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Solving the Location Area Problem by Using
Differential Evolution

Sonia M. Almeida-Luz, Miguel A.Vega-Rodriguez, Juan A. Gémez-Pulido, Juan M. Sanchez-Pérez

Abstract: In mobile networks, one of the hard tasks is to
determine the best partitioning in the Location Area problem,
but it is also an important strategy to try to reduce all the
involved management costs. In this paper we present a new
approach to solve the location management problem based on the
Location Area partitioning, as a cost optimization problem. We
use a Differential Evolution based algorithm to find the best
configuration to the Location Areas in a mobile network. We try
to find the best values for the Differential Evolution parameters
as well as define the scheme that enables us to obtain better
results, when compared to classical strategies and to other
authors’ results. To obtain the best solution we develop four
distinct experiments, each one applied to one Differential
Evolution parameter. This is a new approach to this problem that
has given us good results.

Index terms: Differential Evolution, Location Area problem,
location management, mobile networks

1. INTRODUCTION

Personal communication networks (PCN) [1] have a digital
communication system that enables any user to make or
receive calls from any location and at any time of the day. For
that, the system must support the mobility of the users as well
as be able to find the users even when they change their
location.

Because communication networks must support a big
number of users, and their applications, as well as a wide
range of data transfers, the task of designing the infrastructure
of these networks must consider, as a very important point, the
mobility management. Mobility management involves the
process of location management that enables the mobile
network to find the current location of the mobile terminal in
order to make or receive calls, and the process of handoff
management that enables the mobile network to locate
roaming mobile terminals.

We are principally concerned about the mobility
management because their requests normally occur when a
mobile terminal changes its location or when the quality of the
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received signal becomes deteriorated, so this process becomes
even more important for the current and future generations of
mobile networks.

Location management involves two elementary operations:
location update and location inquiry (or terminal paging). The
location update corresponds to the notification of current
location, performed by mobile terminals when they change
their location in the network. The location inquiry is the
operation of determining the location of the mobile terminal,
which is executed by the network when it tries to direct an
incoming call to the user.

Location management strategies may be divided into two
main categories: static and dynamic schemes. The static
schemes consider the same behaviour of the network for all
users, while the dynamic schemes consider different network
topologies for different users based on the individual user’s
call and mobility patterns. Unlike dynamic schemes that are
more complex, static schemes are more common in the actual
mobile networks, because they require less computational
effort. A survey of different dynamic techniques based on
users’ behaviour such as timer-based, distance-based,
movement-based (among others) may be seen in [2]. As static
techniques, the most common ones are always-update, never-
update, and location area schemes [2], among others.

Always-update and never-update are the two simple
location management strategies. In the always-update strategy,
each mobile terminal performs a location update every time it
enters on a new cell, but no search operation would be
required for incoming calls, because it is considered that all
cells have different location areas. For the never-update
strategy no location update is performed but, when there is an
incoming call, a search operation is executed with the
objective of finding the corresponding user; because all cells
are considered as belonging to the same location area.
Normally these two strategies correspond to the extremes of
location management strategies and for that, most of existing
network systems use a combination of them. One of the most
common location management strategies in the existing
systems is the Location Area scheme that is presented with
more detail in the next section.

There exist several authors working with the location area
scheme and applying computationally efficient algorithms like
genetic algorithms [3 - 5], simulated annealing [5, 6], taboo
search [5] and clustering techniques [7] (among others).

In this paper, a Differential Evolution based algorithm is
used to find the best configuration for the location area
scheme in a mobile network. Therefore, we present a new
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approach to this problem. Section II provides an overview of
the location area problem and the involved costs. In section
111, the Differential Evolution based algorithm is described, as
well as its parameters and different possible schemes. In
section IV, the experimental results of the four specific
experiments are presented and an analysis over the obtained
results is done with the intent of defining the best Differential
Evolution parameters configuration. Finally, section V
includes conclusions and future work.

II. LOCATION AREA PROBLEM

In cellular network systems it is very important to keep
track of the location of the users, even when they move
around without making or receiving calls, so as to
consequently, be able to route calls to the users regardless of
their location.

Location Areas (LA) scheme corresponds to an important
strategy of location management, that is used with the
objective of reducing signalling traffic caused by paging
messages and location updates in cellular network systems.

