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Abstract: A large scale WLAN infrastructure requires the 
placement of many thousands of access points (APs). The current 
approach is to deploy these in an empirical and ad-hoc manner. 
However, this deployment results in poor resource utilization and 
inaccurate positioning due to signal overlap and black spots. In 
this paper, we propose three structured approaches to WLAN 
infrastructure deployment that would allow better positioning 
accuracy and optimal coverage. These three approaches make 
use of triangular, square, and hexagonal configurations. Our 
results show that all three are more effective in both 2-D and 3-D 
space than any of the current ad-hoc or empirical approaches to 
AP deployment. Overall, the hexagonal approach is the most cost 
effective and accurate. It allows better positioning with fewer APs 
than are normally used. As a further contribution, 3-D rendering 
of buildings and wireless signal coverage could give engineers a 
concrete visualization that helps them to foresee where the blind 
spots are in advance and how signal varied across multi-story 
buildings, such that engineers could estimate the optimal number 
of APs and where they should be placed. 

Index terms: WLAN infrastructure, location fingerprinting, 
localization   

I. INTRODUCTION 
Wireless Local Area Networks (WLANs) are currently 

deployed on a large-scale and in a wide range of urban 
environments. Very often, these WLANs are made up of many 
access points (APs) or nodes deployed across extensive, 
topographically varied, heavily built up, and constantly 
changing environments that may carry heavy traffic [1]. The 
basic requirements of effective WLANs are that they should 
provide adequate coverage so that when users wish to access 
location-aware (e.g., pervasive computing-enabled) 
applications and services, the WLANs will permit user mobile 
devices to be accurately positioned and that WLANs be 
deployed in a cost-effective and resource-efficient way, both in 
outdoor and indoor environments. Current approaches to 
infrastructure design and deployment, however, apply an 
unstructured approach to WLAN infrastructure design that 
implies poor resource utilization, placing and positioning APs 
manually on the basis of empirical measurements of RSS 
(received signal strength) taken by engineers. [2]. Such an 
approach may use many APs but still leave blind spots or 
places where there are too many access points packed closely 
together. An ad-hoc AP deployment results in signal overlap 
and interference reducing positioning accuracy.  

Current research on the visual representation of WLAN 
signals [3, 4] is based on the accuracy of positioning systems 
and proximity graphs, such as the Voronoi diagram and 
clustering graphs. There are two drawbacks to these 
representations. First, none of them allow the visualization of 
location uncertainty. For example, showing on a 2-D or 3-D 
display where there might be blind spots would be paramount 
to the initial deployment of APs. Second, these methods are 
difficult for the estimation of the AP number required for 
optimal coverage. Also, the dynamic location optimization of 
APs is still an open problem. 

Location or positioning uncertainty could be identified where 
signals overlap. In our simulations we use a location 
fingerprinting (LF) [4-8] approach. In that case, positioning 
uncertainty occurs within the locus, a line (a series of points) 
having the same RSS measured within the overlap of two or 
more AP signals. This identity of RSS makes it impossible to 
accurately localize points of uncertainty. Increasing the number 
of APs in an area reduces the zone of most common overlap 
and thereby shortens the locus (seen as a line). Given enough 
APs, positioning uncertainty can be eliminated and it becomes 
possible (in terms of a particular resolution) to achieve perfect 
positioning. But as long as an ad-hoc approach is used, it is not 
possible to estimate in advance the optimal number of APs. A 
more structured approach should produce economies and 
efficiencies as well as improved capabilities. In our previous 
work [9, 10], we focused on the wireless tracking problem from 
the view of the end-user. We enhanced the positioning 
algorithm of the traditional location fingerprinting approach 
with fewer access points and make more effective to achieve 
accurate positioning.  

In this paper, we focus on how to achieve accurate 
positioning from the view of wireless infrastructure 
deployment. We propose a cell-based WLAN infrastructure 
deployment design that allows the visualization of blind spots, 
predicts how many APs will be optimally required for 
positioning, and suggests where they should be placed. The 
proposed approach extends our previous work [11, 12] from a 
two-dimensional to a three-dimensional approach and uses 
three structured geometric configurations for use in WLAN 
infrastructure deployment:  (1) triangular, (2) square, and (3) 
hexagonal.  

