
Centralized Conferencing in the IP Multimedia
Subsystem: from theory to practice

A. Amirante, A. Buono, T. Castaldi, L. Miniero and S. P. Romano

Abstract—In this paper we present a conferencing architecture
compliant with the IP Multimedia Subsystem (IMS) specification.
To the purpose, we embrace a practical approach, by describ-
ing an actual implementation of an open source centralized
video-conferencing system, called CONFIANCE, capable to offer
advanced communication experience to end-users through the
effective exploitation of mechanisms like session management
and floor control. CONFIANCE has been designed to be fully
compliant with the latest standard proposals coming from both
the IETF and the 3GPP and can be considered as an outstanding
example of a real-time application built on top of the grounds
paved by the SIP protocol. We will discuss in the paper both
the design of the overall conferencing framework and the most
important issues we had to face during the implementation phase.

Index Terms—IP Multimedia Subsystem, Video Conferencing,
Floor Control

I. INTRODUCTION

Conferencing can nowadays be considered by providers as
an extremely challenging service, since it imposes a number
of stringent requirements to the underlying network infras-
tructure. First, the intrinsic multimedia nature of a conference
(which typically involves a combination of audio, video,
instant messaging, desktop sharing, etc.) requires coping with
complex issues like session management and floor control.
Second, the real-time features of conference-based communi-
cation call for an appropriate level of Quality of Service (QoS).

In order to effectively support advanced services like con-
ferencing, the third generation Partnership Project (3GPP) is
currently standardizing the so-called IP Multimedia Subsystem
(IMS), an architecture aimed at providing a common service
delivery mechanism capable to significantly reduce the de-
velopment cycle associated with service creation across both
wireline and wireless networks. The envisaged portfolio of
IMS services includes, besides the already mentioned con-
ferencing service, other advanced IP-based applications like
Voice over IP (VoIP), online gaming and content sharing.

The main challenge for the IMS is that all such services
are to be provided on a single, access-agnostic, integrated
infrastructure capable to offer seamless switching functionality
between different services. This is achieved through the adop-
tion of the principle of separation of concerns, which reflects
in the definition of a number of core IMS components (such

Manuscript received December, 2007 and revised February, 2008.
This Paper was presented as part at the Next Generation Teletraffic and

Wired/Wireless Advanced Networking (NEW2AN) 2007
Alessandro Amirante, Tobia Castaldi, Lorenzo Miniero and Simon Pietro

Romano are with the University of Napoli Federico II, Via Claudio 21, 80125
Napoli, Italy. Email: {alessandro.amirante, tobia.castaldi,
lorenzo.miniero, spromano}@unina.it

Alfonso Buono is with the CRIAI Consortium, P.le E. Fermi 1, 80055
Portici (NA), Italy. Email: {alfonso.buono@criai.it}

as Call/Session Control Function – CSCF, Home Subscriber
Server – HSS, Media Resource Function – MRF and Appli-
cation Server – AS), each in charge of looking after a specific
function of the overall system. The identified components must
also be scalable and able to provide advanced features, like five
nine reliability.

The goal of this paper is to present an actual implementation
of CONFIANCE, an IMS-compliant conferencing architecture
that has been conceived at the outset as a playground useful
both for protocol testing and for field trials and validation. We
will first present our architecture from a high-level perspec-
tive, in order to highlight the mapping between IMS logical
functions and the actual system components. Then, a more in-
depth view of such components will be provided, so to allow
for a better explanation of the most challenging choices we
had to make during the implementation phase.

The paper is structured as follows. Section II helps position
our work by providing useful information about the reference
context, as well as about the motivations behind our contri-
bution. An IMS-compliant architecture for moderated video
conferences is depicted in section III. Implementation details
are illustrated in section IV, whereas in section V we deal with
related work. Finally, section VI provides some concluding
remarks, together with information about our future work.

II. CONTEXT AND MOTIVATION

Nowadays the most widespread signaling protocol for IP
networks is the Session Initiation Protocol (SIP) [1]. It
provides users with the capability to initiate, manage, and
terminate communication sessions. SIP natively allows multi
party calls among multiple parties. However, conferencing
does represent a more sophisticated service that can be seen
as an extension of multi party calls where audio is just one of
the possible media involved. For example, the conferencing
service may provide video functionality as well as instant
messaging, files and presentation sharing or even gaming.

Furthermore, the conferencing service provides the means
for a user to create, manage, terminate, join and leave con-
ferences. Finally, it provides the network with the ability to
deliver information about these conferences to the involved
parties.

Over the last few years, standardization efforts have been
devoted to conferencing related matters by international bodies
like the IETF, the 3GPP and OMA.

The Internet Engineering Task Force (IETF) is an open
international community concerned with the evolution of the
Internet architecture and protocols. Within the IETF the Cen-
tralized Conferencing (XCON) working group is explicitly

80 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 1, MARCH 2008

1845-6421/08/7182 © 2008 CCIS

FESB
Typewritten Text
 Original scientific paper



focusing on multimedia conferencing. Furthermore, there are
a couple of working groups whose standardization activity
also deals with conferencing related issues, namely Session
Initiation Proposal Investigation (SIPPING) and Media Server
Control (MEDIACTRL).

The very first framework for multi-party conferencing based
on the SIP protocol was developed by the SIPPING WG [2].

This framework defines a general architectural model,
presents terminology, and explains how SIP is involved in a
tightly coupled conference. Taking inspiration from the work
carried out in SIPPING and willing to release any constraint
about the signaling protocol, the recently born XCON WG is
working hard on the definition of both a reference framework
[3] and a data model [4] for tightly coupled conference
scenarios.

