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Abstract—The IEEE 802.16 standard defines the ARQ mech-
anism as a part of the MAC layer. The functioning of the ARQ
mechanism depends on a number of parameters. The IEEE
802.16 specification defines them but it does not provide concrete
values and solutions. This paper studies the key features and
parameters of the 802.16 ARQ mechanism. In particular, we
consider a choice for the ARQ feedback type, an algorithm to
build block sequences, the ARQ feedback intensity, a scheduling
of the ARQ feedbacks and retransmissions, the ARQ block
rearrangement, ARQ transmission window and the ARQ block
size. We ran simulation scenarios to study these parameters and
how they impact the performance of application protocols. The
simulation results reveal that the ARQ mechanism and its correct
configuration play an important role in achieving reliable data
transmission.

Index Terms—IEEE 802.16 WiMAX, ARQ, NS-2

I. INTRODUCTION

IEEE 802.16 is a standard for the wireless broadband
access network [1] that can provide a high-speed wireless
access to the Internet to home and business subscribers. It
supports applications and services with diverse Quality-of-
Service (QoS) requirements. The core components of a 802.16
system are a subscriber station (SS) and a base station (BS).
The BS and one or more SSs can form a cell with a point-
to-multipoint (PMP) structure. In this case, the BS controls
the activity within a cell, resource allocations to achieve QoS
and admission based on the network security mechanisms. An
overview of the key 802.16 features is given in [6].

The automatic repeat request (ARQ) is the mechanism
by which a receiving end of a connection can request the
retransmission of MAC protocol data unit (PDU), generally
as a result of having received it with errors. It is a part of the
802.16 MAC layer and can be enabled on a per-connection
basis. The 802.16 specification does not mandate the usage
of the ARQ mechanism meaning that it is a provider and a
customer specific decision.

The 802.16 ARQ mechanism is controlled by a number
of parameters. The specification defines them but it does
not provide concrete values and solutions. The 802.16 ARQ
configuration parameters have not been studied sufficiently, es-
pecially by means of extensive simulations. In [7], an analysis
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of the ARQ feedback types is presented. However, the UDP
traffic, which is not sensitive to packet drops, is considered.
Furthermore, no algorithm to select the feedback is presented.
In [9], the ARQ mechanism is analyzed in the context of real-
time flows of small packets. Authors estimate the bandwidth
needed for the ARQ feedback messages. However, a simple
simulation environment is used that does not capture any of
the ARQ configuration parameters. This paper analyzes ARQ
parameters and studies their impact on the performance of the
ARQ mechanism. In particular, the following parameters are
considered: ARQ feedback type, scheduling of ARQ feedbacks
and retransmissions, ARQ feedback intensity, ARQ transmis-
sion window size, ARQ block size, ARQ block rearrangement.
Though the 802.16 specification defines the Hybrid ARQ
mechanism, we focus on ARQ because it is applicable to all
the PHY types.

This paper extends our previous research and simulation
work on 802.16 networks. In [13], [11], we presented a
scheduling solution for the 802.16 BS and extensions for
the ARQ aware scheduling. In [10], we analyzed the 802.16
contention resolution mechanism and proposed an adaptive
algorithm to adjust the backoff parameters and to allocate a
sufficient number of the request transmission opportunities.

The rest of the article is organized as follows. Section II
presents key features and parameters of the 802.16 ARQ
mechanism. We consider their impact on performance and
propose a set of solutions. Next, Section III presents a number
of simulation scenarios to study the ARQ performance. This
section also analyzes the simulation results. Finally, Section IV
concludes the article and outlines further research directions.

II. 802.16 ARQ MECHANISM

A. Basics of the ARQ mechanism

If ARQ is enabled for a connection, the extended fragmen-
tation subheader (FSH) or the extended packing subheader
(PSH) is used, which is indicated by the extended bit in the
general MAC header (GMH). Regardless of the subheader
type, there is a block sequence number (BSN) in the subheader
that indicates the first ARQ block number in the PDU. A PDU
is considered to comprise a number of ARQ blocks, each of
which is of the same constant size except the final block which
may be smaller. The ARQ block size is an ARQ connection
parameter negotiated between the sender and the receiver upon
a connection setup. It is worth mentioning that the ARQ block
is a logical entity – the block boundaries are not marked
explicitly. The remaining block numbers in a PDU can be
derived easily on the basis of the ARQ block size, the overall
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PDU size, and the first block number. Precisely for these
reasons the ARQ block size is a constant parameter. Fig. 1
presents ARQ blocks with the fragmentation and packing
mechanisms. Block numbers are given with respect to the BSN
stored either in the FSH (see Fig. 1(a)) or PSH (see Fig. 1(b)).

block 1 block 2 block 3 block 4126

GMH FSH CRC

(a) fragmentation

block 1 block 2 block 1 block 1 block 2126 128 129

GMH PSH PSH PSH CRC

(b) packing

Fig. 1. ARQ blocks with packing and fragmentation mechanisms.

It is important to note that while the 802.16d specification
[1] defines an ARQ block size as any value ranging from 1
to 2040 bytes, the 802.16e specification [2] has limited it to
power of two values ranging from 16 to 1024 bytes, e.g., 16,
32, 64 and so on.

B. ARQ feedback types

To request a retransmission of blocks (NACK) or to indicate
a successful reception of blocks (ACK), a connection uses
ARQ block sequence numbers. In turn, the sequence numbers
are exchanged by means of the ARQ feedback messages.
The specification defines the following feedback types: a)
selective, b) cumulative, c) cumulative+selective, and d) cu-
mulative+sequence.

