
 
 

  
Abstract—Multiple Serially-Concatenated Multiple-Parity-

Check (M-SC-MPC) codes are a class of structured Low-Density 
Parity-Check (LDPC) codes, characterized by very simple 
encoding, that we have recently introduced. This paper evidences 
how the design of M-SC-MPC codes can be optimized for their 
usage in wireless applications. For such purpose, we consider 
some Quasi-Cyclic LDPC codes included in the mobile WiMax 
standard, and compare their performance with that of M-SC-
MPC codes having the same parameters. We also present a 
simple modification of the inner structure of M-SC-MPC codes 
that can help to improve their error correction performance by 
introducing irregularity in the parity-check matrix and 
increasing the length of local cycles in the associated Tanner 
graph. Our results show that regular and irregular M-SC-MPC 
codes, so obtained, can achieve very good performance and 
compare favorably with standard codes. 
 

Index Terms— Error Correcting Codes, Mobile WiMax, M-
SC-MPC Codes, QC-LDPC Codes. 
 

I. INTRODUCTION 
he scenario of forward error correction has dramatically 
changed in the last decades, thanks to the introduction of 

codes based on the so called “turbo principle”, like turbo 
codes [1] and Low-Density Parity-Check (LDPC) codes [2], 
[3]. The turbo principle consists in an iterated exchange and 
updating of reliability values referred to each received bit. 
More generally, iterative soft decoding algorithms use, as 
input, the soft information from the channel in the form of a 
priori probabilities on the status of each received bit, and 
iteratively update such values based on the parity-check 
constraints imposed by the code. Hence, the algorithm can 
produce extrinsic messages, to be used as starting values for 
the next iteration, and a posteriori probabilities, that represent 
the updated reliability values [4]. 
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LDPC codes, in particular, have been proved to be able to 
approach the ultimate channel capacity limits [5], and are 
experiencing an increasing diffusion in many 
telecommunication standards and practical applications. 

Very good LDPC codes can be obtained through a 
constrained random design of the parity-check matrix, but 
this, together with the need to adopt large codes for achieving 
good performance, can yield difficulties in their hardware 
implementation. For this reason, an increasing interest has 
been devoted to structured LDPC codes, that have 
characteristic matrices with a very simple inner structure, in 
such a way as to facilitate their implementation. 

Structured LDPC codes can be found in several 
recommendations and practical applications, as, for example, 
the DVB-S2 [6] and the IEEE 802.16e (or Mobile WiMax) 
standard [7]. A very important class of structured LDPC codes 
is represented by Quasi-Cyclic (QC) LDPC codes, having 
parity-check and generator matrices formed by circulant 
blocks [8]. This form of the characteristic matrices allows 
efficient encoding and decoding, without penalizing the code 
performance. However, the design of QC-LDPC codes is 
block-wise oriented, thus yielding some constraints on the 
choice of the code parameters. 

As an alternative, we have recently proposed Multiple 
Serially Concatenated Multiple Parity-Check (M-SC-MPC) 
codes, that allow to design structured LDPC codes without 
loosing flexibility in the choice of their parameters [9]. M-SC-
MPC codes are obtained as the serial concatenation of very 
simple component codes, named MPC codes, that are a 
generalization of Single Parity-Check (SCP) codes. This 
allows to design a concatenated encoder based on very simple 
circuits. The parity-check matrix of an M-SC-MPC is lower 
triangular and has columns with almost uniform Hamming 
weights. Under suitable hypotheses, such parity-check matrix 
can be sparse and free of short cycles; so, M-SC-MPC can be 
seen as LDPC codes and their decoding can be accomplished 
through efficient LDPC decoding algorithms based on the 
belief propagation principle. 

In this paper, we show how M-SC-MPC codes can be 
designed for practical applications and compare them with 
standard QC-LDPC codes. 
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We refer to the IEEE 802.16e standard and give some 
design examples of M-SC-MPC codes with the same 
parameters as standard QC-LDPC codes, in order to compare 
their simulated error correction performance. Furthermore, we 
present a very simple technique to introduce some form of 
irregularity in the parity-check matrix of an M-SC-MPC code. 
Irregular LDPC codes, in fact, have been proved to be better 
than regular ones, especially for low code rates [10]. For this 
reason, we propose a solution to design irregular M-SC-MPC 
matrices, that can also have longer local cycles in the 
associated Tanner graph. Simulations prove that irregular M-
SC-MPC codes can actually outperform almost regular ones. 