The proposed approach both improves the speed and 
efficiency of large-scale WLAN infrastructure deployment and 
allows WLAN engineers and designers to choose an optimal 
deployment solution from a selection of different AP 
distributions. Our simulations show that all of the proposed 
structured approaches are much more cost effective than the 
current unstructured AP deployment approach, all producing a 
regular and predictable location tracking. The hexagonal

Manuscript received Aug. 23, 2009; revised November 10, 2009. 
Authors are with the Department of Computing, The Hong Kong

Polytechnic University Hung Hom, Kowloon, Hong Kong Email:
{csclchan, csgeorge,csscmak}@comp.polyu.edu.hk 

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 5, NO. 4, DECEMBER 2009 117

1845-6421/09/8182 © 2009 CCIS

FESB
Typewritten Text
   Original scientific paper



approach is overall the most cost-effective way to achieve 
perfect accuracy, requiring only two-thirds as of the APs 
required by the unstructured approach.  As a further 
contribution, we offer a virtual, 3-D rendering of wireless 
signal coverage in both a small-scale laboratory environment 
and a large-scale university campus environment. It would be 
useful in any kind of built-up area but in particular where there 
are many multi-story buildings.  

The rest of this paper is organized as follows: Section II 
describes related work on the deployment of mobile phone 
networks and contrasts it with our approach. Section III defines 
location uncertainty. Section IV presents the design of the 
proposed cell-based WLAN infrastructure. Section V describes 
the positioning methodology. Section VI introduces channel 
interference among APs. Section VII presents the visualization 
of WLAN signal distribution. Section VIII presents the 
simulation setup. Section IX presents the results and 
discussion. Finally, Section X offers our conclusion and future 
work. 

II. RELATED WORK 
Although mobile phone networks do not require highly 

accurate positioning, they do address a very similar set of 
problems to those of WLAN AP positioning in that they must 
efficiently and cost-effectively cover an area with a signal of 
adequate strength. The current mobile network approach is to 
establish a regularly-placed infrastructure of mobile stations 
(MS) [13]. Each MS is placed at the centre of a hexagon that 
lies within the radius of the signal of the MS and that is 
contiguous with other similar hexagons so as to form a 
honeycomb-celled tessellation over the network area.  

While the requirements and constraints of the mobile cell 
network and an AP network are similar, they are not identical 
in at least five ways. First, black spots and interference are 
more tolerable in cell phone networks because mobile users can 
very quickly move into areas of more acceptable signal 
strength or quality. Second, MS apparatus are much more 
powerful than AP devices and so are less limited in their ability 
to pass through walls or are less influenced by traffic or by 
other signaling devices. Third, MS devices may be licensed to 
override competing signals. Fourth, a very large mobile area 
can be covered by a relatively small number of MS, while a 
WLAN (Wi-Fi) network will require a proportionally much 
larger number of APs. Finally, and perhaps most distinctively, 
positioning is qualitatively different in the two technologies. In 
a mobile network, devices can be located merely as being 
within the radius of an MS. In a Wi-Fi network, we can locate a 
device much more accurately, as being at a particular 
coordinate. Currently, this requires that the device be in 
communication with two or more APs so as to be able to 
calculate data from them. However, in certain real-world 
scenarios, a device will not be simultaneously within the range 
of more than two APs. Consequently, while it might be able to 
recognize a device in its radius, it may not be able to calculate 
its coordinates. 

III. PROBLEM DEFINITION OF LOCATION UNCERTAINTY  
Location uncertainty could be identified when one of the co-

ordinates in a 2-D or 3-D space could not be given by the 
sensors. In this paper, we make use of existing WLAN 
infrastructure to estimate the position of a WLAN-enabled 

device. There are two fundamental positioning approaches, 
propagation-based [6, 14, 15] and location fingerprinting (LF) 
[5-7]. We will use an LF approach only in following examples.  

 

Fig. 1. Location uncertainty with one access point case is on the 
circumference of signal propagation where they share same RSS. 

 

Fig. 2. Location uncertainty with 2 access points case is on the 
tangent of circular signal propagation where they share same RSS. 