In the LA scheme, the network is partitioned into groups of
cells and each group corresponds to a region, or more
precisely to a LA, as we can see in Fig. 1, where we have a
network with four LAs and each with four cells. In this
scheme, when a mobile terminal moves to a new LA, its
location is updated, which means a location update is
performed. When the user receives an incoming call, the
network must page all the cells of the new LA of the user,
looking for its mobile terminal.

Fig. 1. Network Partitioning into Location Areas

The LA problem can be defined as the problem of finding
an optimal configuration of location areas, minimizing the
location management cost. The location management cost
normally is divided in two main parts: location update cost
and location paging cost [3, 4].

A. Location Update Cost

The location update (LU) cost corresponds to the cost
involved with the location updates performed by mobile
terminals in the network, when they change their location to
another LA. Because of that, the number of location updates is
normally caused by the user movements in the network. This
means that, when we calculate the update cost for a certain
LA, we must consider the entire network and look for the flow
of users.

If we consider the network of Fig. 2a, it is possible to see
the total number of users who enter in the white LA. To
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calculate the location update cost for that LA, we must sum up
those numbers of users that enter (from another LA) on each
cell of the LA and the calculus is:

NLU =108 +41+42+73+84+63+58=469 (1)
&
Tl O
20 SOl

Fig. 2. a) Entering flow of users b) Incoming calls to the white LA
B. Location Paging Cost

The location paging (P) cost is caused by the network when
it tries to locate a user’s mobile terminal, during the location
inquiry, and normally the number of paging transactions is
directly related to the number of incoming calls. The task of
calculating the paging cost is simpler, because we only need to
count the number of incoming calls in the selected LA and
then multiply the value by the number of cells in the
respective LA. Considering the incoming calls to the white LA
shown in Fig. 2b, the calculus of paging cost is:

NP =(43+53+58+30)x 4 = 736 2)
C. Total Cost

The location management cost involves other parameters
and components, but those are considered to be equal for all
strategies [4]. Therefore, these other parameters do not
influence the comparison of different strategies, and we will
not consider them for the total cost. In conclusion, the
combination of location update cost and location paging cost
is sufficient to compare different strategy results.

The formula to calculate the total cost of location
management [8] is:

Cost = fx NLU + NP 3)

The total cost of location updates is given by NLU, the total
cost of paging transactions is given by NP, and finally B is a
ratio constant used in a location update relatively to a paging
transaction in the network. The cost of each location update is
considered to be much higher than the cost of each paging
transaction, due to the complex process that must be executed
for each location update performed, and also because most of
the time a mobile user moves without making any call [4].
Due to all of that, the cost of a location update is normally
considered to be 10 times greater than the cost of paging, that
is, p =10 [3].

For the white LA referred earlier, and presented in Fig. 2a
and 2b, the total cost by (3) would be:

Cost =10x469 + 736 = 5426 “)

To calculate the total cost of the network with the
configuration defined, which means with four LAs, would be
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necessary to make the calculus for each LA and then sum all
the values and get the final total cost.

II1. DIFFERENTIAL EVOLUTION ALGORITHM

The Differential Evolution (DE) is a population-based
algorithm, created by Ken Price and Rainer Storn [9], whose
main objective is functions optimization. It is one strategy
based on evolutionary algorithms with some specific
characteristics.

The DE algorithm’s main strategy is to generate new
individuals by calculating vector differences between other
randomly-selected individuals of the population. This
algorithm uses four important parameters: population size,
mutation, crossover and selection operators; there are different
variants.

A. Initial Population

Like other Evolutionary Algorithms, DE works with a
population of NI individuals (candidate solutions) and this
number never changes during the optimization process.
Normally the initial population is randomly generated and the
population will be improved by the algorithm iteratively,
through the mutation, crossover and selection operators (in
[10] is possible to see more details about the DE flowchart).

B. Mutation Operator

The mutant operator F is a scaling factor that controls the
amplitude of the differential variation of those random
individuals used in the calculi.