The paper is organized as follows. Section 2 describes the 
QC-LDPC codes adopted in the IEEE 802.16e standard. 
Section 3 summarizes the characteristics of our recently 
proposed M-SC-MPC codes and introduce a solution for 
designing irregular M-SC-MPC codes. Section 4 reports some 
design examples of regular and irregular M-SC-MPC codes. 
Section 5 describes the results of numerical simulations of the 
designed codes and their performance comparison with 
standard QC-LDPC codes. Finally, Section 6 concludes the 
paper. 

I. QC-LDPC CODES IN MOBILE WIMAX 
The IEEE 802.16e Mobile Wireless MAN standard, 

approved in 2005 [7], includes, as an option, the possibility of 
adopting LDPC codes for forward error correction (FEC). As 
common in wireless applications, the FEC scheme must be 
able to adapt itself against variable channel conditions, 
providing different solutions as tradeoffs between error 
correction capability and spectral efficiency. 

For this reason, a family of channel codes with different 
rates must be provided. In addition, all standards in the IEEE 
802 family deal with packet switched networks having 
variable length blocks; so, flexibility in the block length is a 
mandatory requirement for channel codes to be used in these 
systems. 

In order to fulfill such needs, the IEEE 802.16e standard 
adopts a family of QC-LDPC codes having variable code rate 
(R = 1/2, 2/3, 3/4, 5/6), and length (n) ranging between 576 
and 2304 bits by a step of 96 bits. These codes are used in 
conjunction with the following modulation schemes: QPSK, 
16-QAM and 64-QAM. 

Standard QC-LDPC codes have parity-check matrices 
formed by z×z circulant permutation blocks or null blocks. 
The parity-check matrix of each standard QC-LDPC code can 
be represented as shown in (1), where Ip(i ,j), 0 ≤ i ≤ rb − 1, 0 ≤ 
j ≤ nb − 1, is the z×z circulant permutation matrix 
corresponding to the cyclic shift p(i, j) ∈ [0; z − 1]. 
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This allows to obtain a synthetic representation of the parity-
check matrices: if each null block is conventionally associated 
to I-1, matrix H in (1) can be represented in an alternative form 
through a base matrix, Hbm, having size rb×nb, that contains 
the p(i, j) values associated to each block. For the IEEE 
802.16e standard codes, it is nb = 24, while rb varies according 
with the code rate. 

Two examples of Hbm are reported in (2), for the rate 3/4 
“B” standard code, and in (3), for the rate 5/6 standard code. 
From the structure of the base matrix we notice that, for both 
rates, the parity-check matrices of the codes have a dual-
diagonal form, that is, contain two diagonals of symbols 1 in 
their rightmost part. This property can facilitate encoding, 
when accomplished through the parity-check matrix [11], 
without yielding the penalization in minimum distance that 
would be due to the inclusion of identity blocks. The same 
also occurs for the other base matrices provided by the 

 
 

34

1 81 1 28 1 1 14 25 17 1 1 85 29 52 78 95 22 92 0 0 1 1 1 1
42 1 14 68 32 1 1 1 1 70 43 11 36 40 33 57 38 24 1 0 0 1 1 1

1 1 20 1 1 63 39 1 70 67 1 38 4 72 47 29 60 5 80 1 0 0 1 1
64 2 1 1 63 1 1 3 51 1 81 15 94 9 85 36 14 19 1 1 1 0 0 1

1 53 60 80 1 26 7

R B

− − − − − − − − − −
− − − − − − − − −

− − − − − − − − −
=

− − − − − − − − −
− −

bmH

5 1 1 1 1 86 77 1 3 72 60 25 1 1 1 1 0 0
77 1 1 1 15 28 1 35 1 72 30 68 85 84 26 64 11 89 0 1 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − − − −
⎢ ⎥

− − − − − − − − −⎢ ⎥⎣ ⎦

 

 (2)

56

1 25 55 1 47 4 1 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0 1 1
1 6 1 36 40 47 12 79 47 1 41 21 12 71 14 72 0 44 49 0 0 0 0 1

51 81 83 4 67 1 21 1 31 24 91 61 81 9 86 78 60 88 67 15 1 1 0 0
50 1 50 15 1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80 1 1 0