The envisaged architecture is based upon a centralized
management component, called focus, conceived as a logical
entity which integrates both signaling and control features.
Specifically, it acts as an endpoint for each of the supported
signaling protocols and maintains a call signaling interface
between each participant client and the so-called conference
object representing a conference at a certain stage (e. g. de-
scription upon conference creation, reservation, activation,
etc.). Thus, the focus is responsible for all primary conference
membership operations. At present, XCON has specified the
moderation protocol, the so-called Binary Floor Control Pro-
tocol (BFCP) [5]. BFCP enables applications to provide users
with coordinated (shared or exclusive) access to resources
like the right to send media over a particular media stream.
Recently, the MEDIACTRL working group has started working
on the definition of a framework for the remote control of a
Media Server (MS) from an Application Server (AS). The
AS acts as a decision point, since it hosts the business logic.
The MS, on the other hand, behaves like an enforcement
point, which the AS controls through messages sent across
an ad hoc defined Control Channel. The messages exchanged
between AS and MS belong to specific Control Packages (e.g.
conferencing, basic IVR – Interactive Voice Response, etc.).

The 3rd Generation Partnership Project (3GPP) actually
represents a collaboration agreement among a number of
regional standard bodies, born with the main objective of
developing Technical Specifications for a third-generation mo-
bile system based on GSM. Recently, the 3GPP has worked
on the specification of a tightly-coupled conferencing service.
Both the requirements and the architecture for such a service
have been defined [6]. The cited document indeed represents
a sort of integrated specification within the IMS, aimed at
harmonizing the combined use of existing standard protocols,
like the Session Initiation Protocol (SIP), SIP Events, the
Session Description Protocol (SDP) and the Binary Floor
Control Protocol (BFCP).

Coming to the Open Mobile Alliance (OMA), we just point
out that it represents the leading industry forum for developing
so-called mobile service enablers on the extensive 3GPP IMS
architecture. The key to the success of such service enablers
resides in the market-driven approach to deployment, as well
as in interoperability. The OMA Conferencing solution is a
primary example of an application built on top of the service

enablers. To date, OMA has standardized conference models
for both Instant Messaging [7] and Push to Talk [8].

A. The IMS architecture

Fig. 1 shows the architecture for the 3GPP IMS conferenc-
ing service. Both IMS entities and IMS interfaces are showed
in the picture. In the following of this subsection we briefly
expand on the components which are relevant to our project.

The User Equipment (UE) implements the role of a con-
ference participant and may support also the floor participant
or floor chair role (the difference between such roles will be
clarified in section IV).

The UE might be located either in the Visited or in the
Home Network (HN). In any case, it can find the P-CSCF via
the CSCF discovery procedure. Once done with the discovery
phase, the UE sends SIP requests to the Proxy-Call Session
Control Function (P-CSCF). The P-CSCF in turn forwards
such messages to the Serving-CSCF (S-CSCF). In order to
properly handle any UE request, the S-CSCF needs both
registration and session control procedures (so to use both
subscriber and service data stored in the Home Subscriber
Server – HSS). It also uses SIP to communicate with the
Application Servers (AS). An AS is a SIP entity hosting and
executing services (in our scenario, the AS clearly hosts the
conferencing service).

The IP Multimedia Service Control (ISC) interface sends
and receives SIP messages between the S-CSCF and the AS.
The two main procedures of the ISC are: (i) routing the initial
SIP request to the AS; (ii) initiating a SIP request from the
AS on behalf of a user. For the initiating request the SIP AS
and the OSA SCS (Open Service Access - Service Capability
Server) need either to access user’s data or to know a S-CSCF
to rely upon for such task. As we already mentioned, such
information is stored in the HSS, so the AS and the OSA
SCS can communicate with it via the Sh interface.

In a SIP based conferencing scenario, the MRFC (Media
Resource Function Control) shall regard the MRFP (Media
Resource Function Processing) as a mixer. In fact, the MRFP
hosts both the mixer and the floor control server. When the
MRFC needs to control media streams (creating a conference,
handling or manipulating a floor, etc.) it uses the Mp interface.
This interface is fully compliant with the H.248 protocol
standard. The MRFC is needed to support bearer related
services, such as conferencing. The focus, conference policy
server and media policy server are co-located in an AS/MRFC
component in the 3GPP framework. S-CSCF communicates
with MRFC via Mr, a SIP based interface.

In this scenario the AS/MRFC shall implement the role of a
conference focus and a conference notification service. MRFC
may support the floor control server role, the floor chair role
or the floor participant role.

III. DESIGNING AN IMS COMPLIANT VIDEO

CONFERENCING ARCHITECTURE

We started our design from an architectural perspective
of the service we wanted to achieve, that is an advanced

AMIRANTE et al.: CENTRALIZED CONFERENCING IN THE IP MULTIMRDIA SUBSYSTEM 81



Access 
Network

Access 
Network P-CSCF

P-CSCF

I-CSCF

S-CSCF

SIP-AS OSA-SCS IM-SSF

BGCF

MGW

MGCF

MRFC

MRFP

SGW

HSS

SLFGm

Mw

Mw

Mw

Mw

Mw

ISC ISC
ISC

Sh Sh
Si

Mr
Mp

Mn

Mj

Mi

Mk

Dx

Cx

Dx

Cx

Non-IMS 
IP PDN

Mm

Mg

Mb

Mb

Legacy
PLMN

C, D,
Gc, Gr

Fig. 1. The IMS Architecture

conferencing application. The first step was obviously iden-
tifying and locating all the IMS logical elements which
would be involved in the above mentioned scenario. We
then investigated the possibility of replicating, or at least
replacing, such elements with existing real-world components.
All the presented steps are described in detail in the following
sections.