With this operator DE generates a mutant individual (I; 1),
by adding a weighted difference of two population
individuals, to a third individual using the equation (5):

L.=X +F(X,,-X (5)

The value of F must be greater than zero and will control
the magnitude of the differential variation of (X , - X3, ). The
individuals X, X, and X; are randomly selected and different
among them. The g means the actual generation and g+1
means the next generation. DE uses a weighted difference
between individuals to perturb the population in each
generation, instead of randomly define the quantity of
perturbations in the generation of a new individual as the most
of other Evolutionary Algorithms do.

i,g+l1 3.8

C. Crossover Operator

Crossover operator Cr is a value between zero and one,
which is used to increase the diversity of mutant individuals.
This constant represents the probability of trial individual
inherits parameter values from the mutant individual.

Mutant individual and target individual are subjected to
crossover to generate the trial individual (T ; 4+1), as displayed
in the following equation (6):

) if rnj <Cr
Tji,g+1 = X
ji-g

(6)

otherwise
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where j= 1, 2, ... G. G corresponds to the number of genes
of an individual and rn corresponds to the random value
generated.

D. Selection Operator

Selection has the purpose of comparing the trial individual
(offspring) produced by the crossover operator with the target
individual (parent) and it determines the one that will be part
of next generation. If a trial individual has a smaller cost
function value it is copied to the next generation, otherwise it
is the target individual that passes to the next generation, as it
is possible to see in equation (7):

if f(Ti,gH )S f(Xlg)’ set Xi,g+1 = Ti,gﬂ
Otherwise X =X

i,g+l ig

()

E. DE Schemes

Price and Storn [9] have suggested 10 different schemes
(those are presented in Table I) for DE. These schemes are
classified based on notation DE/x/y/z, where x specifies the
vector to be mutated, y corresponds to the number of
difference vectors used in mutation of x (normally 1 or 2) and
z represents the crossover scheme. The vector x may be
chosen randomly (‘rand’) or as the best of current population
(‘best’), and z may be binomial (‘bin’) or exponential (‘exp’)
depending of the type of crossover used.

TABLE 1
DE SCHEMES

Ne Scheme Mutant vector generation

1 | DE/best/1/exp xbest + F(xrl — xr2)
2 | DE/rand/1/exp xr3 + F(xrl — xr2)
3 | DE/randtobest/1/exp |xr3 + F1(xbest — xr3) + F2(xrl — xr2)
4 | DE/best/2/exp xbest + F(xrl + xr2 — xr3 — xr4)
5 | DE/rand/2/exp xrS + F(xrl + xr2 — xr3 — xr4)
6 | DE/best/1/bin xbest + F(xrl — xr2)
7 | DE/rand/1/bin xr3 + F(xrl — xr2)
8 | DE/randtobest/1/bin |xr3 + Fl(xbest — xr3) + F2(xrl — xr2)
9 | DE/best/2/bin xbest + F(xrl + xr2 — xr3 — xr4)

10 | DE/rand/2/bin xrS + F(xrl + xr2 — xr3 — xr4)

IV. EXPERIMENTAL RESULTS

In this section, we detail the source and preparation of the
test networks, subsequently we explain the most relevant
decisions and choices made in our algorithm implementation,
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then we expose our different experiments and finally we
present our results.

A. Test Networks Generation

There are several studies about other approaches for the LA
problem, but unfortunately, most of them do not present the
network data used for their implementation.

TABLE II
TEST NETWORK 5X5 ATTRIBUTES

ChAr
S (1,00 (1:5,46)
279 73 (e07e) (1:241) (2:5,31) (36,690 (47,55)
1 44 (129 (1:53,35) (27,22)
265 52 (2310 (1:A481) (2:7,63) (38,75) (49.27)
1200 73 (IK3,63) (19,300
52 (A2 (1:,29) (25,660 (3:10,59)
341 44 (17T (15ah (29,32) (3:00,22) (4:11,685) (5:12,74)
284 34 (K66 (1219 (2:3,52) (3:6,38) (48.33) (5:12435)
347 A6 (30 (17425 (29,600 (302,09 (415,61 ) (5:14,25)
9199 52 (k334 (1:444) (28,72) (3:1445)
w187 6% ({551 (1a27) (2:11,29) (3:15,448)
11 327 41 (6,54 (1:1037) (2:12.66) (3:15,26) (4:1685) (5:17,47)
12 454 B4 (o683 (16l (2E,T1) (310,770 (13,51 (5:17, 101
13 3346 55 ((B68) (1:1265) (214405 (3:17,484) (2:18,78) (519,29
14 151 &% (820 (1:945) (2:0333) (3:19,34)
15 158 52 (D39 (101320 (216290 (32042)
16 365 292 ([(R1LES) (1:0542) (21783 32047) (4:21,61) (5:2243)
17401 56 (R1L3T) (102,960 (203,48 (304,79 (41576 (5:2249)
18 384 RO (013980 (107,700 (2019,25) (322 46) (4:25,59) (5:24,53)
19 135 51 (e13,54) (114300 (21821 (32436)
A 124 a3 ((K1534) (106600 (2:21,24)
21 150 B2 ((k1&6l) (1:2025) (Z2157)
20253 539 (16410 (107 A8) (1834 (321,500 (4:2565)
23159 52 ((RIE71) (12249 (2:24,33)
24 138 59 (IR TE) (109400 (22330