R

− − − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥− − − −
⎢ ⎥

− − − −⎣ ⎦

bmH  

 (3)

BALDI et al.: REGULAR AND IRREGULAR MULTIPLE SERIALLY-CONCATENATED MULTIPLE-PARITY-CHECK CODES 141



 
 

standard, for different code rates. The standard base matrices 
for the lowest code rates (1/2 and 2/3) have an additional 
property: a row permutation can exist through which they can 
be transformed to have only orthogonal adjacent rows. This is 
a desirable property, for example, when implementing layered 
decoding [12]. 
As concerns the block length, each standard base matrix can 
be expanded into 19 parity-check matrices with different size, 
thus defining as many codes with different length. Each code 
corresponds to a different expansion factor (zf), that coincides 
with the size of the circulant blocks forming the parity-check 
matrix. The longest block provided by the standard is formed 
by n = 2304 bits, and corresponds to the expansion factor z0 = 
96. The other values of zf are smaller than z0 by multiples of 4, 
that is: 
 
 zf = z0 – 4f,   f = 0…18. (4) 
 
Once zf has been fixed, the code length (n) and dimension (k) 
directly follow as: 
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,

.
b f
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Table 1 shows the values of n and k as functions of the 
expansion factor, zf, and the code rate. 

TABLE I 
PARAMETERS OF IEEE 802.16e STANDARD CODES 

n zf 
k  

R = 1/2 R = 2/3 R = 3/4 R = 5/6 
576 24 288 384 432 480  
672 28 336 448 504 560  
768 32 384 512 576 640  
864 36 432 576 648 720  
960 40 480 640 720 800  

1056 44 528 704 792 880  
1152 48 576 768 864 960  
1248 52 624 832 936 1040  
1344 56 672 896 1008 1120  
1440 60 720 960 1080 1200  
1536 64 768 1024 1152 1280  
1632 68 816 1088 1224 1360  
1728 72 864 1152 1296 1440  
1824 76 912 1216 1368 1520  
1920 80 960 1280 1440 1600  
2016 84 1008 1344 1512 1680  
2112 88 1056 1408 1584 1760  
2208 92 1104 1472 1656 1840  
2304 96 1152 1536 1728 1920  

 
The permutations corresponding to each circulant block can 

be obtained from the base matrix through the following 
relations: 
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where x⎢ ⎥⎣ ⎦  represents the floor function, that gives the 
greatest integer smaller than or equal to x. Expressions (6) are 
slightly changed for the rate 2/3 “A” standard code [7]. 

II. M-SC-MPC CODES 
Multiple Serially-Concatenated Multiple-Parity-Check 

codes are a class of structured LDPC codes we have recently 
proposed [9]. They exploit the serial concatenation of very 
simple component codes, in such a way as to obtain LDPC 
codes with good performance and very good flexibility in the 
code design. Furthermore, the component codes have a very 
simple inner structure, that facilitates the encoder 
implementation. 

The serial concatenation of very simple components was 
already exploited in M-SC-SPC codes, first proposed by Tee 
et al. [13], that are based on SPC components. M-SC-MPC 
codes instead adopt, as components, MPC codes, that are a 
generalization of SPC codes (more precisely, they represent 
subcodes of SPC codes). The adoption of MPC components 
allows to represent M-SC-MPC through LDPC matrices, and 
to adopt efficient belief propagation algorithms for their 
decoding. 

A. Structure of M-SC-MPC codes 
Fig. 1 shows the scheme of the serial concatenation at the 

basis of M-SC-MPC codes. It adopts M component codes, 
each with length ni, dimension ki and redundancy ri, i = 1…M. 
As it is evident from the figure, serial concatenation is 
systematic, and each component code simply appends its ri 
redundancy bits to the input codeword. 

 
k

Encoder 1

k

Encoder 2

k

Encoder M

r1 r1 r2 k r1 r2 rM

 
Fig. 1. Serial concatenation in M-SC-MPC codes. 