The selective feedback type acknowledges ARQ blocks
received from a transmitter with a BSN and up to four 16-bit
selective ACK maps. The BSN value refers to the first block
in the first map. The receiver sets the corresponding bit of the
selective ACK map to zero or one according to the reception
of blocks with or without errors, respectively. The cumulative
type can acknowledge any number of the ARQ blocks. The
BSN number in the ARQ feedback means that all ARQ blocks
whose sequence number is equal to or less than BSN have
been received successfully. The cumulative+selective type just
combines the functionality of the cumulative and selective
types explained above. The last type, cumulative+sequence,
combines the functionality of the cumulative type with the
ability to acknowledge reception of ARQ blocks in the form
of block sequences. A block sequence, whose members are
associated with the same reception status indication, is defined
as a set of ARQ blocks with consecutive BSN values. A bit
set to one in the sequence ACK map entity indicates that a
corresponding block sequence has been received without errors
and the sequence length indicates the number of block that are
members of the associated sequence.

When the ARQ feature is declared to be supported, a
transmitting side, i.e., a receiver of the ARQ feedbacks,
must support all the feedback types described by the 802.16
specification. The sender of the ARQ feedbacks has the ability
to choose whatever format it will use. The WiMAX Forum
recommendations [4] mandate the support of all the types
except the selective ACK.

32 blocks

MAP:1111110110000001

1 32

MAP:0100110110110001

BSN:6

Selective ACK

Cumulative ACK

Cumulative with Selective ACK

Cumulative with Block Sequence ACK

MAP:1011000000101001

16 22

Seq: 101

Seq: 010 Seq: 101

28

1 2 6 1 1 1

2 2 1 2 1

BSN:1

BSN:6

BSN:6 Seq: 010

2

Fig. 2. Example of ARQ feedback types.

Fig. 2 presents an example in which every feedback type
is applied to the same set of ARQ blocks. Selective ACK can
acknowledge these 32 blocks in two maps. Cumulative ACK
cannot acknowledge all the blocks because there are negative
acknowledgements. Thus, only six blocks are encoded. Cu-
mulative+selective ACK can send both positive and negative
acknowledgements. However, since there should be 16 blocks
per one selective map, some blocks remain unacknowledged.
For this particular example, cumulative+sequence ACK can
acknowledge only 28 blocks; one message can hold four
sequence maps at most, whereas each map can have either
two or three sequences. This type does not work effectively
in this case because the block sequences are very short.

C. Choosing the feedback type

Each feedback type has its advantages depending on the
ARQ feedback transmission frequency, the error disturbance
patterns, and the computational complexity. From the imple-
mentation point of view, the selective feedback type does
not require much processing resources because a connection
simply puts information on the received blocks into the bitmap.
On the other hand, a connection should try to rely upon
the cumulative+sequence feedback type if resource utilization
is of greater importance. However, it is more complex in
implementation because block sequences must be detected.
It could form an obstacle for a low power and low capacity
mobile device.

In this section, we do not analyze the feedback types
from the implementation complexity point of view, but rather
propose an algorithm to choose an ARQ feedback type to
achieve a good resource utilization. Our algorithm is based on
the following assumptions: a) it is always more efficient to
send positive acknowledgements by means of the cumulative
type, and b) the sequence map can encode more blocks than
the selective one. Indeed, the cumulative type can encode
any number of ARQ blocks by using just one BSN number.
Consequently, four sequence maps, each of which can have
two sequences of 63 blocks, encode 504 blocks. If a map
contains three short sequences, each of which can keep up to
15 blocks, then 180 blocks can be encoded. The proposed
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algorithm, simplified form of which is shown in Fig. 3,
comprises the following three stages:

Calculate the number of blocks with ACK

Construct the cumulative IE

Construct the selective IE

Construct the sequence IE Construct the selective IE

Enqueue a feedback

Enqueue a feedback

stage 1

stage 2

stage 3

Enqueue a feedback

Fig. 3. Algorithm to choose ARQ feedback types.

1) If there are positive acknowledgements in the beginning
of the ARQ transmission window, construct the cumu-
lative part. If there are no negative acknowledgements,
then a single cumulative feedback message is created.

2) If there are remaining negative acknowledgements (op-
tionally followed by positive and other negative ac-
knowledgements), which we cannot send by using the
cumulative part, then we have to choose a map type. To
make a decision, we construct the sequence maps and
calculate whether the selective maps can acknowledge
more blocks. The maximum number of blocks to ac-
knowledge selectively is 64 and it should be a multiple
of 16. As for the sequence part, there is a limit for a
sequence length and the number of sequences we can
send in one message. Eventually, we will have either the
cumulative+sequence or cumulative+selective feedback
type. As a choice is made, we ”attach” map(s) to the
cumulative part constructed at the previous stage.

3) Note that we can reach this stage in two cases. The first
one is when there are no positive acknowledgements
in the beginning of the ARQ transmission window
and there is no way to create cumulative, cumula-
tive+selective, or cumulative+sequence types. The sec-
ond case to reach this stage is when neither cumula-
tive+selective nor cumulative+sequence feedback types
encode all the blocks. Though it is a rare case it can
happen, because both the cumulative+selective and cu-
mulative+sequence types have technical limitations. It is
important to note that we cannot create and send several
consecutive cumulative+. . . feedbacks because the cumu-
lative part of the second message will re-acknowledge
positively those ARQ blocks that are acknowledged
negatively in the first message. Regardless of the sit-
uation, we just create as many selective feedback types
as necessary to acknowledge the remaining blocks. As

mentioned above, four selective maps can acknowledge
up to 64 blocks. It is important to note that due to the
clarifications in [3], it is feasible to construct and send
the cumulative+sequence feedback type when there are
negative acknowledgements in the beginning of the ARQ
window. It is possible to put out of the Tx window BSN
field in the cumulative part so that it is ignored at the
sender (receiver of the ARQ feedback). Such a solution
eliminates the need for the selective type when there are
errors in the beginning and improves the MAC overhead.