Medghhors

=
E

[
e

R T A P
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[

TABLE 1III
TEST NETWORK 5X7 ATTRIBUTES

Ko UpPF CAr Neighhors
0 115 4 ({175 {1:738)
1 315 46 (sl (1:243) (27,33) (3:R,61) (49,112)
2 16l 5 (kL3I) (1:3,69) (29,50)
3 I 43 (24T (1:4.29) (2943) (1041 (£11,57)
4 69 M 0323 (1:515) (210,24)
5 115 46 (415 (:618) (210132 (3:12,20) (4:13,16)
6 35 33 (k52 (1:135)
T X3 71 (04l 1:1,33) (28.86) (3:1444)
B 368 51 (:LA3) (1773 (2954 (1420 (£1570) (5:16,73)
9 475 95 (196 (1:L56) (2:3,52) (L852) (10,01 2Z) (5:06,584)
10 420 5 (k323 (19,115 (2:1137) Q:1663) (£1758) (S1R109)
11 248 41 (:354) (L4 18) (2:529) (3:1044) (£12,45) (5:18.42)
12 218 46 (0:524) (1:10,49) (2:03,17) J:1837) (£19.25) (5:M054)
13 54 35 (51T) (L:&E) (Z129) 3:207)
14 142 59 (747) (LE18) (21526) (:21,34)
15 311 45 (872 (1:1429) (2:1642) (3:2132) (42ZA1) (=1341)
16 403 40 (076 (1:980) (201039 (:15,49) (4:=17,76) (52169)
17 431 5% {0055y (1-16,74) 2:0871) (3:23,70) (&:2442) (5:25,105)
I8 450 49 {000,003y (0=0 L,3R) (20249 (3:17,66) (4:19,11 8y (5:25,53)
19 461 92 (1Z30) (1:18,122) (2:20,70) (3:25,109) (2652 (5:27,69)
N O1&2 & (:1ZS3y (1:13.9) (2:09,73) 3:2742)
2133 57 q0:04L3E) (1:15.25) (2:2225) (32R34)
IZ 4D 9 (1597 (121,23 2:2L,108) (3:IR,67) (4:29.57) (5:30,59)
I 410 58 (0534 (1:16,60) 2:07,78) (ZZZI10) (4:24.58) EA0S5T)
M 408 90 (007,36 (1:23,66) (22554 (330,000 (430,15 EA258)
B O8M A 007, 0107) (I:1858) (2:09,106) (3:24,116) (4:26,98) (5122
¥ 34 T (19,5 (1:25,106) (2:2T46) (3:12,55) (4:33,15) (S:34.84)
I7 200 45 (19,77 (1:2032) 2265T) (33429
I® 136 A2 (:20,3T) (1:ELETH 2:29.26)
2 1Ty BT (IR 56 (1:2R.26) 2:-3082)
W 346 SR (IEG0) (1-2346) 224112 (3:-29,78) (4:31.41)
399 48 (2,20 (1:30.27) 2:3236)
32 214 41 (DML 4E) (1:2536) (2:2651) (3:3133) (4:13,35)
13 R4 & (2613 (13237 2:3414)
MO143 RV (AR5 (12727 2:33.M)
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In order to compare results we will use the same test
networks of Taheri and Zomaya in [4, 6]. Each of these
networks has a set of data for each cell, as presented in Table
2 for the 5x5 network from [6]. The first column represents
the cell identification, the second is the number of total
updates that each cell may have, the third one means the
number of calls received in each cell and the fourth
corresponds to the number of updates to be considered by
each cell whose neighbours change their LAs to the same one.
In this work we use four distinct networks with respective
sizes of 5x5 (see Table II), 5x7 (see Table III), 7x7 (see Table
IV) and 7x9 (see Table V) cells from [4, 6], with the objective
of test the performance of DE approach applied to networks
with distinct sizes.