 
So, the serially concatenated code has dimension k (that 
coincides with the number of information bits given as input 
to the first component code) and redundancy 
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r r
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As anticipated, the distinctive feature of M-SC-MPC codes 

is the form of their components, named MPC codes.  
The i-th MPC component code calculates its j-th redundancy 
bit as the parity-check of the codeword bits whose indexes are 
smaller than j by an integer multiple of ri. 
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It follows from its definition that an MPC code can be 
encoded by using a circuit as that reported in Fig. 2 for the i-th 
component of the serial concatenation. 
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Fig. 2. Encoder for the i-th MPC component code. 
 
This circuit is formed by a rectangular matrix having ri 

rows and 1i ik r +⎡ ⎤⎢ ⎥  columns, where x⎡ ⎤⎢ ⎥  represents the 
ceiling function, that gives the smallest integer greater than or 
equal to x. The white cells in the matrix are filled with the 
information word input to the i-th MPC code, in column-wise 
order, from top left to bottom right. The first ri − si cells, with 
si = ki mod ri, are unused, whereas used cells are denoted in 
the figure by their corresponding information bit index. When 
the j-th row is full, j = 1…ri, the parity bit pj is calculated, by 
XORing the elements of the row, and its value is stored in the 
last column, at the same row (grey cells in the figure). When 
all the parity bits have been calculated and the last column is 
full, the encoder outputs the codeword by reading its content 
in the same order used for the input, but including also the 
parity bits at the end of the codeword. 

It follows from the definition and the encoder structure of 
an MPC code that its parity-check matrix has a very simple 
form, almost coincident with a single row of ri×ri identity 
matrices. Fig. 3 shows its form for the i-th MPC component 
code in the serial concatenation. In the figure, diagonals 
represent symbols 1, whereas all other symbols are null. 

 
 

ri

ni

 
Fig. 3. Parity-check matrix of the i-th MPC component code. 

 
The component parity-check matrices (having the form 

shown in Fig. 3) can be combined to obtain a valid parity-
check matrix for the serially concatenated code, that has the 
form shown in Fig. 4 (for the case with M = 3). Such matrix 
has 

1

M
ii

r r
=

= ∑  rows, and the maximum Hamming weight of 

its columns is M. So, it is immediate to observe that, for large 
ri values, the parity-check matrix is sparse, and M-SC-MPC 
codes can be seen as LDPC codes. 
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Fig. 4. Parity-check matrix of an M-SC-MPC code with M = 3. 

 
Even more noticeably, it can be proved that, for distinct, 
coprime and increasingly ordered ri’s, the matrix is free of 
length-4 cycles when the following condition is satisfied [9]: 
 

 max 1 2
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M

i
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n n r r r
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so, efficient belief propagation algorithms can be adopted for 
decoding M-SC-MPC codes as LDPC codes. 

Condition (8) allows great flexibility in the code design, 
since the value of nmax is rather large (for common choices of 
the ri values) and each value of length n ≤ nmax is theoretically 
feasible. Moreover, the very simple structure of the parity-
check matrix, together with its lower triangular form, allows 
easy encoding when accomplished through standard 
techniques, like back substitution, instead of adopting 
concatenated MPC encoders. 

B. Nodes degree distributions 
From the definition of M-SC-MPC codes, and from the 

structure of their parity-check matrices, it follows that such 
codes are almost regular. In other terms, their associated 
Tanner graphs have almost constant variable and check nodes 
degrees. In order to represent variable and check nodes degree 
distributions, we can refer to the notation introduced in [10]. 
According with that notation, an irregular bipartite graph with 
maximum variable nodes degree vd  and maximum check 

nodes degree cd  is specified by two sequences, ( 1, ,
vdλ λ… ) 

and ( 1, ,
cdρ ρ… ), such that iλ  ( iρ ) is the fraction of edges 

connected to variable (check) nodes with degree i. These two 
sequences can be used as the coefficients of two polynomials, 
λ(x) and ρ(x), describing the edge degree distributions: 
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Equivalently, other two polynomials, v(x) and c(x), can be 
used, that describe the degree distributions of the variable 
nodes and check nodes, respectively. The polynomials λ(x) 
and ρ(x) can be easily translated into v(x) and c(x) through the 
following relations: 
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For M-SC-MPC codes, the very simple structure of the 

parity-check matrix permits to derive explicit expressions for 
v(x) and c(x). In fact, it is easy to observe that the triangular 
part of the matrix is formed by: rM columns with degree 1, rM 
− 1 columns with degree 2, and so on, up to r2 columns with 
degree M – 1; the remaining n1 = k + r1 columns have degree 
M. So, the polynomial v(x) of an M-SC-MPC code can be 
expressed as follows: 
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The fact that M-SC-MPC codes have variable nodes with 

