0.9616

Rayleigh

Weibull (log-cumulant estimator)

ˆ 76.4200b = 0.8516

ˆˆ 3.8275 74.5996c b= = 0.9748  
 

V. CONCLUSION 
The log-cumulant estimator based on the second-kind 

statistics is proposed to estimate the parameters of Weibull 
distribution in this letter. Compared to the moment estimator, 
the log-cumulant estimator has explicit closed form 
expressions, and it can achieve good performance even for the 
severely impulsive samples. Parameter estimation results from 
Monte Carlo simulations and real SAR image demonstrate that 
the log-cumulant estimator leads to higher estimation accuracy 
compared to the moment estimator. Therefore, we suggest 
adopting the log-cumulant estimator instead of the moment 
estimator. In this work, we test the log-cumulant estimator 
experimentally. In the future research, we should evaluate the 
log-cumulant estimator theoretically.  
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