A. Identifying the required IMS elements

To identify the required elements, a bird’s eye view of
the whole IMS architecture, as shown in in Fig. 1, is first
needed. Then, considering the desired conferencing scenario,
identifying such logical elements can be easily accomplished.

First of all, the scenario clearly addresses two distinct roles,
a server side (the elements providing the service) and a client
side (all users accessing the service). We referred to these roles
in identifying the elements.

Starting from the client side, the very first mandatory
element that comes into play is of course the User Equipment
(UE), which has to be both SIP compliant and XCON enabled
in order to correctly support conferencing.

At this point, the other involved elements can be found
by following the flow of messages originated by users. This
indicates we need to have the P-CSCF, which may behave
like a proxy, accepting incoming requests and forwarding
them to the S-CSCF. Hence, S-CSCF and HSS are the next
selected elements, which are to take care of many important
tasks, the most relevant ones being checking users access and
authorization rights, handling session control for the registered
endpoint sessions and interacting with Services Platforms for
the support of services.

Of course, so far the selected elements only deal with the
signaling plane of the conferencing scenario. Considering that
we need elements performing the service itself, the focus
must then be moved to floor management, media streaming
and control. This leads us in selecting additional elements
to the design. To handle the service, a SIP-AS (SIP Ap-
plication Server) as defined in [9] is to be used. This AS
will be in charge of managing conferences (e.g. creating,
modifying, deleting them), and in general of all the business
logic, which includes policies, related to the scenario. These
policies include Floor Control, which implies that the AS will
have to also manage access rights to shared resources in our
conferencing framework. The media streams are manipulated
and provided, according to the IMS specification, by a couple
of tightly coupled elements called MRFC (the controller) and
MRFP (the processor). The MRFC controls the media stream
resources in the MRFP, interpreting input coming from the
AS, then instructing the MRFP accordingly. The MRFP is
the element which actually provides the resources, by offering
functionality like mixing of incoming media streams (in our
case, audio and video streams) and media stream process-
ing (e.g. audio transcoding, media analysis). Considering the
XCON framework is conceived to be agnostic with respect to
the signaling protocol used to access the service, a specific
element is needed as a gateway towards other technologies.
This can be accomplished by the MGCF, which performs the
interworking with the PSTN, while controlling the MG for the
required media conversions. As a final step, the MGW helps
perform the interworking with the PSTN, at the same time
controlling and reserving the resources required by the media
streams.

82 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 1, MARCH 2008



Access 
Network

Access 
Network P-CSCF

P-CSCF

I-CSCF

S-CSCF

SIP-AS OSA-SCS IM-SSF

BGCF

MGW

MGCF

MRFC

MRFP

SGW

HSS

SLFGm

Mw

Mw

Mw

Mw

Mw

ISC ISC
ISC

Sh Sh
Si

Mr
Mp

Mn

Mj

Mi

Mk

Dx

Cx

Dx

Cx

Non-IMS 
IP PDN

Mm

Mg

Mb

Mb

Legacy
PLMN

C, D,
Gc, Gr

MiniSip

OpenSer

Asterisk

Fig. 2. IMS Elements Mapping

B. Elements mapping

While the first step was to identify the elements required
by the service, our next step was to look for possible real-
world components capable to realize the needed functionality.
In our architecture, we found many of these components in
the open source community. However, in many cases we
had to implement our own components, either from scratch
or based on existing open source projects. Fig. 2 shows
a graphical view of the mapping we made between the
addressed IMS elements and the chosen components. As to
the UE, we opportunely modified an open source SIP client
called Minisip (http://www.minisip.org/), in order to
make it capable to handle BFCP protocol messages. The P-
CSCF was replaced by a fully compliant SIP Proxy server
called OpenSER (http://www.openser.org/). The S-
CSCF and HSS elements have been realized by exploiting the
functionality provided by the well known open source PBX
called Asterisk (http://www.asterisk.org). Asterisk
actually was able to provide us with many of the required IMS
functions. In fact, it already included a module, called MeetMe,
capable of providing very basic conferencing functionality. Its
modular approach for what concerns applications allowed us
to enhance this component with all the functionality needed
to realize the role of the SIP-AS as played in our architecture,
thus making it capable to manage conferences. Furthermore,
the roles of the MRFC and MRFP components are partly
played by another pair of ad-hoc modified Asterisk modules
capable to provide media management, streaming and floor
control. Additional MRF-related functionality, especially for
what concerns video, have been realized by implementing
from scratch a remotely controllable VideoMixer. Finally we

replaced the MGCF and MGW components with a native
Asterisk component performing the interworking with the
PSTN, including all the related activities.

Starting from the considerations above, in the next section
we will describe in detail the implementation choices behind
our architecture.

IV. CONFIANCE: AN OPEN SOURCE IMPLEMENTATION

OF THE CONFERENCING ARCHITECTURE

This section is focused on presenting our actual implemen-
tation of an open platform for the support of the already
introduced IP-based conferencing scenario. We first realized
this framework, which we called CONFIANCE (CONFerenc-
ing IMS-enabled Architecture for Next-generation Commu-
nication Experience), in the framework of a collaboration
activity involving the University of Napoli and Ericsson’s
Nomadic Lab in Helsinki. The aim was to try and take into
account the most recent proposals under development inside
the several interested standardization communities. This led
us, starting from the IMS-compliant design described in the
previous sections, to implement an XCON-compliant video
conferencing service, in order to provide advanced capabilities,
like conference management and moderated access to the
available resources. Great inspiration for this task came to
us from the work ongoing inside the IETF, especially in the
XCON and MEDIACTRL working groups.