TABLE IV
TEST NETWORK 7X7 ATTRIBUTES

KMo 1UaP CAr Neighbors

013 s (kL6 (1:761)

1317 & a0y (1:234) (:727) (3:897) (49.88)

T 162 80 (0clAd) {1:344) (2:9,70)

3 OITE 61 (RAE) (430 (922 (k1036 (411,Z8)

4 6 #6319 (1514) (Z:10L1T)

5 8 ¥ (413 (1616 (210,13 (3:012.24) (4:13.9)

6 3 41 (515 {1139

T MR 60 (e0SE) (11301 (2:893) [R:1463)

& 515 66 (1T (107 (952 (k1426 (£15135) (5141 18)

9 45 & (L7 (1179 (2336) (LESS) (&I08Ty (516107

I 33 61 (0334 (1:992) (21038 (306,350 (4:07,74) (S1846)
1166 68 (0c326) (1412 (2:529) (k1025 (&12,32) (5:1831)

12 145 39 (518 (110 07p (2:03,03) (1E38) (41932 (5:30,13)

13 61 43 (0e56) (16,13) (Z1ZIT) (3:20,04)

14 200 61 (07,70) (1-E26) (215,47 (3:21.43)

15 476 61 (R 120 (1:14,52) 2:1655) (:2139) (£22,110) (523 .82)
16 544 49 (ELO3) (1:9,106) @:1045) (X 1548) (£17,98) (5:23,120)
17 462 51 (01092 (1:06,002) (2:1843) (1:21,45) (4:24,86) (525,79)
18 253 50 (0c0043) (1:1145) @:1222) (k1738) (&19,34) [5:255T7)
19 198 58 (012,29 (1:08,24) 2:2027) (L2538) (&26,47) (5:27,00)
N BR 50 (I 03) (320 @:09.22) (RIT1E)

IRy 35 (cl4s0 (D531 22239 (RIRSD)

o472 86 (IS0130) (12041 (2XLER) (1:IRSE) (4:29,106) {50, R0)
D s 59 (1584 (1:06,104) (2:17,52) (:I261) (4:24 8S) (530,002)
M 500 3 (I7,006) (L2LET) (ZI556) (L3068 (4:31,86) (SILET)
I 40 47 (ITB6) (1:08,62) 2:0936) (RI54) (26,70 (5:32.801)
306 57 (01947 (1:2565) 22728 (R3233) (£31,E8) [5:34.17)
T 10 56 (1908 (1:20.24) 22625y (1341T)

I I Tl (ILSD) (1:2DAR) 22953y (LI5S

¥ 448 BX (0cIELER) (1:2R51) Q308 (LISS) (36T (5:37.90)
W 550 8 (2SI (1:23,104) (2-24,74) (3:39.71) (4:31,104) [5:37,97)
3 5M 53 (MR (1:30,100) (2:3265) (3:37,73) (438 44) (539,156)
32493 4 (4, 104) (L2593) (ZB6AT) (L3154 (4:33,99) (539.76)
I 449 T (0e26E4) (132018 (3L21) (339,640 (4:40,77) (54 1,79)
M 100 IR (2EIX) (1:27.23) 23319 (:41.25)

B I & (LIRS (1260 23637y (L4214)

3 256 58 (029,65 (135.3R) 237,75) (k4L15) (&43,15) [5:44.39)
37 o4& M1 (02975 (1:30.96) (23 1103) (3346 TE) (4:38,83) (S44.35)
B 33 15 (3L (1799 23958 (k4433) (45, 10 (5246 90)
¥ 568 71 (030400 (13100 (223 64) QARG (44012 [5:86,66)
40 416 59 (0:33.7E) (1:39,128) (241 A5) (1o46,42) (447 46) (SARE)
41 192 49 (c3LER) (1:M33) 24030) [L4815)

42 3 3 (035,15 (1:36.9y (2:43.3)