It is worth noting that the presented algorithm scales well
to the SS capabilities. If the selective type is not supported,
then stage 3 is never executed. If there is no support for one
of the cumulative types, then stages 1 and 2 are simplified.

Referring back to stage 2, it is worth mentioning an
algorithm to create sequences for the cumulative+sequence
ARQ feedback type. The specification does not define it thus
allowing alternative implementations. As mentioned before, it
is more complex in implementation because block sequences
must be detected and correct sequence lengths must be con-
structed. To simplify this process, the algorithm uses two steps.
On the first step, the algorithm parses all blocks and constructs
sequences without checking any lengths. On the second step,
the algorithm chooses sequence formats and, if necessary,
splits large sequences into smaller ones so that they conform
to the specification. The algorithm analyzes the current and
the next sequence length to decide which sequence format
should be used. As the sequence format is chosen, sequences
are put into a map. If the sequence length exceeds the technical
limit (63 for the format 0 and 15 for the format 1), then it is
truncated and the remaining part is written into the input list
so that it is processed at the next iteration. The simplified form
of this algorithm is presented in Fig. 4. The algorithm stops
when either all the sequences are processed or four maps are
built. If there are not enough sequences to fill a single map,
then zero lengths are put.

Format 0: 2 sequences per map Format 1: 3 sequences per map

Fig. 4. Algorithm to construct sequence maps.

As mentioned above, two sequence formats are available.
The algorithm uses a simple, yet powerful, condition to select
an appropriate sequence format:

Format =

{

0, (Si > 15) OR (Si+1 > 15),

1,
(1)
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where Si is the ith sequence length. The idea behind (1) is
that it is more resource conserving to switch to the sequence
format 0 if either current or the next sequence is a large one.
Otherwise, it is more efficient to use format 1 to encode more
short sequences. As an example, Fig. 5 presents the input
sequences and constructed sequence maps (the first number is
the sequence status while a number in the square brackets is a
sequence length). As can be seen, the algorithm and proposed
conditions split efficiently sequences into the maps according
to the 802.16 specification.

0[65] 1[17] 0[3] 1[11] 0[4] 1[67] 0[40]

map #1 map #2 map #3 map #4
format 0 format 0 format 1 format 0
0[63] 0[2] 1[17] 0[3] 1[11] 0[4] 1[15] 1[52] 0[40]

Fig. 5. Input sequence lengths and built maps

To illustrate that the proposed algorithm selects efficiently
the required sequence format, we present two cases for the
same initial input sequences when only one particular format
is in effect. As can be seen from Fig. 6, both cases fail to
encode all the blocks (due to space limitations, only three
maps are presented for the sequence format 1).

map #1 map #2 map #3 map #4
format 0 format 0 format 0 format 0
0[63] 0[2] 1[17] 0[3] 1[11] 0[4] 1[63] 1[4]

(a) format 0 maps only

map #1 map #2 map #3
format 1 format 1 format 1

0[15] 0[15] 0[15] 0[15] 0[5] 1[15] 1[2] 0[3] 1[11]
(b) format 1 maps only

Fig. 6. Built maps (only one particular format).

The resulting computational complexity of the proposed
algorithm to construct sequence maps is O(2N). We need
to make two passes: the first one is to calculate the initial
sequence lengths and the second one is to split sequences
between the maps. The computational complexity of the
selective map is O(1).

D. Ordering of feedbacks and retransmissions

While sending normal packets, retransmissions, and ARQ
feedback messages, a connection should determine their order.
Indeed, as a scheduler at the BS allocates resources to a
connection, either uplink or downlink, a connection’s internal
priority mechanism should decide upon which message is of
more importance.

We propose to send first the ARQ feedbacks, then retrans-
missions, and finally the normal user PDUs. The reason we
assign the highest priority to the ARQ feedbacks is that they
do not require much space and they have a huge impact on the
ARQ performance. As a sender receives a feedback, it knows
the blocks that were received successfully and the blocks that
are to be retransmitted. The successfully transmitted blocks
can be removed from the retransmission buffer and the asso-
ciated resources are cleared (see section II-H). Furthermore,
the sender adjusts the ARQ transmission window that, in turn,
influences the performance, because a connection cannot send
more blocks than the ARQ window allows.

The reason we assign a higher priority to retransmissions is
that a receiver can reconstruct a MAC service data unit (SDU)
from fragments and forward it to the upper level only once all
the fragments are received. Furthermore, if the ARQ deliver in
order option is turned on,1 then a receiver is obliged to forward
SDUs in the same order in which a sender transmits them. This
means that even though a receiver reconstructs successfully an
SDU from all the fragments, it has to wait for all the previous
SDUs.
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Fig. 7. Queue structure to prioritize feedbacks and retransmissions.

The simplest way to organize these priorities is to introduce
several internal subqueues within a connection queue, as Fig. 7
illustrates. It is an extended version of the 802.16 QoS archi-
tecture considered in [5], [13]. Every time a PDU arrives to the
connection queue, it will be checked and depending on its type
it will be placed into an appropriate subqueue. When PDUs
are dequeued, the queue can check first the subqueue with the
ARQ feedbacks, then the subqueue with retransmissions, and
only then the subqueue with normal PDUs. In other words,
a connection queue implements internally the strict priority
queuing.

An appealing feature of this approach is that it is com-
pletely transparent to the BS scheduler. Everything the BS
scheduler needs to know to allocate resources is connection
QoS requirements, if any, and the queue size [13]. If there
are several internal subqueues, then the BS scheduler will be
informed about the aggregated queue size. It is especially the
case for the uplink virtual queues that are maintained through
bandwidth requests sent by SSs. An SS cannot inform about
the size of each subqueue but rather about the aggregated size.
When a connection is allotted slots, first it will send ARQ
feedbacks. If there are remaining bytes in a data burst, the
connection will send retransmissions, and only then normal
PDUs will be sent.