As already introduced in section II, the XCON framework
(see Fig. 3) defines a suite of conferencing protocols, which
are meant as complementary to the call signaling protocols,
for building advanced conferencing applications and achieving
complex scenarios. These protocols aim at providing means to

AMIRANTE et al.: CENTRALIZED CONFERENCING IN THE IP MULTIMRDIA SUBSYSTEM 83



Conference
Control Client

Floor
Control Client

Call
SignalingClient

Notification
Client

Conference
Control Server

Floor
Control Server Foci Notification

Service

Conference Object

Conference Object

Conference Object

Conference
Control 
Protocol

Floor
Control 
Protocol

Call
Signaling
Protocol

Notification
Protocol

Conferencing System

Conferencing Client

Fig. 3. Logical decomposition of the XCON Conferencing Framework

manage conferences in all their facets. Among them, the so-
called BFCP (Binary Floor Control Protocol) deserves special
attention. BFCP, in fact, enables conferencing applications to
provide users with coordinated (shared or exclusive) access to
the resources which have been made available. This coordi-
nated access stands for the capability to apply and enforce
policies upon media delivery, by opportunely managing the
access to a set of shared resources, such as the right to send
media over a particular media stream. A typical use case is a
participant willing to talk in a lecture-mode conference, who
has to submit a request to a designated chair in charge of
taking a decision accordingly.

According to the protocol specification, each shared re-
source or set of resources can be associated with a logical
entity called a floor. This floor is defined as a permission
to temporarily access or manipulate the associated set of
resources. A floor becomes the token that different actors in the
specification refer to in their interaction. One of these actors is
a logical entity called chair, which is made responsible for one
or more floors. Its main task is managing incoming requests for
the floors it is assigned to, by accepting, denying or revoking
them. The requests come from clients of a conference, who can
make floor requests on a transaction-by-transaction basis to the
Floor Control Server, thus asking for the permission to access
a specific set of resources. The server handles a set of queues
according to the available floors and the associated policies,
and if needed forwards incoming requests to the designated
chair, asking her/him for a decision about them. Chairs are also
offered more complex functionality, e.g. to actively revoke a
floor from a participant who may be abusing it. It is worth

noting that, even though BFCP offers a way to coordinate
access to resources, how these resources are associated with
floors and the policies a Floor Control Server may follow, as
well as the queue scheduling it may enforce, are outside the
scope of its specification.

The realization of such an XCON-compliant architecture
led us to work both on the client and on the server side,
with special focus on all the communication protocols between
them and their scenarios of interaction. The client side work
included the implementation of both roles envisaged in the
architecture, namely the simple participant and the chair. On
the server side, we implemented the roles of the focus, as
defined in [3], of the Floor Control Server, and of the Media
Server. To make the client and server sides interact with each
other, we implemented all the envisaged protocols (see Fig. 4),
specifically BFCP, as it is currently specified in the IETF [5],
and a brand new Conferencing Control Protocol we designed
ourselves, whose features will be briefly described in the
following. The interaction between the Focus and the Media
Server led us to design an additional dedicated protocol for the
remote control of the media processing functionality. More
details upon this feature will be provided in the following
sections.

As to BFCP, it has been implemented as a dynamic library,
which has then been integrated into both client and server
entities of the architecture. All the media management, ma-
nipulation and delivery have been bound to an event-driven
mechanism, according to the directives coming from the floor
control server.

Instead, considering that no agreement in the XCON WG

84 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 1, MARCH 2008



Participant
(Client)

Focus
(Server)

SIP/IAX/H323/PSTN etc.

Scheduling Protocol

Binary Floor Control Protocol

Fig. 4. New protocols implemented

had been reached about a specific Conference Control Protocol
candidate at the time we were designing our architecture, we
chose to develop a temporary, text-based, alternative solu-
tion ourselves, called XCON Scheduler. Such a Scheduler is
capable to offer the basic functionality that the architecture
is supposed to provide. Clients can use such protocol to
dynamically manage conference creation as well as conference
information.

A. Server side components

On the server side, we adopted Asterisk, a popular open
source PBX which is constantly growing in popularity. The
modular architecture behind Asterisk design allows it to be
quite easily modified and enhanced, upon necessity. Specifi-
cally, we added to Asterisk the following new functionality:

• XCON-related identifiers, needed to manage conferences;
• Floor Control Server (FCS), by means of a dynamic li-

brary implementing the server-side behavior and policies
of the BFCP;

• Scheduler Server, the server side component implement-
ing the conference scheduling and management protocol;

• Video Mixer Client, the client side of the protocol imple-
menting the interaction with the remote Video Mixer;

• Notification Service, to enable asynchronous events in-
terception and triggering.

Most of these components have been realized as extensions
to a conferencing facility already available as a module in
Asterisk, called MeetMe. This facility acts as a set of config-
urable virtual “rooms” for channels that are attached to it, thus
allowing users to access conferences by simply calling a pre-
defined phone number, associated with a standard extension of
Asterisk’s dial-plan, independently from the clients signaling
protocol. The addition of the above mentioned functionality
allowed us to realize a fully-driven XCON compliant focus.