LF-based approaches [4-7] locate a device by accessing a 
database containing the location fingerprint (RSS and 
coordinates) of other devices within the Wi-Fi footprint and 
then uses those fingerprints to calculate its own coordinates 
compared with those in an LF database. More specifically, the 
LF method requires the collection of data {(Yn,Ci), i = 1...N}, 
for N locations in the site, where Ci is the known location of the 
i’th measurement and Yi = (Yi, ...,YiN ) is the RSS vector when 
the transmitter is at Ci. The vector Yi is the “fingerprint” of the 
location Ci. When a new fingerprint Y is observed from a 
transmitter in unknown location A, the locations of Y is 
estimated by searching for the fingerprint Yi that is closest to Y 
at d distance and estimate the location with the corresponding 
Ci. 

When using an LF approach in a WLAN infrastructure, 
location uncertainty can be defined as a locus - a line (a series 
of points) having the same RSS measured within the overlap of 
two or more AP signals. Fig. 1 shows the problem with one AP 
and circular signal propagation. Points A, B and C share the 
same RSS (location fingerprint). If a user is located at point B, 
the LF approach would not be able to estimate whether the user 
is at point A, B or C. In the case of one AP, the location 
uncertainty happens on the circumference of signal 
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propagation. Fig. 2 shows the problem where two APs, at 
points X and Y, share the same location fingerprint at a point 
on a tangent and so share the same RSS and cannot be located.  

As noted earlier, a solution is to increase the number of APs 
in the area, reducing the zone of most common overlap, and 
shortening the locus. Given enough APs, location uncertainty 
can be eliminated. But such an ad-hoc approach would not be 
able to tell us in advance how many APs are optimally required 
or where they should be placed. 

Uncertainty is usually derived from the geometric dilution of 
precision in GPS [16, 17]. Dilution of precision provides a 
scaling factor for the GPS receiver’s accuracy. [16, 17] 
quantify the location uncertainty in meters. In our definition, 
location uncertainty is a co-ordinate in a 2-D or 3-D space that 
could not be identified its location. In Section IX, we base on 
WLAN signal coverage and calculate every co-ordinate of 
location uncertainty.  

IV. THE DESIGN OF THE CELL-BASED WLAN 
INFRASTRUCTURE 

A maximally accurate and resource-efficient cellular WLAN 
infrastructure will cover the biggest area with the minimum 
number of APs without allowing empty spaces and with the 
minimum of interference between cells. A tessellation is thus 
required and this can be achieved using regular polygons of 
three kinds:  quadrangles, triangles, and hexagons. Each AP is 
placed at the center of the cell. A hexagonal plane tessellation 
will produce a honeycomb mesh. [18] Fig. 3, Fig. 5 and Fig. 7 
show a 2-D distribution of APs in triangular, square, and 
hexagonal tessellations. Fig. 4, Fig. 6 and Fig. 8 show 
triangular, square, and hexagonal distributions of APs in 3-D 
space. The red points indicate the AP locations, the green 
regions are the cell area, and the yellow spheres represent the 
wireless coverage of the APs. 

 

Fig. 3. Triangular Tessellation  

 

Fig. 4. Triangular distribution 

 

Fig. 5. Square Tessellation 

 

Fig. 6. Square distribution 

 

Fig. 7. Hexagonal (or honeycomb mesh) Tessellation  

 

Fig. 8. Hexagonal distribution 

Consider a physical layout of the wireless network as shown 
in Fig. 7. The hexagonal area is a cell. Each cell will contain 
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one AP and for a simplistic reason, we consider to have a 
circular Wi-Fi coverage. Thus, there are signal overlap areas. It 
may not be possible to localize a device in such an area dues to 
the locus problem as described in the Introduction and Section 
III. In an LF-based approach, they deal with the positioning 
uncertainty problem by estimating the location using a pre-
recorded LF database for each location. The positioning 
accuracy can be defined as the number of distinguishable 
location points. On this basis, then, APs would be evenly 
distributed, placed at the centre of hexagons as in Fig. 9. In this 
configuration, each AP provides total coverage of seven cells, 
i.e., its own and six contiguous cells, and a user receives at 
least seven AP signals. 