43 41 42 (036, 010) (1427 [2:44,18)

44 166 52 (03640 (13730) 23R45) (143,13) (4£45,25)

45 T3 3 3R 10 (1430 46T

4 311 5 (IRET) (1:39.71) 24041 (L4530) (£47,75)

47 152 54 (4054 (1-46.76) ZARIS)

48 135 T3 (40 TT) (141,29 2A4719)

B. Parameters Definition

The DE algorithm starts with the definition of an initial
population of candidate solutions (individuals). Each
individual represents a possible configuration of the network
and is composed of N genes, where the N corresponds to the
number of cells in the network. Each gene of the individual
represents the number of the LA where the cell belongs to.
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To define the initial population we assumed, as in other
works [4], that there are only two LAs, and one of them is set
to each cell with a probability of 50%. After that we have
adjusted the parameters value to the ones indicated to each
experiment.

TABLE V
TEST NETWORK 7X9 ATTRIBUTES

No UpP CAr Meighboms
0120 &7 {el,e8) (19,43

I 345 68 (00,69 (12,43 (209290 (0080 (11,0 14)
2173 58 (el 39 (1:3,75) (2:11,52)

30307 67 (02B4) (LAY (211,56 (302,45 (413,620
4110 10 {0347y (15,47 (2:03,11)

50 280 42 (DA (16 BRY (2:153,66) (3:04538) (1538
& 184 39 (0588 (17,400 (2:1546)

TOA TR (o643 (LR (05111 (3:06,59) (4:17.29)
g 121 35 (07,790 (1:17,35)

G202 52 (0039 (130 (2000TE) (5048

10 462 &4
I 517 75
12426 30
13 287 51
14 370 45
15 4001 44
16 325 &7

(00,700 (19,73 (211,68) (R1827) (#:1987) (520,118
(00,1200 (1238) (23600 (R1048) (4:12121) (520,121
(03,530 (L1LITD (2 1348) (320,45) (4:21,69) (522,87)
(03,65 (14, 1) (15620 (312,56) (4 144T) (522,30)
{(0:5,45) (1:13,59) (2:1595) (322,77) (4:23,60) (524,21)
(05,380 (16,38) (1T108) (3:04,98) (4:1634) (524,77
(07,490 (11542) (2:1768) (324,84) {4:25,54) (526,12
(07,300 (1:8,36) (216,74) (326,50)

(0:9,30) (1:10,25) {2:1937) (327,33)

(0:00,92) (1:1832) (2:20,33) (3:27,35) (4:2884) (529 46)
(000,1200 {1:11,98) (21239) (319,43 (4:21,128) (529,99)
{0:02,72) (1:20,137) (2:22,67) (3:20,4T) (4:30.95) (531,140)
(0:02,85) (1:1334) (2:14,78) (3:21,69) (4:23.71) (531,84)
(004,62 (L2277) (2:24,107) (3:31,123) (4:32,83) (533 ,6T)
(004,400 (1:15,58) (216,87) (3:23,04) (4:2526) (533,56)
(0:06,42) (1:2421) (2:26,23) (3:33,42) (4:34,54) (535,16)
(006, 16) (1:1TAR) (2:2526) (3:35,29)

(0:18,33) (1:1929) (2:28,29) {3:36,40)

(0:09,74) (1:2738) (2:29,46) (3:36,48) (4:37,75) (538,37)
(0:09,46) (1:20,74) (2:21,52) (3:28,47) (4:30,65) (538,82)
(021,1000 {1:29.75) (231,021 (3:38,97) (4:39.77) (5:40,108)
(021, 1463 {1:22,8T) (2:23,141) (3:30,118) (4:32,137) (5:40,102)

18 148 &l
1% 335 51
20 541 65
2l 57T 66
21433 51
13 517 89
24 377 3R
25 207 3%
26 130 30
2T 143 43
28332 4%
29 381 5B
LI
3l M5 69
32 62
33 331 0™
34 248 43
35 10 29
36172 4R
3T 389 45
3B 440 49
39 505 48
40 42 B2
41 478 5]
41 395 39
43 340 55
44 134 60
45 234 #3
46 445 RO
47T 562 64
48 3TR 46
49 345 48
50 366 33
51 480 34
52 379 TR
53 182 57
54 153 59
55 167 &0
56 350 5%
5T 125 69
58 244 5B
59 126 55
60 381 63
&l 173 65
62 121 73