The addition of the Scheduler component to the “vanilla”
MeetMe module allows for dynamic conference management
in a user-friendly fashion: in fact, through this component
clients are made able to dynamically (i.e. both in an active
way, as in scheduling, and in a passive way, as in retrieving
information) manipulate the conference objects and instances.
Considering the dynamic nature of the framework with respect
to policies, settings and scheduled conferences, all the required
changes in the dial-plan, as well as dynamic reloading upon
necessity, have been accomplished by adding the related
functionality to the extended MeetMe module.

To allow video conferencing functionality, which was lack-
ing in the base MeetMe module, we added a BFCP-moderated

video support to MeetMe. Such support was accomplished
by means of a brand new video mixer and transcoder
we implemented from scratch, and which we called Confi-
ance VideoMixer. The MeetMe application and the external
VideoMixer communicate through a dedicated protocol, which
is described in much more detail in the following subsection.

Since the XCON framework and data model define new
identifiers (including the Conference URI and User ID [4]), as
does the BFCP specification, the existing MeetMe data model
has been enriched with the new required information.

1. Request

2. Notification 3. Decision

4. Granted or
Denied

6. Notification

Fig. 5. The BFCP protocol in action

For what concerns BFCP, we had to implement the entire
protocol, as well as its behavior which includes queues and
state machines, from scratch. In order to achieve this, BFCP
has been realized as a dynamic library, which is loaded at run
time by the Asterisk server and comes into play whenever
a resource is to be moderated. In fact, Asterisk, as the
entity in charge of the business logic, also acts as the Floor
Control Server of the architecture (see Fig. 5). The FCS
functionality is involved every time a request is generated
from a participant, asking for the right to access a specific
resource (e.g. audio or video). As suggested by the picture, the
FCS itself may or may not take any decision about incoming
requests. In fact, while automated policies may be involved to
take care of floor control in a more straightforward approach
(e.g. to always accept or refuse incoming requests according
to predefined policies), if they are not specified the FCS rather
forwards floor requests to the designated floor chair, who is
in charge of taking a decision that is accordingly notified to
all the interested parties. As a transport method for BFCP
messages, support for both TCP/BFCP and TCP/TLS/BFCP
(as specified in [5]) has been implemented. Besides, since
conference-aware participants, to take advantage of the BFCP
functionality, need to know all the BFCP-related information
of a conference, the focus needs means to provide her/him with
such details. Apart from any out-of-band mechanism that could
be exploited, the IETF has recently standardized a way [10]
to encapsulate this information within the context of an SDP
(Session Description Protocol) offer/answer. This functionality
has been implemented as well in the module.

Coming to the Conference Control Protocol, in order to pro-
vide users with the capability of dynamically managing con-
ferences, we designed and implemented a brand new protocol
ourselves. This protocol, called Scheduler, has been conceived

AMIRANTE et al.: CENTRALIZED CONFERENCING IN THE IP MULTIMRDIA SUBSYSTEM 85



Scheduling Server
Scheduling

Client
Scheduling

Client

2. Registered
Extension: 867123
PIN: 4321

3. QueryRegistered

4. InfoRegistered
Extension: …
Extension: 867123
Extension: …

1. Create

Fig. 6. The new protocol for conference scheduling

as a text-based protocol to be used by clients whenever a new
conference instance is to be created/scheduled (see Fig. 6, left
hand-side client), or the list of available/running conferences
(see Fig. 6, right hand-side client) is to be provided.

Starting from this protocol, we also implemented a proto-
type Web Services-enabled wrapper to its functionality, and
a proxy client that allows clients exploiting html browsers
(e.g. for conference-unaware participants) to access and man-
age conference information. This kind of approach is the
same the WG has recently started investigating for a new
Conference Protocol Candidate, the Centralized Conferencing
Manipulation Protocol [11].

Finally, we implemented a Notification Service by exploit-
ing both existing solutions and customized modules. Be-
sides reusing the already available Asterisk Manager Interface
(which however only allows active notifications to passive
listeners), we implemented a brand new protocol, which we
called Dispatcher. This protocol is the base for a work we’re
carrying out in order to improve the scalability of the central-
ized conferencing framework, and is presented in detail in [12]
and [13].

1) External VideoMixer: As already mentioned before, the
existing conferencing module provided by Asterisk, which was
the basis of our work, only supported audio natively. This
obviously was a huge limitation in our framework, both for
the user experience and for protocol research interest. In fact,
having the possibility to involve moderation on different re-
sources (i.e. not just on audio) provides us with more complex
scenarios to deal with. Starting from these considerations, we
first paved the way for a video support in the module by adding
a basic video-switching functionality. The idea was basically
to only allow one participant at a time to contribute to the
video feed in a conference: this contribution would then be
sent (or better, “switched”) to all the other participants in the
conference. This new functionality allowed us to start dealing
with a video floor, thus introducing additional complexity in
the BFCP interactions and offering interesting research ideas:
in fact, the exclusive access to the video resource implied a
strong role for the moderation protocol. However, a simple
BFCP-moderated video-switching still couldn’t satisfy us for
many reasons. Apart from the already mentioned user expe-
rience, which could surely benefit from approaches like grid-

based video layouts, video-switching, as the name suggests,
is a simple blind forwarding of frames coming from a source
to one or several destinations. This means that it is in no
way concerned with content adaption, which could instead be
needed when a conference involves participants making use of
heterogeneous applications, devices and/or codecs. The most
obvious example is two participants making use of different
video codecs (e.g. H.261 and H.263): a blind forwarding
would prevent both participants from watching the peer’s
contribution, if available. This led us to study the possibility of
designing an ad-hoc media server which would act as a video
multiplexer (for complex layouts involving more sources)
and transcoder (to deal with video streams with different
encodings and resolutions). To achieve this goal, we designed
and implemented a custom video mixer, called Confiance
VideoMixer. Considering our will to adhere to the separation
of responsibilities principle, we chose this videomixer to be
a remotely controllable media server. In this way, the confer-
encing module would only have to deal with the application
logic (e.g. attaching participants to a mixed stream, specifying
mix layouts, and so on), while the videomixer would process
and manipulate the video streams according to directives sent
by the module. As already mentioned, this approach is the
same as the one currently investigated by the recently born