 
Fig. 9. Hexagonal Cells satisfy with 1.5 cell radius coverage 

V. THE POSITIONING METHOLOGIES 
Two positioning methodologies are typically applied in 

WLANs, propagation based approaches and location 
fingerprinting (LF). Our previous works [9, 10] make use of LF 
to track a WLAN-enabled device. In our later simulations we 
will use only an LF approach but for completeness in the 
following we briefly describe both. 

A. Propagation-based Approach 
Propagation based approaches [14, 15] estimate the position 

of a device by first applying an algorithm to calculate the RSS 
of APs in an area and then applying a set of triangulation 
algorithms. The propagation-based algorithm [7] is used to 
calculate the RSS as follows: 

 wallLossddrdr kki −−= )(log10)()( 1000 α  (1) 

where D = d1...dn | di ∈ℜ3{ }  is a set of locations; 

R = r1...rn | ri ∈ℜn{ } is a set of current received LF vectors 
with respect to known di; α is the path loss exponent (clutter 
density factor) and wallLoss is the sum of the losses 
introduced by each wall on the line segment drawn at 
Euclidean distance dk. 

Initially, r0 is the initial RSS at the reference distance of d0 is 
1 meter (this is 41.5 dBm for LOS propagation and for 37.3 
dBm NLOS propagation for some report measurement) [19]. 
The path loss exponent α at a carrier frequency of 2.4 GHz is 
reported to be 2 for LOS propagation and 3.3 for NLOS 
propagation [7]. Under other circumstances, α can be between 
1 and 6. 

 
Fig. 10. Triangular Algorithm 

The triangular positioning algorithm uses trigonometry and 
geometry to compute the locations of objects. In a 2D 
environment, this requires three access points (APs). The 
locations of these three APs’ location are denoted as (x1, y1), 
(x2, y2), (x3, y3) and the object location is (x, y). Using the 
propagation-based theorem in (1), we can denote the distance 
between the access points and object location as d1, d2, and d3, 
where d0 is the initial RSS at the reference distance. To 
estimate the location of the object, we use the tri-lateration 
method as follow. 
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After calculating the distance, we find the angle θ1, θ2 and 
θ3 between the object location and APs, and then we are able 
to calculate the possible location matrix of the object as 
follows: 

 
x1 ' y1 '

x2 ' y2 '

x3 ' y3 '

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

x1 + d1 cosθ1 y1 + d1 sinθ1

x2 + d2 cosθ2 y2 + d2 sinθ2

x3 + d3 cosθ3 y3 + d3 sinθ3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 (3) 

If three circles does not intersect at a point, each column 
value of a location matrix are different, we could simply 
average the matrix value to estimate the location (x, y) as 
follows: 

 x =
x1 '+ x2 '+ x3 '

3
 (4) 
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y =

y1 '+ y2 '+ y3 '
3

 (5) 

B. Location Fingerprinting Approach 

There are two alternative Location Fingerprinting 
approaches, the K-Nearest Neighbor (K-NN) and the 
probabilistic approach. 

1) K-Nearest Neighbor Location Fingerprinting Approach 
 

The K-Nearest Neighbor (K-NN) algorithm requires two sets 
of data. The first set of data is the samples of RSS from N APs 
in the area. Each element in a vector is an independent RSS (in 
dBm) collected from APs in the location. The second set of 
data contains all of the average RSS from N APs at a particular 
location. This second dataset forms the location fingerprinting 
database. { }n

in fffF ℜ∈= |...1  is a set of sampling LF 
vectors in database. We estimate the location dk by clustering 
the Euclidean distance |r−fi| between current received LF 
vector r and sampling LF vector fi with position di as 

 
∑
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2) Probabilistic Location Fingerprinting 
 

Probabilistic LF applies Baye's theorem to calculate the most 
probable location out of the pre-recorded LF database, F = [f1, 
f2, f3...fN]. We can estimate d by 

 ( )[ ] ( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
=

FP
dPdFPFdP dd maxargmaxarg  (7) 

Since P(F) is constant for all d, the algorithm can be rewritten 
as 

 ( )[ ] ( ) ( )[ ]dPdFPFdP dd maxargmaxarg =  (8) 

As P(d) can be factored out from the maximization process, 
the probabilistic positioning algorithm is as 

 ( ) ( )∏
=

=
N

i
i dfPdFP

1

 (9) 

VI. OVERLAPPING CHANNEL INTERFERENCE 
The bandwidth of wireless network is limited because of the 

property of wireless networks and stations have to share the 
limited bandwidth. [20] IEEE 802.11b/g has 14 overlapping 
frequency channels. Channel 1, 6 and 11 are non-overlapping 
channels.  