(023,57) (1:24,57) (2:2537) (3:32,73) (4:34,45) (5:42,50)
(025,30) (1:3342) (2:3526) (3:42,40) (4:43 54) (5:44,32)
(0:25,18) {1:2642) (2:34,17) (3:44,25)

(027,34) (L:2BAR) (2:37.24) (3:45,53)

(028,75) (1:3623) (238,77) (345,81 (4681) (5:47,40)
(028,42) (1:2052) (2:30,95) (3:37,84) (4:30,58) (547,99)
{030,82) (1:38,59) (2:40,120) (3:47,120) {9:4857) (549,52)
(00,1140 (1311280 (2321230 (339,107) (41,1143 (5:48,48)
{0:32,68) {1:40,129) {1:424T) {3:49,56) (4:50.51) (5:51,108)
(032,104) (1:33AT) (2:34.27) (3:41,44) (4:4381) (5:51,67)
(0:34,56) {1:42.70) (2:4424) (251,371 (4:5267) (5:53,73)
(0:34,35) (1:35,34) (2:43,15) (3:53,36)

(0:36,52) {1:3784) {2:4646) (1:54,43)

(OAT64) (145 34) (2AT146) (3:54,74) (4:355T) (5:56,5T)
{037,500 {1:3882) (2:309,143) {3:46,137) (4:48.58) (5:56,75)
(039,57 (L:ATE5) (2:49,78) (3:56,79) (4:57.24) (5:58,61)
(039,55) (LA069) (2:41,50) (348,69) (£:50,61) (5:58,27)
(041,63) (1:4980) (2:51,38) (3:58,56) (4:59,15) (5:60,99)
(01,1000 {1:42,75) {2:4342) (3:50,48) (4:32,105) {5:60,70)
(0:3,68) (1:51,014) (2:53,33) (3:60,500 (4:614T) (562,61
(0:43,62) {1:4446) (2:52,36) (3:62,28)

(0:45,44) (1:4681) (2:55,19)

{0:46,46) {1:5427) [2:5690)

(0:46,43) {1:4782) (2:4898) (1:55,73) (4:57A8)

(048,270 (1:56,33) (2:5846)

(0AR,55) (1:4920) (2:50,50) (3:57,38) (.59,60)

(050,213 {1:5837) (2:60,51)

(0:50,120) (1:51,84) (2:5245) (3:39,35) (4:61.90)

{0:52,47) {1:60,100) {2:62,19)

(052,610 (L5328 (26123
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C. Algorithm Implementation

After the initial population is defined, the algorithm
proceeds to manipulate the population until a termination
condition is reached.

Below we present the outline of the implemented algorithm,
with the scheme DE/best/1/exp. In our implementation we will
use the ten DE schemes and observe how each of them
influence the possibility of obtain the better results, after being
defined the best value to each DE parameter. The
DE/best/1/exp uses the best individual at the moment, and an
exponential crossover:

1. Initialize the population

2. Validate the initial population

3. Evaluate the initial population

4. While termination condition is not satisfied, create
next population where each individual (candidate solution)
is generated according to:

a) Randomly select 2 distinct individuals xrl and xr2
from the population, but different from xbest
Generate a trial individual based on the formula:
xtrial = xbest + F(xrl — xr2)
c¢) Use the probability Cr to define the amount of

genes changed in trial individual
d) Validate the trial individual
e) Evaluate the trial individual

b)

Here the terminal condition will be the number of
generations defined by the value 1000, because running the
algorithm for unlimited number of generations is not a good
choice for DE.

D. Individuals Validation

When an individual is generated we must consider that an
invalid configuration network may be created. This is because
with the application of the algorithm it is possible that we
have scattered LAs. This means that we may have cells
attributed to the same LA in distinct places of the network, as
shown in Fig. 3, but in reality that is not possible and we must
correct or discard the individual.

Fig. 3. Scattered LA (LA 2)

To solve this problem we created a method to split these
scattered LAs into small ones. Then we applied another
method to merge LAs, with the purpose of not having only
one cell belonging to a LA, when all their neighbour cells
belong to different LAs. Finally, after this, we must renumber
the LAs because during all the process some LA numbers may
have been deleted.
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This process must be repeated for all the individuals that are
generated, to assure that the final solution will be a valid one.