Working Group in the IETF, called MEDIACTRL (Media
Server Control), which will be further investigated in the final
remarks. To design the client-server nature of the videomixer,
we studied the requirements and potential issues of the already
introduced separation of responsibilities: we thus specified a
custom protocol allowing the conferencing module (or, more
in general, any other entity managing the application logic) to
control the manipulation of the participants’ video streams. In
the current implementation, the protocol allows for the per-
user and per-conference customization of several aspects of
the video processing, as layouts, transcoding, as well as the
optional ability for participants to watch their own contribution
in the mix they receive. All the directives the controller (in
this case the conferencing module) sends to the videomixer
are event-driven, and they make part of its application logic.

Whenever a video-enabled participant joins a conference, its
stream is redirected to the videomixer. By properly correlating
the participant’s identifiers associated with its own instances in

86 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 1, MARCH 2008



the controller and in the videomixer, the controller is then able
to command different actions on the stream. BFCP moderation
is one of the above mentioned events that can result in an
action being requested by the controller: the video floor being
granted to a participant would have the controller request the
related participant’s video stream to be included in the overall
mix, just as the same floor being denied or revoked would
result in an opposite request.

B. Client side components

On the client side, we chose an existing open source SIP
softphone, Minisip, as the basis for our work. Most of the
available configuration widgets used in Minisip have been
appropriately modified in order to enable user-friendly support
for XCON- and BFCP-related settings. Furthermore, brand
new widgets have been created in order to allow users to
take advantage of the functionality related to both conference
scheduling and BFCP. As to conference scheduling, a widget
has been implemented, which provides users with the needed
conference scheduling functionality (see Fig. 7): as the figure
shows, through such widget it becomes easy to either create
a new conference, or retrieve the list of active XCON confer-
ences, or join an existing XCON conference.

Fig. 7. XCON conference support in Minisip

Additionally, we implemented the client side BFCP behav-
ior by designing new classes in Minisip. These classes act as
wrappers to the dynamic library that has been introduced in
the previous section. Then new widgets, associated with such
classes, have been provided in order to enable users to:

• send BFCP messages to the BFCP server;
• interactively build BFCP floor requests in a user-friendly

fashion, either in participant or in chair (i.e. with en-
hanced floor management functionality) mode;

• keep an up-to-date log of all the BFCP messages ex-
changed with the server (and optionally show each such
message in further detail by simply clicking on the related
entry in the history widget).

With respect to the role of the chair, we added ad-hoc
interfaces in order to enable potential moderators to either

manage floor requests issued by conference participants (an
example of such interfaces is shown in Fig. 8), or build so-
called third-party floor requests, i.e. requests generated by the
chair on behalf of a different participant1.

Fig. 8. Minisip: the role of the chair

To take advantage of the already mentioned negotiation of
BFCP information within the context of the SDP offer/answer,
we also added to Minisip the support for the encapsulation of
BFCP information in SDP bodies. In this way, the BFCP is au-
tomatically exploited whenever a SIP INVITE (or reINVITE,
in case the negotiation is involved in a subsequent moment)
contains BFCP-related identifiers. Besides, the appropriate
transport method for the BFCP communication with the FCS
(i.e. TCP/BFCP or TCP/TLS/BFCP) is automatically chosen
and exploited with respect to this SDP negotiation.

C. An example of client-server interaction

To provide the reader with a more detailed overview of the
way the client-server interaction involves the introduced proto-
cols, this section is devoted to presenting an example regarding
a typical use case scenario. To ease the understanding of the
sequence diagram (see Fig. 9), each protocol is represented
with a different line style:

1) a participant (client in the scenario) contacts the Focus
(the server), through the text-based scheduling protocol
(dashed line), to ask for the list of currently active
conferences, thus sending a QueryConferences message
request with Active as argument;

2) the Focus processes the request and sends back to the
participant (still through the scheduling protocol) an
InfoConferences message, containing the list of all active
conferences;

3) the participant reads the list and decides to join the active
conference number 8671000: to join the conference,
she/he calls the conference number – as if it were a
standard phone number – using SIP (solid line) as the
call signaling protocol, thus placing a call to the SIP
URI 8671000@Focus (where Focus is the SIP domain,
in this case the IP address of the P-CSCF);

4) the Focus receives the call and, according to the specified
dialplan rules, routes it to the XCON-enabled MeetMe
instance managing the conference with the same call
number;

5) the XCON-enabled MeetMe instance managing the con-
ference, through IVR (Interactive Voice Response), plays
back a series of pre-recorded voice messages to welcome

1It is worth noting that such functionality is particularly interesting since
it enables the chair to allow conference-unaware participants to take part to
an XCON-enabled conference

AMIRANTE et al.: CENTRALIZED CONFERENCING IN THE IP MULTIMRDIA SUBSYSTEM 87



the new user. It also warns the client about the fact that
she/he is initially muted in the conference;

6) all the relevant BFCP information is encapsulated in an
SDP body, and then sent back to the new user by means
of a SIP re-INVITE;

7) once the client receives the re-INVITE and becomes
aware of the needed BFCP set of data, she/he, using the
BFCP (dotted line), decides to make a Floor Request to
ask the Focus for the permission to talk;

8) the Focus, as Floor Control Server, answers the client by
sending back a FloorRequestStatus BFCP message noti-
fying that the request is currently pending. At the same
time, the Floor Control Server forwards the message to
the chair of the requested floor as well, to ask him to
take a decision about the request.