 

Fig. 11. IEEE 802.11b/g Frequency Spectrum to Channel Number 

As shown in Fig. 11, IEEE 802.11 b/g spreads through 2,401 
MHz to 2,483 MHz. Each channel spreads over 22 MHz. Only 
5 MHz separates two adjacent channels such that most of 
existing channels are overlapped.  

A. Interference-level Factor 
The interference-level factorγ is defined as follows: 

 γ (Δc) = max(0,1− kΔc)  (10) 

where Δc is the absolute channel difference and k is the non-
overlapping ratio of two channels. γ and  Δc are in Db unit. 
When Δc increases, γ decreases. For example, if Δc =0, then 
γ (Δc) = 1 and if Δc ≥ 5 , then   γ (Δc) = 0 . In other words, 
for channel 1 and 6, Δc = 5, k = 0, then γ (Δc) = 0 , 
suggesting no interference. In real case, if APs are installed far 
enough with others, γ should be at least equal to the above 
threshold.  

B. Signal-to-Interference-plus-Noise-Ratio 
Signal-to-Interference-plus-Noise-Ratio (SINR) is a very 

common indicator to measure interference. SINR is defined as 
follows: 

 SINR =
Rb

γ (Δc) R + n∑
 (11) 

where Rb is the highest RSS after path loss calculation. R is the 
remaining set of RSS after path loss calculation. n is the noise 
signal strength. Rb, R, n are in dBm unit. Usually, n should have 
the value of -100dbm. Again SINR should be at least equal to 
above calculated threshold which depends on the distance 
among APs, the transmission rate, the modulation scheme and 
the required bit-error rate.  
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VII. WLAN SIGNAL DISTRIBUTION 
In this section we extend our previous work [8] and describe 

our approach to visualizing the distribution of a WLAN signal. 

We first conducted a survey of WLAN signals on the 
campus of The Hong Kong Polytechnic University (PolyU). 
The approximate area of the campus is 9.34 hectare and there 
are 26 main buildings from Core A to Core Z and seven other 
buildings with WLAN access. The sampling schedule was set 
to collect the RSS data every 5 seconds. The vector of the RSS 
data at each location forms the location fingerprint with around 
20 RSS elements in the vector. We measured the signal at 27 
locations on the campus. The total number of RSS samples was 
12 days X 4 directions X 27 buildings X 20 APs X 2 times = 
51840. Fig. 12 shows a 3-D rendering of parts of the PolyU 
campus. 

On the top of the 3-D PolyU campus model, we 
superimposed the WLAN signal distribution color-coded as 
follows: red represents strong signals and blue weak signals. 3-
D rendering of buildings and wireless signal coverage could 
give engineers a very concrete visualization that helps them to 
estimate the signal distribution in advance and plan for 
deployment of wireless infrastructure.   

The following normalization distribution is used to represent 
the fuzzy membership functions.  

( )
( )

2

2

2

2
1 σ

μ

σπ

−

=
x

exP
 

(12) 

where p(x) is the probability function, x is the normalized RSS, 
σ is the standard deviation of normalized signal normalized 
strength in a region, μ is the mean of signal strength in a region. 
The wireless network covers the entire campus. The fuzzy set 
interval of blue is [0, 0.5], [0, 1] is green and [0.5, 1] is red. For 
the blue region, we substitute σ = 0.5, μ= 0. 
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For the green region, we substitute σ = 0.5, μ= 0.5. 
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For the red region, we substitute σ = 0.5, μ= 1. 