almost regular degree also results from Eq. (11): the term 
kxM−1, in fact, is often dominant (especially for high rate 
codes, in which ,ik r i∀� ), meaning that the Tanner graph 
contains many variable nodes with degree M. As concerns 
check nodes, we can observe that each layer of ri rows in the 
parity-check matrix contains (ni mod ri) rows with weight 

i in r⎡ ⎤⎢ ⎥ , whereas the remaining ri – (ni mod ri) rows have 

weight i in r⎢ ⎥⎣ ⎦ . So, for M-SC-MPC codes, the polynomial 
c(x) can be expressed as follows: 
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C. Irregular M-SC-MPC Codes 
As M-SC-MPC codes are almost regular, their v(x) and c(x) 

polynomials often correspond to a peaked distribution, 
especially for high code rates. This will be confirmed, through 
numerical examples, in the next section. 

Regular distributions have been proved to be non-optimal 
[10], and the polynomials λ(x) and ρ(x) (or, equivalently, v(x) 
and c(x)) can be optimized in such a way as to improve the 
performance of belief propagation decoding algorithms. This 
can be done by using the density evolution approach [10], 
[14], that permits to obtain capacity approaching degree 
distributions under the hypothesis of large block length. 

So, at least in principle, the performance of M-SC-MPC 
codes could be improved by introducing some form of 
irregularity in their parity-check matrices. The approach we 
propose is aimed at increasing irregularity of the parity-check 
matrix though preserving its structured character and the very 
simple encoder implementation reported in Fig. 2. Our 
solution consists in cancelling some of the identity blocks 
included in one or more matrix layers. This is equivalent to 
switch off some columns in the encoder shown in Fig. 2, in 
such a way that the input bits in those columns do not 
participate anymore in a parity-check equation. 

Under the performance viewpoint, it would be more 
efficient to cancel single 1 symbols without any constraint, 
that would also permit to optimize the nodes degree 
distributions. However, we prefer to maintain the structural 
simplicity of M-SC-MPC codes and, in this perspective, 
canceling whole identity blocks facilitates the implementation 
of irregular codes. 

It should be noted that the cancellation of some blocks 
within the parity-check matrix reduces the code minimum 
distance, since the corresponding MPC encoder has no more 
effect on the input bits corresponding to such blocks. For this 
reason, in order to obtain codes with rather good minimum 
distance though cancellations, it can be required to increase 
the value of M (i.e. the number of concatenated codes) with 
respect to the case without cancellations. 

D. Length of Local Cycles 
The almost regular structure of the M-SC-MPC parity-

check matrices is also responsible for the appearance of local 
cycles with length 6. The existence of shorter cycles is 
avoided through condition (8), but length-6 cycles can still 
exist. Even if their presence is not sure, they often occur due 
to linear relations that may be established among the different 
ri values. 

In principle, the length of local cycles could be increased by 
adding an interleaver between each pair of MPC encoders. 
This would recall the original proposal by Tee et al., who 
introduced M-SC-SPC codes based on interleavers [13]. On 
the contrary, the proposed technique, based on the 
cancellation of some blocks in the parity-check matrix, can 
increase the length of local cycles by maintaining the 
structural simplicity of MPC codes, without the need of 
further components. This is due to the fact that the 
cancellation of some blocks avoids the existence of some pairs 
of symbols 1 whose positions differ by an integer multiple of 
an ri value. This way, some of the local cycles due to linear 
relations existing among the ri values are avoided, and this 
facilitates the convergence of the decoding algorithm. 

As highlighted in the previous subsection, however, the 
cancellation of some blocks reduces the code minimum 
distance, so the efficiency of the decoding algorithm is 
improved at the expenses of the code structural characteristics. 
However, it often occurs that LDPC codes with not very high 
minimum distance are able to achieve better performance in 
the waterfall region with respect to codes with higher 
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minimum distance. 

III. CODE EXAMPLES 
In this section, we provide some examples of codes with the 

aim to compare M-SC-MPC codes and their irregular versions 
with IEEE 802.16e standard QC-LDPC codes. For this 
purpose, we consider codes having all values of rate specified 
by the standard (R = 1/2, 2/3, 3/4 and 5/6) and length n = 
1632. We have designed some M-SC-MPC codes and 
irregular M-SC-MPC codes with exactly the same length and 
rate. 