1It is anticipated that this option will be turned on for most services. Indeed,
there is no sense in turning this option off for the UDP based applications,
such as VoIP. The VoIP receiver will just discard packets that arrive in the
wrong order unless some sufficiently larger input buffer is utilized, which is
not typical for interactive applications. In the case of the TCP based services,
an absence of a packet can be treated as a packet drop. It will trigger a
retransmission of this packet though it can arrive later.
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E. ARQ feedback intensity

Though IEEE 802.16 specification defines ARQ feedback
types, it does not specify how often a receiver should send
them. We considered the ordering of the ARQ feedbacks and
retransmissions in section II-D , however, it does not provide
an answer when a receiver should construct the ARQ feedback
message and place it into the output queue.

Intuitively, it is understandable that the ARQ feedback
intensity is a tradeoff between the MAC overhead and the ro-
bustness of the ARQ state machine. On the one hand, we may
delay sending ARQ feedbacks to decrease the MAC overhead.
On the other hand, failing to send the ARQ feedback on time
may result in a very bad performance because ARQ blocks
will be discarded by the ARQ timers. If the ARQ feedback
transmission period Tfeedback is less than the ARQ retry timer
Tretry, then the performance starts to decline because a sender
will retransmit the same data. If the feedback intensity is even
less than the ARQ block lifetime Tlife, then it may result in
a very poor performance due to the discarded ARQ blocks.
Based on that it is possible to propose the following inequality:

Tfeedback < Tretry < Tlife. (2)

Since the ARQ retry and life timers are the connection specific
parameters, the receiver can always adapt its ARQ feedback
intensity on a per-connection basis. Since it is usually the case
that the retry timeout is less than the life timeout, it is enough
to analyze the retry timer value to choose a suitable ARQ
feedback intensity.

It is worth mentioning that the ARQ feedback intensity
should not be very close to the ARQ retry timeout. The reason
is that the ARQ feedback message can be dropped due to the
failed checksum test, as any other PDU.

F. Standalone and piggy-backed feedbacks

While sending the ARQ feedback message, a connection
has an option whether to send it as a standalone message
or piggy-back it to a PDU with user data (see Fig. 8). The
former approach has somewhat larger MAC overhead of 12
bytes because the ARQ feedback resides in a separate PDU
with mandatory GMH and PSH headers, and the CRC field. At
the same time, the piggy-backed transmission is less reliable
when compared to a standalone message. The reason is that
being piggy-backed to a large PDU, the ARQ feedback has
a higher probability of being dropped [8] because the whole
PDU is discarded when an error is detected. If a sender does
not receive any feedback before the ARQ retry timer expires,
then correspondent ARQ blocks will be retransmitted. No need
to say that a loss of the ARQ feedback message will lead to
the retransmission of all ARQ blocks, even of those ones that
have been received correctly. As mentioned in section II-E,
if a sender does not receive any ARQ feedback before the
ARQ block life timeout, then blocks will be discarded com-
pletely. Thus, to achieve a more reliable transmission of the
ARQ feedbacks, it makes sense to rely upon the standalone
feedbacks.

block 1 block 20 129

GMH PSH PSH CRCfeedback CRC GMH

(a) standalone PDU

block 1 block 20 129

GMH PSH PSH CRCfeedback

(b) piggy-backed to a PDU with user data

Fig. 8. ARQ feedback transmission.

G. ARQ block rearrangement

While retransmitting a PDU, a connection may face a
problem that an allocated data burst is smaller than the PDU
size to be retransmitted. This may happen if the BS scheduler
allocates data bursts of different sizes, which is usually the
case for real-time Polling Service (rtPS), non-real-time Polling
Service (nrtPS), and Best Effort (BE) connections. Suppose,
that the BS allocates a data burst of three slots for the BE
connection and the latter sends a PDU that spans the whole
data burst. If this PDU encounters an error, the connection
will retransmit it. However, if the BS scheduler allocates later
a data bursts of two slots, there is no way to retransmit the
original PDU. Fortunately, the connection may rely upon the
retransmission with rearrangement that allows for fragmenting
the retransmitted PDU on the ARQ block size boundaries.
If there is a sufficiently small ARQ block size, then the
connection may construct a smaller PDU. As an example,
Fig. 9 shows the rearranged PDU presented in Fig. 1(a). There
are two PDUs with two blocks per each PDU.

block 1 block 2 block 1 block 2128126

GMH FSH CRCCRC GMH FSH

Fig. 9. Rearranged PDU.

In this subsection we do not focus on the optimal ARQ
block size, but rather consider a solution for a case where
a sender retransmission policy is not to use the ARQ block
rearrangement. The reason this functionality can be absent is
the fact that rearrangements involve much more complicated
actions with PDUs in the retransmission buffer when compared
to the PDU construction. A sender must keep a set of the
ARQ timers for each ARQ block. If the retransmission with
rearrangement is not implemented, then eventually a sender
can associate all those timers with a PDU, which requires
much less resources.2 Furthermore, the rearrangement requires
a sender to analyze a PDU and to search for block boundaries
on which that PDU can be fragmented.