( ) ( )212
Re 2

215.0 −−=<< x
d ex

π
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(15

) 

Assume that B is a finite set of RSS vector belonging to a 
particular color region, where B = b1...bn | bi ∈ℜn{ } , i.e., 

 bi ∈S , ∀S ∈ R , and 
  
∀S ∈ l,u⎡⎣ ⎤⎦ , where l is the lower bound 

of fuzzy interval and u is a upper bound of fuzzy interval. To 
analyze the distribution surfaces S, there always exists a 
spatio-temporal mapping, SBq →: . 

 ∫=
S

dSSbxhxq )()()(  (16) 

where h(x) is the characteristic function of S, i.e., 

 

  

 

 

 

Fig. 12. 3-D PolyU Campus 
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(17a) 

(17b) 

and b(S) is a weight function that specifies a prior on the 
distribution of surfaces S. We can explicitly define b(S) by (1). 
By (13), (14), (15), (16) and (17), the WLAN signal 
distribution can be illustrated. Fig. 13 shows the 3-D Fuzzy 
WLAN signal Distribution. The signal can be received around 
75m height and cover almost every place of PolyU campus. 
 
 

 

Fig. 13. 3-D Fuzzy WLAN Signal Distribution with the campus 
floor plan 

VIII. SIMULATION SETUP 
In the following sections we describe two sets of 

simulations. The first set of simulations (Set A) is designed to 
determine the positioning accuracy of our four basic 
distributions, triangular, square, hexagonal and ad-hoc where 
we vary the number of APs and interference. Furthermore, we 
investigate 2-D and 3-D distribution of location uncertainty 
under different structured approaches. The second of 
simulations (Set B) is designed to have the proposed Wi-Fi 
tracking system on the 7th floor of the PQ building, in 
Department of Computing, at The Hong Kong Polytechnic 
University. 

In all two sets of simulations, for reasons that have been 
mentioned, we measured accuracy using only the LF approach 
Accuracy is defined in a range from zero to one, with zero 
meaning not detected and one meaning perfectly accurate. The 
radius of coverage of each AP is 80m. In Set A, the signal 
strength ranges between -85dbm and -30dbm in a testing space 
of 150m X 100m x 10m. Table I summarizes the setup for Set 
A.  

In Set B, we walked through the hallway on the 7th Floor 
with a WLAN-enabled device. The estimated and actual 
coordinates were calculated and collected at 61 locations in the 
hallway. The dimension of floor is approximately 50m by 
20m. The received signal sensitivity also limits the range of 
the RSS to be between -90 dBm and -35 dBm. Table II 
summarizes the setup for Set B.  

TABLE I.   

SIMULATION SETTINGS  (SET A) 

Item Description 
Total area 150m x 100m 
Height 10 m 
Positioning resolution 3 meters 
Wi-Fi coverage from each APs 80 meters 
Range of signal strength -85dbm to -30dbm 

 
TABLE II.   

SUMMARY OF EXPERIMENT (SET B) 

Item Description 
Total laboratory area 1000 square meter 
Number of sample points 4880 sample points 
Positioning resolution 3 meters 
Wi-Fi channel 1, 6, and 11 
Positioning resolution 3 meters 
Range of signal strength -90 dBm to -35 dBm 

 

IX. RESULTS AND DISCUSSION 
In this section we describe the result from the simulation 

Sets A and B. Subsection A to D report the result in Set A. 
Subsection E reports the result of trajectory estimation in Set B. 
Subsection F reports the signal distribution in a real-case 
environment. 

A. Effect of cell-based WLAN infrastructure and number of 
APs to Accuracy 

Fig. 14 and Table III show the relationship of number of APs 
to positioning accuracy under the four different deployment 
scenarios. As can be seen in Fig. 14, the performance of the 
four approaches is similar when few APs are used yet the 
structured approaches all nonetheless always outperform 
unstructured approaches at every setting. The superior 
performance of the structured approaches becomes 
progressively stronger as more APs are added and ultimately 
they achieve perfect accuracy. Except at very low numbers of 
APs, when the triangular approach is the most accurate, the 
hexagonal distribution is the most accurate approach and 
achieves perfect accuracy first, at 18 APs.  