Table 2 reports the parameters of the codes considered in 
our examples, that are of three types: QC-LDPC codes 
compliant with the IEEE 802.16e standard (Q), M-SC-MPC 
codes (M) and irregular M-SC-MPC codes (iM). In the latter 
case, the table also reports the number (hj) of blocks canceled 
in each matrix layer (that is, the number of columns switched 
off in each component encoder). Such values, that form what 
we call a nulling pattern, have been found on a heuristic basis; 
so, margins may exist for their further optimization. 

More precisely, for a given nulling pattern, the choice of the 
blocks to cancel in each layer has been made through a 
constrained random search, based on two criteria: i) avoiding 
the appearance of very low weight columns in the non-

triangular part of the matrix (denoted by dv(i) the weight of the 
i-th column, we fixed dv(i) ≥ 3, i ∈ [1; n1]) and ii) increasing 
the length of local cycles. For all code rates, different values 
of M have been considered for the design of M-SC-MPC 
codes. This allows to highlight the effect of varying the 
number of components codes. Codes with lower M have lower 
column degree of their parity-check matrices and smaller 
minimum distance. These two facts yield a rather good 
waterfall performance, that usually begins at lower signal-to-
noise ratio with respect to codes with higher M. On the other 
hand, a small minimum distance produces rather high error 
floors, that cause a slope change in the error rate curves. 
When the number of component codes is increased, both the 
parity-check matrix column weight and the minimum distance 
are increased. This makes the waterfall begin at higher signal-
to-noise ratios, but the error floor is lowered as well. So, the 
error rate curves for codes with low and high M tend to 
intersect at intermediate values of the signal-to-noise ratio. By 
applying block cancellations to codes with high M, the 
advantages of both low and high M can be joined, and codes 
can achieve good error rate performance both in the waterfall 
and in the error floor region. The simulation results of some 
specific cases will be discussed in the next section. 

Table 2 also reports, for each code, the polynomials v(x) 

TABLE II 
PARAMETERS OF THE SIMULATED CODES WITH LENGTH n = 1632 

Code R Type [r1, …, rM] [h1, …, hM] v(x) c(x) 
1 1/2 Q - - 0.208x5 + 0.333x2 + 0.458x 0.333x6 + 0.667x5 

2 1/2 M [153, 155, 159, 167, 
182] - 0.594x4 + 0.095x3 + 0.097x2 + 0.102x 

+ 0.112 0.369x8 + 0.301x7 + 0.205x6 + 0.125x5 

3 1/2 M [87, 89, 93, 101, 
117, 149, 180] - 0.553x6 + 0.055x5 + 0.057x4 + 0.062x3 

+ 0.072x2 + 0.091x + 0.110 0.203x11 + 0.327x10 + 0.217x9 + 0.252x8 

4 1/2 iM [87, 89, 93, 101, 
117, 149, 180] 

[0, 4, 4, 4, 4, 3, 
3] 

0.146x5 + 0.275x4 + 0.248x3 + 0.058x2 
+ 0.053x + 0.221 

0.04x10 + 0.066x9 + 0.328x7 + 0.359x6 + 
0.206x5 

5 2/3 Q - - 0.667x3 + 0.042x2 + 0.292x 0.125x10 + 0.875x9 
6 2/3 M [113, 127, 149, 155] - 0.736x3 + 0.078x2 + 0.091x + 0.095 0.388x10 + 0.588x9 + 0.024x8 

7 2/3 M [71, 83, 101, 127, 
162] - 0.710x4 + 0.051x3 + 0.062x2 + 0.078x 

+ 0.099 

0.042x16 + 0.088x15 + 0.147x14 + 
0.061x13 + 0.131x12 + 0.134x11 + 

0.121x10 + 0.276x9 

8 2/3 iM  [71, 83, 101, 127, 
162] [4, 0, 3, 2, 0] 0.292x4 + 0.415x3 + 0.116x2 + 0.078x 

+ 0.099 
0.147x14 + 0.006x13 + 0.042x12 + 

0.088x11 + 0.208x10 + 0.410x9 + 0.099x8 
9 3/4 Q - - 0.292x5 + 0.5x2 + 0.208x 0.667x14 + 0.333x13 