It is important to note that this problem concerns merely the
uplink connections, because having the bandwidth request size,
the BS does not know whether it is one big PDU or several
smaller ones. In the case of the downlink transmission, the
BS can always look inside the queue. Besides, this problem

2Practically, a sender can associate a timer with a whole PDU even if
the ARQ block rearrangement is turned on. However, then it has to perform
quite complicated actions with ARQ timers when the retransmitted PDU is
partitioned into several PDUs because certain ARQ blocks are retransmitted
while the other ones remain in the output buffer.
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would not be so critical if the BS knew that a connection
does not support rearrangements. However, there is no such
QoS parameter that would indicate it. On the one hand, the
BS can guess that a connection does not rearrange PDUs
by monitoring bandwidth request sizes and the number of
received bytes. On the other hand, a connection should not
rely much upon this functionality because it is not mandated
by the specification. Thus, the only safe way is to control the
maximum size of transmitted PDUs. It is not a complicated
task for the rtPS and nrtPS connections that should be always
allocated such a number of slots that their minimum bandwidth
requirements are ensured [13]. Thus, the maximum PDU size
can be limited by the minimum data burst size allocated by the
BS scheduler. The BE scheduling class is a more challenging
task since the BS scheduler can allocate a data burst of any
size. A connection may monitor allocated data burst sizes to
control the maximum PDU size. Another possible solution is
to send as large PDU as the size of one slot. However, such
an approach may be unacceptable due to the increased MAC
overhead and very small slot size of robust MCSs. As a result,
regardless of an approach taken, the BE connection, which
does not support retransmissions with rearrangements, should
avoid sending large PDUs.

H. ARQ transmission window and ARQ block size

At any time a sender may have a number of outstanding
and awaiting acknowledgements ARQ blocks. This number is
limited by the ARQ transmission window that is negotiated
between an SS and the BS during a connection set-up.
A sufficiently large ARQ window allows for a continuous
transmission of data. A connection can continue to send ARQ
blocks without waiting for each block to be acknowledged.
Conversely, a smaller ARQ window causes a sender to pause
a transmission of new ARQ blocks until a timeout or the ARQ
feedback is received. Though it may seem that a large trans-
mission window is always the best choice, it is worth noting
that a large transmission window leads to increased memory
consumption and processing load. Every ARQ block must be
stored in the retransmission buffer until a positive feedback is
received. Taking into account the largest ARQ block size of
1024 bytes and the maximum ARQ transmission window of
1024 blocks, it is possible to arrive at the conclusion that some
mobile and portable devices will not have enough resources
to handle this amount of data for each frame.

If we assume a continuous errorless data transmission, then
the maximum throughout a connection can achieve is limited
by the following expression:

SARQ W FPS
DF

, (3)

where SARQ is the ARQ block size, W is the ARQ transmis-
sion window size, FPS is the number of frames per second
and DF is the delay factor. In the case of the downlink
transmission, the delay factor is always 1 because the BS can
allocate a downlink data burst whenever it wants. In the case of
the uplink transmission, the delay factor depends on PHY and
whether a polling is in effect. If the BS polls a connection in

every frame, then the delay factor is also 1. Otherwise, like in
the case of the BE connections, the delay factor is 2 for OFDM
and 3 for OFDMa PHY. The reason is that in OFDM PHY,
the uplink bandwidth request carries the request size, while in
the OFDMa PHY, special CDMA codes are used that do not
carry any request size. As a result, once the BS receives the
CDMA code, it puts a special uplink CDMA allocation where
an SS can transmit the request size.

The ARQ transmission window and the ARQ block size
parameters depend one on each other. On the one hand, a
connection may prefer to work with a small ARQ transmission
window that will result in a necessity of choosing a larger
ARQ block size because the throughput may be limited by
the transmission window size. A large block size requires less
resources because a set of the ARQ timers must be associated
with a single ARQ block at the sender and the receiver. At
the same time, a connection supporting the retransmission
with rearrangement may wish to work with a smaller ARQ
block size because that will provide a greater flexibility in
splitting large PDUs into several smaller ones. Furthermore,
the choice for the ARQ block size can be dictated by the device
peculiarities, such as the memory page size. These various
requirements introduce a cyclic dependency between these two
parameters.

We anticipate that the ARQ block size should be the
governing parameter, while the ARQ transmission window
size should be adapted. The reason is that the ARQ block
size has a set of discrete values, while the ARQ transmission
window can accept any value within the specified range.

III. SIMULATION

This section presents a simulation analysis of the 802.16
ARQ mechanism. To run simulations, we have implemented
the 802.16 MAC and PHY levels in the NS-2 simulator. The
implementation is called WINSE (WiMAX NS-2 Extension).
The MAC implementation contains the main features of the
802.16 standard, such as frames, bursts, downlink and uplink
transmission, connections, MAC PDUs, packing and fragmen-
tation, the contention and ranging periods, the MAC level
management messages, dynamic size of the MAP messages,
and the ARQ mechanism. The ARQ implementation supports
the ARQ blocks, the ARQ transmission window, retransmis-
sion with rearrangement, all the ARQ feedback types, and
the ARQ timers. The ARQ implementation also includes the
prioritization of the feedbacks and retransmissions, and the
algorithm to select the feedback type and to build block
sequences. The implemented PHY is OFDMa. The simulation
results for the OFDM PHY can be found in [13].

Fig. 10 shows the network structure we use in the simulation
scenarios. There is the BS controlling the 802.16 network, the
parameters of which are presented in Table I.3 To compare
results fairly, we run somewhat simplified PHY model with
a fixed signal to noise ratio of 2 dB, which corresponds to
QPSK3/4 MCS, and forward error correction (FEC) block
error rate of 1%. The downlink broadcast messages, such as
DL-MAP and UL-MAP, use a more robust QPSK1/2 MCS;

3These parameters conform the WiMAX Forum mobile system profile [4].
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Fig. 10. Network structure.

TABLE I
802.16 NETWORK PARAMETERS.