 
Fig. 14. Relationship of number of APs to positioning accuracy 

under four differnt deployment scenarios 
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Table III compares the cost-efficiency of the structured and 
the ad-hoc or empirical approaches. The hexagonal approach is 
clearly the best performer, achieving perfect accuracy with just 
18 APs, making it considerably more cost-effective than the 
next-most effective, square, and very much more effective than 
triangular, which requires more than 40% more APs to achieve 
the same accuracy. Perhaps the most important point to take 
away here is that the unstructured approach never at any point 
matches the accuracy of the structured approaches and never 
achieves perfect accuracy. In fact, the best performance of the 
unstructured approaches, just 96%, was achieved over 100 
iterations and still required 23 APs, the number of APs required 
by the worst of the structured performances.   

TABLE III.   
POSITIONING  ACCURACY  WHEN  VARYING NUMBER OF APS 

No. of APs 
Accuracy (%) 
Triangle Square Hexagon Ad-hoc 

2 6% 7% 8% 4% 
5 36% 42% 46% 26% 
10 72% 76% 82% 64% 
15 89% 93% 97% 80% 
16 92% 96% 98% 82% 
18 96% 99% 100% 84% 
20 97% 100% 100% 88% 
23 100% 100% 100% 96% 
>25 100% 100% 100% 99% 

 

 

Fig. 15. Relationship of interference to accuracy under ascending, 
orthogonal and ad-hoc channel allocation 

B. Effect of Interference on the positioning accuracy 
Fig. 15 shows the relationship for the channel interference to 

positioning accuracy. In order to see how channel interference 
affected the positioning accuracy specifically, we fix the 
number of APs to be 13. We only vary the channel interference 
from 0 to 25 dBm and the accuracy is in a scale from 0 to 1 (1 
represents 100% accuracy). The channel interference obeys (10) 
and (11). Four different types of access point distribution have 
over 80% positioning accuracy when the interference is below 
7dBm. When the interference strength increases after 10dBm, 
the performance of positioning accuracy worsens seriously.   

Obviously, when channel interference increases, the 
positioning accuracy decreases. However, this interference 
value is difficult to control because it depends on the 
environment. One way of improving this is to take more 
iteration. This could contribute to adjust the setting. As can be 
seen in Fig. 15, the positioning performance of hexagonal 
distribution is the most accurate. The result indicates that 
hexagonal distribution could effectively achieve approximately 
12% more accurate when the system is under high channel 
interference. 

C. Result of 2-D Simulation of Location Uncertainty under 
triangular,square and hexagonal distribution 

 
The colored dots represent positions of the localization 

uncertainty. Each pair of colored dots represent where 
localization returned same RSS reading for two coordinates. In 
other words, more colored dots means the positioning accuracy 
is worse. Each blue arc line represents the coverage of an AP.  

Fig. 16, Fig. 17, and Fig. 18 represent WLAN infrastructure 
AP deployments under the simulation setup for our three 
proposed geometric deployment patterns. The testing area is 
3x3 m 2-D grid. There are 1,734 grid points. The colored dots 
in corners show places where accurate positioning is not 
possible. Fig. 16 (triangular) shows 83 colored points and the 
overall positioning accuracy is 95.2%. Fig. 17 (square) shows 
52 colored points and a positioning accuracy of 97%. Fig. 18 
(hexagonal) shows 39 colored points and a positioning 
accuracy of 97.8%. The performances are similar to what was 
found in SET A. A hexagonal distribution of APs gets the 
highest accuracy. 

D. Result of 3-D Simulation of Location Uncertainty under 
triangular,square and hexagonal distribution 

 
Fig. 19, Fig. 20, and Fig. 21 show the distribution of location 

uncertainty in our three types of WLAN infrastructure in 3D 
space. This time is in a 3x3x3 m 3-D grid with a total of 17,340 
grid points. The dots of poor positioning accuracy in general 
correspond to corners, edges and walls where signals overlap 
and propagate weakly. Fig. 19 shows 698 colored points in a 
triangular distribution in a 3-D space (150m x 100m x 10m). 
The positioning accuracy is approximately 96%. Fig. 20 shows 
514 colored points in a square distribution in a 3-D space. The 
positioning accuracy is approximately 97%. Fig. 21 shows 220 
colored points in hexagonal distribution in a 3D space. The 
positioning accuracy is approximately 98.7%.  