10 3/4 M [59, 73, 113, 163] - 0.786x3 + 0.045x2 + 0.069x + 0.099 0.108x21 + 0.037x20 + 0.103x18 + 
0.076x17 + 0.277x12 + 0.005x10 + 0.395x9 

11 3/4 M [73, 75, 79, 87, 94] - 0.795x4 + 0.046x3 + 0.048x2 + 0.053x 
+ 0.057 0.125x18 + 0.618x17 + 0.257x16 

12 3/4 iM [73, 75, 79, 87, 94] [4, 0, 3, 2, 0] 0.423x4 + 0.359x3 + 0.107x2 + 0.053x 
+ 0.058 

0.054x18 + 0.213x17 + 0.147x16 + 
0.216x15 + 0.191x14 + 0.137x13 + 

0.042x12 
13 5/6 Q - - 0.458x3 + 0.417x2 + 0.125x x19 

14 5/6 M [37, 53, 73, 109] - 0.856x3 + 0.033x2 + 0.045x + 0.067 
0.103x37 + 0.033x36 + 0.07x27 + 0.125x26 

+ 0.232x20 + 0.037x19 + 0.390x14 + 
0.011x13 

15 5/6 M [43, 45, 49, 57, 78] - 0.860x4 + 0.028x3 + 0.03x2 + 0.035x + 
0.048 

0.129x32 + 0.195x31 + 0.099x30 + 
0.081x29 + 0.055x27 + 0.154x26 + 

0.265x20 + 0.022x19 

16 5/6 iM [43, 45, 49, 57, 78] [12, 11, 0, 6, 4] 0.156x4 + 0.458x3 + 0.286x2 + 0.052x 
+ 0.048 

0.993x30 + 0.081x29 + 0.239x21 + 
0.235x20 + 0.059x19 + 0.265x16 + 

0.022x15 
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and c(x), that describe the nodes degree distributions. By 
looking at polynomials v(x), we notice that, as expected, M-
SC-MPC codes have peaked degree distributions for their 
variable nodes (except for rate 1/2 codes, more than 70% of 
the variable nodes have degree M). By applying block 
cancellations, instead, the variable nodes degree distribution 
becomes more uniform, since the fraction of nodes with 
degree < M is increased. This results in polynomials that are 
more similar to those of standard codes, that have coefficients 
never exceeding 0.7. 

We remind that, in our examples, the degree polynomials 
have not been optimized but, instead, they have been obtained 
as the result of optimization of the block cancellations, based 
on the two criteria described above. Further improvements 
could be possible by aiming at optimizing also the degree 

polynomials. 

IV. SIMULATION RESULTS 
The codes we have considered in Section 4 have been 

assessed through simulation of transmission over the AWGN 
channel, with BPSK modulation. Decoding has been 
implemented by using the log-domain version of the sum-
product algorithm [4]. The simulation results are shown and 
compared in the next subsections, where codes with the same 
rate are grouped together. We remind that all codes considered 
in our examples have length n = 1632. 

A. Codes with rate 1/2 
Fig. 5 reports the simulated performance of the considered 

codes with rate 1/2. As we observe from the figure, the 

0.5 1.0 1.5 2.0 2.5 3.0 3.5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Eb/N0 [dB]

 C1

 C2

 C3

 C4

0.5 1.0 1.5 2.0 2.5 3.0 3.5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/N0 [dB]

 C1

 C2

 C3

 C4

        
1.0 1.5 2.0 2.5 3.0 3.5 4.0

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Eb/N0 [dB]

 C5

 C6

 C7

 C8

 
1.0 1.5 2.0 2.5 3.0 3.5 4.0

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/N0 [dB]

 C5

 C6

 C7

 C8

 
 (a) (b)  (a) (b) 
 
Fig. 5. Simulated BER (a) and FER (b) for codes with rate 1/2.  Fig. 6. Simulated BER (a) and FER (b) for codes with rate 2/3. 
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Fig. 7. Simulated BER (a) and FER (b) for codes with rate 3/4.  Fig. 8. Simulated BER (a) and FER (b) for codes with rate 5/6. 
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standard QC-LDPC code (C1) achieves very good 
performance, and its curves are the leftmost ones. The M-SC-
MPC code with M = 5 (C2) has a rather good performance, 
yielding a loss of about 0.2 dB with respect to the standard 
code. However, especially in its FER curve, an error floor 
effect is observed, that tends to deteriorate its performance for 
increasing signal-to-noise ratios. 