Parameter Value
PHY OFDMa
Bandwidth 10 MHz
FFT 1024
Cyclic prefix length 1/8
TTG+RTG 464 PS
Duplexing mode TDD
Frames per second 200 (5 ms per frame)
OFDM symbols 47
DL/UL symbols 26/21
DL/UL subcarrier alloc. DL FUSC/UL PUSC
DL/UL slots 416/245
MAP MCS QPSK1/2 (6 B/slot)
MCS QPSK 3/4 (9 B/slot)
FEC BLER 1%
Ranging transm. opport. 2
Ranging backoff start/end 2/15
Request transm. opport. 8
Request backoff start/end 4/15
CDMA codes 256

ranging+periodic ranging 64
bandwidth request 192
handover –

Fragmentation/packing ON
PDU size unlimited
CRC/ARQ ON
ARQ feedback standalone
ARQ feedback types all
ARQ feedback intensity 5 ms
ARQ block size 16 B
ARQ window 1024
ARQ discard ON
ARQ block rearrangement ON
ARQ deliver in order ON
ARQ timers

retry 50 ms
block lifetime 200 ms
Rx purge 200 ms

they are never dropped in our simulations. The BS runs the
scheduling algorithm, details of which are presented in [13],
[12]. In a few words, if there are only the BE connections,
then the BS allocates resources fairly between the SSs based
on their bandwidth request sizes. In addition, the ARQ aware
scheduling is deployed to the BS station scheduler [11].

The BS scheduler also reserves two transmission opportuni-
ties for the initial ranging purposes (as in real life, an SS has
to join the network in our simulator) and eight transmission
opportunities for the bandwidth request contention resolution.
The backoff parameters are given in Table I. The distribution
of the CDMA contention codes is also given in Table I (since
we do not simulate any mobility, there are no CDMA handover
codes).

The simulation environment includes one wired node and

ten SSs. Each SS establishes the basic management connection
to exchange the management messages with the BS. In addi-
tion, to exchange user data, an SS establishes one uplink and
downlink BE connection. An SS hosts exactly one FTP-like
application that downloads data from a wired node over the
TCP protocol. The reason we choose such an application type
is that it tries to send as much data as possible thus utilizing
all the network resources. At the same time, the TCP protocol
is very sensible to packet drops that can occur in the wireless
part. Each simulation run lasts for 10 seconds. The actual data
transmission starts at the 1.5th second of the simulation run
because first SSs has to enter the cell and register at the BS.

A. General ARQ results

In this simulation scenario we present general results con-
cerning the ARQ performance. Fig. 11 presents the downlink
throughput when neither ARQ nor errors are enabled. The
throughput is calculated at the upper MAC level of the SS
wireless interface, i.e., when the SS reconstructs original
packets from received PDUs. As can be seen, all the BE
connections have almost identical throughput. Since there are
no QoS requirements, the BS scheduler allocates resources
fairly between them.
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Fig. 11. Downlink throughput (no errors, no ARQ).

If we enable errors at the PHY level but keep the ARQ
mechanism disabled for the transport connections, then there
will be no smooth transmission anymore. As Fig. 12 illustrates,
there is quite a bursty downlink data transmission. Some SSs
even do not send data for some periods of time. Such a
behavior is explained by the fact that the receiver does not
test whether there is an erroneous PDU or not – it passes
all the reconstructed SDUs to the wired node. Thus, the
error detection and retransmission occurs at the transport layer
which affects greatly the throughput.4 It is worth mentioning
that Fig. 12 presents even somewhat optimistic results because
there is a small round-trip delay between the source subscriber
stations and the destination wired node. As it becomes larger,
the throughput would decline appropriately.

4Practically, a connection may include the CRC field into the PDU without
enabling the ARQ mechanism. It will prevent a receiver from forwarding
erroneous PDUs. However, a retransmission will still occur at the transport
level.
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Fig. 12. Downlink throughput (errors, no ARQ).

Fig. 13 shows the connection throughput when errors at
the PHY level and the MAC ARQ mechanism are enabled.
As follows from the figure, each BE connection achieves
a smooth data transmission. Since there are errors in the
PHY channel, the mean connection throughput is less than in
Fig. 11. Nevertheless, the ARQ mechanism ensures extremely
good resource utilization. The fluctuations are explained by
the fact that PDUs are dropped and retransmitted.
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Fig. 13. Downlink throughput (errors, ARQ).

Fig. 14 presents the simulation results when the ARQ
priority is absent, i.e., the ARQ feedbacks and retransmissions
are transmitted in exactly the same order as they are put into
the connection output queue. As can be seen from the figure,
there are bursty changes in the uplink connection throughput,
similar to the case when the ARQ mechanism is completely
disabled. As considered in II-D, failing to prioritize ARQ
feedbacks and retransmissions leads to a situation when the
sender does not receive immediately information on ARQ
blocks to retransmit thus resulting in a low performance.

Table II provides a comparison of these subcases by using
another criterion, the total amount of downlink data. The
amount of uplink data is much less and, due to the TCP
behavior, is proportional to the downlink data. As follows
from the results, an absence of the ARQ mechanism when
there are errors in the transmission channel (which is usually
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Fig. 14. Downlink throughput (errors, ARQ, no ARQ priority).

a case for the wireless networks) results in a very low resource
utilization. Table II also presents an interesting subcase when
the ARQ is turned on, but errors are turned off. Its purpose is
to show that ARQ introduces some overhead to the MAC level.
Finally, absence of the priority for the ARQ retransmissions
and the ARQ feedback messages decreases significantly the
overall performance.

TABLE II
AMOUNT OF TRANSFERRED DATA.