From this point on, the BFCP transaction proceeds exactly
as described before (see Fig. 5). Once the chair grants the
floor, the client is un-muted and thus given the permission
to talk until the floor is not willingly released by the client
herself/himself or revoked by the chair. Since a floor is a
logical object, all BFCP transactions will proceed in the same
way, independently from the set of resources (be it audio
or video, in the case of our platform) the related floor(s)
could be associated with. In case the floor request involved
a manipulation of a video request, a subsequent interaction
between the conferencing module and the remote videomixer
would take place through the dedicated protocol.

V. RELATED WORK

The architecture we presented in this paper focuses on
two main aspects: (i) compatibility with the IMS framework;
(ii) capability to offer advanced functionality such as floor
control, conference scheduling and management, etc. While
there is a rich literature on each of the above points, when
considered alone, to the best of our knowledge no integrated
effort has been made to date which tries to provide a real
architecture being both IMS compliant and capable to offer
floor management functionality. This is mainly due to the fact
that no agreed-upon solution has been so far designated in
the various international standardization fora, with respect to
some crucial points, such as the choice of the most suitable
conferencing control protocol, as well as its integration in the
general IMS architecture. Interestingly enough, a few works
have already proposed to make a further step ahead, by moving
from a centralized to a distributed perspective. This is the case,
for example of [14], where the authors propose a model trying
to extend the XCON approach to a distributed scenario. While
this is currently out of the scope of the IETF, it does represent
one of our primary goals for the next future, as it will be
explained in the next section. On the IMS side, some efforts
have already been devoted to the realization of IMS compliant
testbeds, as in the case of [15], where the authors propose
a testbed for multimedia services support based on the IMS
specification.

Finally, several other works can be found in the literature,
though based on superseded models such as those defined
in the IETF SIPPING Working Group. This is the case, e.g.
of [16] and [17].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an actual implementation of an
IMS-compliant architecture aimed at offering a video confer-
encing service with enhanced functionality, such as conference
scheduling facilities and conference moderation, and focused
on the interaction amongst the involved parties through the
suite of dedicated protocols. The system we developed is
both based on open source components, which have been
appropriately enhanced in order to introduce support for the
new required protocols and mechanisms, and on brand new
software, which we realized to implement the state-of-the-art
functionality. This allowed us to investigate many issues re-
lated to the envisaged tightly coupled, centralized conferencing
model, including complex protocols interaction (e.g. the role
of BFCP in media delivery), mechanism to enhance scalability
(e.g. the separation of responsibilities between business logic
and media manipulation for CPU-intensive functionality as
video processing) and much more.

Nevertheless, a lot of challenging issues still remain and are
to be faced. The scalability matter in particular, considering
the centralized approach the XCON model takes, represents
a very interesting field of research in many aspects and
areas of the deployed architecture. For what concerns media
manipulation, we have already presented the introduction of
the VideoMixer as a separate entity from the Application
Server. This VideoMixer, however, has only represented the
seeds for a much more in depth work in this sense, which
we have already carried on for some months at the time of
writing. In fact, starting from the standardization efforts in the
already mentioned MEDIACTRL WG, we have implemented
a complete, modular, external Media Server in charge of all
media-related manipulation and processing. This allows the
Application Server to deal just with the signaling and control
plane.

To further leverage the weight from the AS shoulders,
we also already defined an architecture capable to realize a
distributed conferencing system having strong reliability and
scalability properties. Starting from the available centralized
conferencing system, we have designed the overall architecture
for distributed conferencing in terms of framework, data model
and protocols definitions. The framework under definition has
been called DCON, standing for Distributed Conferencing, but
at the same time explicitly recalling the already standardized
XCON model. So far, DCON has been implemented as a
large scale evolution of the XCON framework. We have
been proposing to deploy our architecture on top of a two-
layer network topology, and many publications (including
journals, conferences and IETF drafts) have been devoted
in spreading our approach. The top layer is represented by
an overlay network in which each node plays the role of
the focus element of an XCON “island”. The lower layer,
in turn, is characterized by a star topology (in which the
central hub is represented by the focus element) and is
fully compliant with the XCON specification. In the DCON
scenario, communication among different islands (i.e. among
the focus elements managing different islands) becomes of
paramount importance since it enables to share information

88 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 1, MARCH 2008



Participant
(Client)

Focus
(Server)

SIP/IAX/H323/PSTN etc.

Scheduling Protocol

Binary Floor Control Protocol

Query Conferences (Active) 

Info Conferences (Active Conferences list) 

SIP call to number 867100 
(to join conference 867100)

IVR-based messages (Welcome, Muted Status, etc.) 

SIP re-INVITE (BFCP info encapsulated in SDP body)

Floor Request

Floor Request Status (Pending)
Forward the request to the Chair

Chair Decision
Notify Chair Decision

.

.

.