The error floor can be mitigated by adopting a higher value 
of M: the M-SC-MPC code with M = 7 (C3) exhibits a more 
favorable slope in its error rate curves for increasing signal-to-
noise ratio. On the other hand, the adoption of such a high 
value of M gives a worse performance in the waterfall region, 
requiring higher signal-to-noise ratios for reaching the same 
error rate with respect to codes having lower M. Applying the 
cancellation of some blocks helps to mitigate such an effect: 
we observe that the irregular M-SC-MPC code (C4), though 
still exploiting M = 7 component codes, has good performance 
in the waterfall region, with a slight improvement with respect 
to C2. Moreover, in the error floor region, the performance of 
C4 tends to further improve that of C2, especially for the FER 
curve, in which the error floor effect is mitigated. So, the 
irregular M-SC-MPC code, obtained by canceling some 
blocks in the parity-check matrix of the M-SC-MPC code with 
M = 7, is able to join the advantages of both low and high M, 
and to achieve better performance both in the waterfall and in 
the error floor region. Its curves approach those of the 
standard code, with a loss of some fraction of dB with respect 
to them. 

B. Codes with rate 2/3 
The simulation results are quite similar for codes with rate 

2/3: also for such code rate, irregular M-SC-MPC codes are 
able to achieve very good performance. Moreover, in this 
case, they can become even better than standard codes. 

This can be observed in Fig. 6, where we notice that both 
the standard QC-LDPC code (C5) and the M-SC-MPC code 
with M = 4 (C6) show an error floor. On the contrary, the M-
SC-MPC code with M = 5 (C7) has no error floor, but its 
waterfall performance is worse than the others. The irregular 
M-SC-MPC code with M = 5 (C8), instead, is able to improve 
the waterfall performance without loosing its curve slope in 
the error floor region. 

C. Codes with rate 3/4 
A similar conclusion can be drawn from the analysis of 

codes with rate 3/4, shown in Fig. 7: the M-SC-MPC code 
with low M (C10) has good waterfall performance, but a rather 
high error floor. On the contrary, the M-SC-MPC code 
obtained by increasing M (C11) has better error floor 
performance at the expense of the waterfall behavior. The 
adoption of an irregular M-SC-MPC code (C12) allows to 
improve the error floor performance without loss in terms of 
error floor, so approaching the performance of the standard 
QC-LDPC code (C9). 

D. Codes with rate 5/6 
For codes with rate 5/6, the difference among the 

considered design techniques is less evident. The simulation 
results, reported in Fig. 8, show that both the M-SC-MPC 
code with  M = 4 (C14) and the irregular M-SC-MPC code 
with M = 5 (C16) are able to approach the performance of the 
standard code (C13). The M-SC-MPC code with M = 5 (C15) 
has instead a worse waterfall behavior. In this case, the usage 
of an irregular M-SC-MPC code does not give any significant 
improvement with respect to the classic M-SC-MPC solution. 

V. CONCLUSION 
In this paper, we have presented a design technique for 

codes intended for wireless applications. We have referred to 
QC-LDPC codes included in the IEEE 802.16e standard, and 
we have designed codes with the same parameters in order to 
compare their characteristics and performance with those of 
standard codes. 

Our analysis has started from the M-SC-MPC codes design 
technique, we have recently proposed, and a new variant of it 
has been introduced, that is aimed at designing irregular 
codes. Both techniques are able to produce very good codes, 
with performance that can be comparable or even better with 
respect to standard codes. 

We have shown that, in some cases, classic M-SC-MPC 
codes still have performance comparable with that of the new 
irregular M-SC-MPC codes. Our analysis brings to the 
conclusion that further margins of improvement may exist, 
that are probably related with the optimization of the nodes 
degree polynomials. This could be a point worth to be studied 
in future works. 

Another interesting cue for future work is to deepen the 
investigation of the link between Quasi-Cyclic and M-SC-
MPC codes, in such a way to assess whether the M-SC-MPC 
structure can also be adapted to design QC codes. 
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