E. Result for Trajectory Estimation 
 

Fig. 22 shows the original and estimated walking trajectory 
on the 7th floor PQ building at The Hong Kong Polytechnic 
University under Kalman Filter and Traditional Location 
Fingerprinting approach. As can be seen in Fig. 22, due to 
signal fluctuation, the estimated path of traditional LF bulged 
inside the room PQ703 and PQ717 sharply. We make use of 
our previous work [9] to partially eliminate inaccurate 
estimation due to signal fluctuation. The result indicates that 
Wi-Fi positioning approach could be stably and precisely locate 
a WLAN-enabled device. 
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Fig. 16. The distribution of location uncertanity in a triangular 
WLAN Infrastructure 

 

 

Fig. 17. The distribution of location uncertanity in a square WLAN 
Infrastructure 

 

 

Fig. 18. The distribution of location uncertanity in a hexgonal 
WLAN Infrastructure 

 

Fig. 19. 3-D Distribution of Location Uncertainty in triangular APs 
distribution 

 

 

 

Fig. 20. 3-D Distribution of Location Uncertainty in square APs 
distribution 

 

 

 

Fig. 21. 3-D Distribution of Location Uncertainty in hexagonal APs 
distribution 
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Fig. 22. Original and estimated walking trajectory on the 7th floor PQ building at The Hong Kong Polytechnic University under Kalman 
Filter and Traditional Location Fingerprinting approach 

F. RSS distribution on building floor 
Fig. 23 shows the RSS distribution on the 7th floor PQ 

building at The Hong Kong Polytechnic University, where red 
to blue represent as strong to weak signal strength. As be 
shown as Fig. 23, there is a red intensity cluster in the middle 
left of the floor plan (near the room PQ703), it means that the 
density of signal strength is strong at there, and the density of 
signal strength is weak at the right-bottom corner. Our 
sampling locations are even distributed, but the APs are not 
equally distributed. Signal distributes from strongly in the left 
to weakly in the right. This result indicates that the signal is 
not equally distributed even in an empirical real case. 

 

Fig. 23. Fuzzy WLAN Signal Distribution on the 7th floor PQ 
building at The Hong Kong Polytechnic University 

X. CONCLUSION 
A typical WLAN may cover a very large area, built up and 

topographically varied, and require the placement of many 
thousands of APs, for example, the area of The Hong Kong 
Polytechnic University is 9.53 hectares and is provided with 
more than 3,000 APs. Current approaches to the deployment of 
APS, however, are ad hoc or empirical and involve 
considerable applications of human and physical resources, 
especially where high positioning accuracy for a complete area 
of coverage is required. In this paper, we propose and simulate 
three geometric structured approaches to WLAN infrastructure 
deployment and in a series of simulations compare their 
accuracy with that of unstructured approaches. The 

contribution of the paper is that we show that the current 
unstructured approach to AP deployment is less cost effective 
than the structured approaches in our experiments. It is of 
interest to note, and may be useful to know in some 
circumstances, that where few APs are to be deployed, the 
triangular approach may outperform the hexagonal approach. 
Overall, however, the hexagonal approach is by far the most 
cost-effective approach and infrastructure designers and 
administrators may wish to take account of this in their 
infrastructure designs and deployments. 

XI. FUTURE WORK 

Although our proposed approach seems to give an 
improvement of positioning and shows structural deployment 
of AP is better than an empirical approach, the  proposed 
approach suffers from physical limitations such as the depth of 
walls and floors and their composition (e.g. concrete) that 
would affect issues of AP placements and visualization of 
wireless signal. In real world scenarios, engineers need to go 
through every floor of every building in a construction site to 
detect whether a region is sufficient enough to be covered by 
wireless APs. After they collect wireless signal sample, they 
will decide where APs should be added to increase signal 
coverage or be taken away to reduce signal interference. As 
mentioned, strict implementation of our proposed approach 
would be too ideal because architecture of a building may not 
allow such AP deployment. Our proposed approach could be 
act as blueprint of deployment to save massive labor works for 
signal surveying. In the future, we will explore the hybrid 
deployment of structural and empirical approaches that allow 
the scalability and flexibility.  We will make use of findings in 
wireless signal distribution and location uncertainty to look at 
energy-consumption problems of wireless infrastructure. 
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