ARQ ARQ priority errors Downlink data (MB)
– – – 4.296√ √

– 4.097
– –

√
0.392√ √ √
3.718√

–
√

0.592

B. ARQ block rearrangement

In this subsection, we study the ARQ retransmission with
rearrangement. The network parameters are the same as pre-
sented in Table I. There are ten SSs that download from the
wired node through the BS. To demonstrate the ARQ block
rearrangement importance, we turn on/off this feature and
adjust the PDU size.
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Fig. 15. Downlink throughput (no ARQ block rearrangement, large PDU).
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Fig. 15 shows the throughput of downlink transmission
when the ARQ block rearrangement is turned off. As can be
seen from the figure, uplink connection throughputs are not
smooth but rather change drastically. This is a result of the
insufficient size of the uplink data burst when a connection
retransmits a PDU. As explained earlier, while a connection
may transmit a large PDU, an attempt to retransmit the same
PDU may fail if the BS allocates later a data burst of a smaller
size.

If a connection does not support the ARQ block rearrange-
ment, then a possible solution is to use a smaller PDU size.
Fig. 16 shows the downlink throughput for exactly the same
case, but now all the connections have the maximum PDU
size of 108 bytes, the ARQ block rearrangement is turned off.
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Fig. 16. Downlink throughput (no ARQ block rearrangement, PDU size is
108 bytes).

If we compare Fig. 16 (small PDU, no ARQ block re-
arrangement) and Fig. 13 (unlimited PDU size, ARQ block
rearrangement), we may notice that the ARQ block rear-
rangement has an impact on the performance. Connections
can use large PDUs of any size thus decreasing the MAC
level overhead. At the same time, all the connection achieve
a smooth data transmission. It is noticeable that an average
connection throughput in Fig. 16 is less than in Fig. 13, which
is explained by the MAC overhead caused by the small PDU
size.

TABLE III
AMOUNT OF TRANSFERRED DATA.

Rearrangement PDU size (B) Downlink data (MB)√
unlimited 3.718

– unlimited 2.062
– 108 3.581

Table III also shows the amount of downlink data for this
simulation scenario. As follows from the results, a connection
should consider smaller PDU sizes if the ARQ block rear-
rangement functionality is not supported.

C. ARQ feedback intensity

In this simulation subcase, we study the impact of the ARQ
feedback intensity on the network resource utilization. The
network parameters are the same as in the previous simulations

scenarios, the only difference is that we use the ARQ block
size of 128 bytes. Otherwise, with a low ARQ feedback
intensity the ARQ transmission window may get full and the
transmission will stall. Also, the ARQ block lifetime timer is
increased to 1.3 seconds to prevent ARQ blocks from being
discarded when the low ARQ feedback intensity is in effect.
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Fig. 17. Total downlink data

Fig. 17 presents the simulations results for different ARQ
feedback intensity and ARQ retry timeout values. According
to Fig. 17(a), less frequent ARQ feedback messages allow
connections to achieve better throughput due to the decreased
MAC overhead. However, as the ARQ feedback transmission
interval value is close to the ARQ retry timeout value, the
MAC utilization starts to decline because a sender retransmits
the same data. If there are errors in the wireless channel, then
a lower ARQ feedback intensity results only in a marginal
improvement, as Fig. 17(b) shows. At the same time, the
MAC utilization starts to degrade even earlier than the ARQ
retry timeout value. The reason for this is that ARQ feedback
messages can be dropped, as any other PDU. Thus, a higher
ARQ feedback intensity introduces a redundancy into the ARQ
feedback mechanism – even if one feedback message is lost,
the next one will duplicate the information.

Based on the presented simulation results, it is possible to
arrive at the conclusion that the ARQ feedback transmission
interval must be at least two times less than the ARQ retry
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timer. A higher ARQ feedback intensity results only in a
slightly increased MAC overhead. At the same time, it im-
proves the robustness of the ARQ feedback mechanism. More
results including the ARQ feedback intensity over the HARQ
enabled connections can be found in [14]

D. ARQ feedback types

In this simulation subcase, we study the ARQ feedback
types. The network parameters are the same as in the previous
simulations scenarios, the only difference is that we use differ-
ent ARQ block size values and the ARQ feedback transmission
interval is set to 40 ms.

TABLE IV
THE ARQ FEEDBACK TYPES STATISTICS.

ARQ
block
(B)

Feedback type percentage (%) Num.
of

msg.

Downlink
data

(MB)
Sel Cum Cum+ Cum+

sel seq
16 0 92.025 0 7.975 3586 2,769
32 0 91.910 0 8.091 3535 2,773
64 0 92.125 0 7.875 3543 2,769
128 0 91.556 0 8.444 3541 2,759
256 0 92.033 0 7.967 3477 2,817
512 0 92.312 0 7.688 3278 2,757
1024 0 90.547 0 9.453 2941 2,635

Table IV shows the results for these simulation runs.
The total number of ARQ feedback messages sent in each
simulation run and the percentage of each ARQ feedback
type are presented. As can be seen, neither selective nor
cumulative+selective feedback messages are sent during the
simulation runs. As explained earlier, it is almost always
more efficient to send acknowledgments by means of the
cumulative+sequence type that can encode more blocks than
the cumulative+selective. If there are only positive acknowl-
edgments, then the cumulative feedback type is used. As
follows from the table, the majority of the ARQ feedback
messages are of this type. As explained earlier, due to the
clarifications in [3], it is feasible to construct and send the
cumulative+sequence feedback type when there are negative
acknowledgements in the beginning of the ARQ window. It
is possible to put out of the Tx window BSN field in the
cumulative part so that it is ignored at the sender (receiver of
the ARQ feedback). Such a solution eliminates the need for
the selective type and improves the MAC level utilization.