Fig. 9. An example of signaling between client and server

about the state of the available conferences, as well as about
the participants involved in a distributed conference. To the
purpose, we are investigating the possibility of adopting the so-
called S2S (Server to Server) module of the XMPP (Extensible
Messaging and Presence Protocol) protocol. XMPP has been
standardized by the IETF as the candidate protocol to support
instant messaging, e-presence and generic request-response
services, and it looks to us as the ideal communication means
among DCON focus entities. A prototype of the platform is
already available (http://dcon.sf.net/) and currently
provides distributed videoconferencing functionality.

ACKNOWLEDGMENTS

This work has been carried out with the financial support
of the European projects NetQoS, OneLab and Content. Such
projects are partially funded by the EU as part of the IST
Programme, within the Sixth Framework Programme.

Alessandro Amirante received both his BSc and
MSc Degree in Telecommunications Engineering
from the University of Napoli ”Federico II” in 2004
and 2007, respectively. He is currently a Ph.D.
student in Computer Engineering and Systems at
the Computer Science Department of University of
Napoli ”Federico II”. His research interests primary
fall in the field of networking, with special regard
to Next Generation Network architectures and mul-
timedia services over the Internet.

Tobia Castaldi received his degree in Telecommu-
nications Engineering from the University of Napoli
“Federico II”, Italy, in 2006. He is currently a junior
researcher at the Computer Science Department of
the University of Napoli Federico II. The main topic
of his research concerns real-time applications for
the next-generation Internet with special regard to
the IP Multimedia Subsystem (IMS) architecture and
services.

Lorenzo Miniero received his degree in Computer
Engineering from the University of Napoli “Fed-
erico II”, Italy, in 2006. He is currently a Junior
Researcher at the Computer Science Department of
the same University. His research interests mostly
focus on Next Generation Networks, network real-
time applications, and communication protocols,
with special emphasis on the related standardization
efforts.

AMIRANTE et al.: CENTRALIZED CONFERENCING IN THE IP MULTIMRDIA SUBSYSTEM 89



Simon Pietro Romano received the degree in Com-
puter Engineering from the University of Napoli
Federico II, Italy, in 1998. He obtained a PhD degree
in Computer Networks in 2001. He is currently
an Assistant Professor at the Computer Science
Department of the University of Napoli. His research
interests primarily fall in the field of networking,
with special regard to QoS-enabled multimedia ap-
plications, network security and autonomic network
management. He is currently involved in a number of
research projects, whose main objective is the design

and implementation of effective solutions for the provisioning of services
with quality assurance over Premium IP networks. Simon Pietro Romano is
member of both the IEEE Computer Society and the ACM.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, et al. SIP: Session Initiation
Protocol. RFC3261, June 2002.

[2] J. Rosenberg. A Framework for Conferencing with the Session Initiation
Protocol (SIP). RFC4353, February 2006.

[3] M. Barnes, C. Boulton, and O. Levin. A Framework for Centralized
Conferencing. draft-ietf-xcon-framework-10, November 2007.

[4] O. Novo, G. Camarillo, D. Morgan, and R. Even. Conference Informa-
tion Data Model for Centralized Conferencing (XCON). draft-ietf-xcon-
common-data-model-09, February 2008.

[5] G. Camarillo, J. Ott, and K. Drage. The Binary Floor Control Protocol
(BFCP). RFC4582, November 2006.

[6] 3GPP. Conferencing using the IP Multimedia (IM) Core Network (CN)
subsystem; Stage 3 (TS 24.147 7.1.0). Technical report, 3GPP, March
2006.

[7] OMA. Instant Messaging using SIMPLE Architecture. Technical report,
OMA.

[8] OMA. Push to talk over Cellular (PoC) - Architecture. Technical report,
OMA.

[9] 3GPP. IP multimedia subsystem; Stage 2, Technical Specification.
Technical report, 3GPP, June 2006.

[10] G. Camarillo. Session Description Protocol (SDP) Format for Binary
Floor Control Protocol (BFCP) Streams. RFC4583, November 2006.

[11] M. Barnes, C. Boulton, and H. Schulzrinne. Centralized Conferencing
Manipulation Protocol. draft-barnes-xcon-ccmp-03, November 2007.

[12] A. Buono, S. Loreto, L. Miniero, and S. P. Romano. A Distributed IMS
Enabled Conferencing Architecture on Top of a Standard Centralized
Conferencing Framework. IEEE Communications Magazine, 45(3),
March 2007.

[13] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano. Improving
the scalability of an IMS-compliant conferencing framework through
presence and event notification. In Proceedings of the 1st International
Conference on Principles, Systems and Applications of IP Telecommu-
nications (IPTComm), New York City, NY, 2007.

[14] Y. Cho, M. Jeong, J. Nah, W. Lee, and J. Park. Policy-Based Distributed
Management Architecture for Large-Scale Enterprise Conferencing Ser-
vice Using SIP. IEEE Journal On Selected Areas In Communications,
23:1934–1949, October 2005.

[15] T. Magedanz, D. Witaszek, and K. Knuettel. The IMS Playground @
Fokus An Open Testbed For Next Generation Network Multimedia
Services. In Proceedings of the First International Conference on
Testbeds and Research Infrastructures for the DEvelopment of NeTworks
and COMmunities (TRIDENTCOM05), 2005.

[16] Z. Yang, M. Huadong, and J. Zhang. A Dynamic Scalable Service Model
for SIP-based Video Conference. In Proceedings of the 9th International
Conference on Computer Supported Cooperative Work in Design.

[17] A. Singh, P. Mahadevan, A. Acharya, and Z. Shae. Design and
Implementation of SIP Network and Client Services. In Proceedings
of the 13th International Conference on Computer Communication and
Networks (ICCCN), Chicago, IL, 2004.

90 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 1, MARCH 2008