It was anticipated that as we increase the ARQ block size,
the number of the ARQ feedback messages should decline.
As follows from Table IV, it is indeed so. It is also important
to note that the best performance is achieved for the ARQ
block size of 256 bytes. Smaller ARQ block sizes create a
larger MAC overhead, while larger ARQ block sizes result in
a higher PDU error rate [8] because the minimum PDU size
should be large enough to carry at least one ARQ block [11].
Besides, as mentioned earlier, large ARQ block size values
may prevent a connection from utilizing all the burst size
because the PDU is fragmented and retransmitted on the ARQ
block boundaries. If a connection uses a large ARQ block
size then it is less flexible in retransmitting PDUs. Thus, the
optimal ARQ block size is a tradeoff between the PDU error

rate and the number of the ARQ feedback messages, which
cause the ARQ overhead at the MAC level.

TABLE V
THE ARQ FEEDBACK TYPES STATISTICS.

ARQ
block
(B)

Feedback type percentage (%) Num.
of

msg.

Downlink
data

(MB)
Sel Cum Cum+ Cum+

sel seq
16 100 0 0 0 5639 2,680
32 100 0 0 0 3621 2,644
64 100 0 0 0 3382 2,356
128 100 0 0 0 3351 2,394
256 100 0 0 0 3411 2,758
512 100 0 0 0 3221 2,697

1024 100 0 0 0 2853 2,596

Table V shows the results where only the selective ARQ
feedback type is enabled. As expected, there are more ARQ
feedback messages, especially for small ARQ block sizes, such
as 16 bytes. If we compare the amount of transferred data in
Table V and Table IV, then we can arrive at the conclusion that
the selective ARQ feedback type does not result in a severe
performance degradation. Thus, being combined with larger
ARQ block sizes, it can be a valid choice for certain mobile
devices with limited computational resources.

E. ARQ transmission window

In this subsection we study the impact of the ARQ trans-
mission window on the throughput. The network parameters
are the same as in the previous simulations scenarios, the
only difference is that we vary the ARQ transmission window
and block sizes. There is only one SS, otherwise it would be
difficult to present an analysis of the throughput of all the
SSs. We run a separate simulation for each ARQ transmission
window value and ARQ block size. Since an SS throughput
fluctuates during a simulation run, it is averaged by using the
exponentially weighted moving average algorithm.

Fig. 18 presents the simulations results for this case with the
PHY errors turned off and on. The figure indicates that large
ARQ block sizes allow a connection to achieve its maximum
throughput even for small ARQ transmission window values.
Conversely, a small ARQ block value needs a large ARQ
transmission window to achieve a high throughput. In the
case of the errorless transmission, as the ARQ transmission
window grows, the throughput increases linearly regardless of
the ARQ block size. Of course, it grows faster for larger ARQ
block sizes. When the ARQ transmission window reaches a
certain value, its further growth does not have an impact on the
throughput because the latter is limited by the overall network
capacity. It is noticeable that regardless of the ARQ block size
value, there are several phases in how the throughput increases.
(see Fig. 18(a)). In the beginning, it grows very slow due to
the fact the stations have to take part in the uplink connection
resolution to send to the BS TCP acknowledgements and
the ARQ feedback messages. In this case, the throughput is
approximated accurately by (3) with the delay factor of 3.
When a certain point is reached, there is a continuous uplink
transmission due to the increased downlink traffic. Stations do
not take part in the uplink contention resolution anymore as
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Fig. 18. Downlink throughput and ARQ window.

they piggy-back their bandwidth requests to user data. In this
case, the throughput is approximated accurately by (3) with
the delay factor of 1. A similar behavior is observed when
there are PHY errors (see Fig. 18(b)). The only difference
is that throughput increases much slower due to the PDU
retransmissions.

Fig. 18 illustrates clearly that small ARQ transmission
window values may prevent a connection from sending data
even if it has slots allocated by the BS scheduler. Though it
is not a huge problem for the BE connections, one should
account for it if there is a QoS connection with the minimum
bandwidth requirements.

IV. CONCLUSIONS

In this paper, we have analyzed the performance of the
802.16 ARQ mechanism. We have shown that the ARQ
mechanism can improve significantly a performance of the
TCP based applications. Since a probability for an erroneous
transmission in the wireless channel is much higher when
compared to the wired medium, the ARQ mechanism should
be enabled for the TCP connections if a provider wants to
ensure better QoS and to maximize the network utilization.
Though we did not present simulation results for the UDP
protocol, it is clear that its performance would not be affected

by the absence of the ARQ mechanism because the UDP
transmission does not depend on packet drops.

We have proposed a solution on how to prioritize normal
PDUs, ARQ feedbacks, and retransmissions. The simulation
results have also revealed the importance of the ARQ block
rearrangement functionality. If an SS does not support it,
then an additional care must be taken. An SS should choose
smaller PDU sizes to achieve a smooth data transmission.
We have also demonstrated that a connection must choose
a sufficiently large ARQ transmission window size to utilize
the allocated resources. While large ARQ blocks can utilize
resources even with a small ARQ window, small ARQ blocks,
such as those of 16 and 32 bytes, require much larger ARQ
window. We proposed lightweight, yet efficient, algorithms to
select the ARQ feedback type and to build block sequences for
the cumulative+sequence feedback type. Besides, the selective
ARQ feedback type does not result in a severe performance
degradation; mobile devices with scarce computational re-
sources may rely safely upon it. If a receiver can adjust the
ARQ feedback intensity, then it better to rely upon a higher
ARQ feedback intensity to avoid retransmissions activated
by the ARQ retry timer. In any case, the ARQ feedback
transmission interval must not be less than the ARQ retry
timer.

Our future research will aim at studying the optimal pa-
rameters of the ARQ mechanism, which is especially the case
for the ARQ-enabled QoS connections. It is also important to
compare the results provided by the ARQ mechanism and the
HARQ mechanism available in the OFDMa PHY.
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