E. Fitness Function

In our approach the fitness function corresponds to the
calculus of the total cost of location management, which is
defined according to the equation (3) presented in section 2.3.
This means that for each individual generated (composed of a
number of LAs), we will calculate its fitness value, which
corresponds to the sum of the total cost of each of those LAs.

F. Simulation Results and Analysis

In order to compare results, the values of always-update and
never-update strategies were calculated for all the four test
networks.

Then, with the objective of study in more detail the best
configuration of DE, we have executed four distinct
experiments. For each experiment, and for every combination
of parameters, 30 independent runs have been performed in
order to assure its statistical relevance. Due to the complexity
of the problem, but with the objective of taking the best
conclusions, we chose networks from small to medium size to
validate our approach.

Like other authors, as Taheri and Zomaya [4, 6], in this
study, four distinct test networks are used to ensure the
reliability of results. The fact that the results are similar to
those test networks (existing networks of different sizes)
ensures that the best configuration of parameters can be
generalized to any network.

F.1 Experiment 1 — Defining the best NI

The first experiment has the intent of defining the best NI
value (which means, define the best population size). So, for
that we have fixed the values of F to 0.5, Cr to 0.1, DE
strategy as DE/rand/1/bin and the number of generations to
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1000, from earlier experiments that we have executed [11,
12]. Then we have initialized the size of NI with 10 and
changing it up to 100 with the values 25, 50 and 75.

After this we observed that until now the average of fitness
values always presents a positive evolution, so because of that
we decided to proceed increasing NI. Considering the results
obtained to the best and average fitness values and observing
the evolution tendency we have seen that the best value to NI
is 250 (as it is possible to see in Table VI) because, although
the values between 275 and 400 have been experimented, their
results were worse and the evolution of the average fitness
became negative.

In order to allow a quick analysis over the best results it
was used, in the tables of results, the red colour to mark the
best fitness values, one yellow mark to the best average fitness
values and one blue mark for the minimum standard deviation
values.

With this experiment we have concluded that after a NI
value bigger than 250 the positive evolution of the results stop
or decrease, in such a way that there are not clearly
improvements. We also have to consider that growing the NI
value has a direct implication in the increase of execution
time.

Due to all of this, we have chosen NI=250, to pass to the
second experiment, as an equilibrium point for obtaining good
results in small times of execution.

F.2 Experiment 2 — Defining the best Cr

The second experiment has the objective of electing the Cr
value that obtains the best results for all, or for the majority, of
the test networks.

To proceed with this experiment we initialized and fixed the
values of NI to 250 (obtained from experiment 1), F to 0.5,
DE scheme as DE/rand/1/bin and the number of generations to
1000 (as defined in the experiment 1).

TABLE VI
EXPERIMENT 1: DEFINING THE BEST NI

Fitness Evaluation
5x5 Network
NI 10 25 50 75 100 125 150 175 200 225 250 275 300
Best 27216
Average 28992.7| 27518.4| 27281.4]27292.2] 27264.7| 27191.0] 27148.6] 27119.9| 27119.5] 27149.0] 27100.9| 27104.7| 27062.6
St. Dev. 3358.5 311.5 216.7] 172.8 134.3 140.5 147.8 139.1 123.6 110.8 119.6] 110.7)  103.3
5x7 Network
Best 41458 40645] 40754] 40645] 40328] 40645| 40645] 40582 40582 40427 40328] 40328
Average 444937 42415.6] 42188.1]42043.6] 41638.6] 41752.8] 41542.3] 41393.0| 41385.9| 41545.6] 41313.1]41289.4] 41016.0
St. Dev. 3268.9 1025.3 753.4 661.2 615.7 576.6 650.1 499.6 508.5 532.4 517.1 419.4 409.5
7x7 Network
Best 65331 64362 65153] 64879 64879] 64674] 64161 64732 64477| 64433] 65458] 64043
Average 71501.9] 67907.9] 67228.8] 66830.5] 66803.1] 66443.1|] 66252.9] 66166.3] 66264.2] 65996.5] 66466.7] 65657.9] 65873.7
St. Dev. 9670.7 1036.0 775.5 972.1 828.6 984.1 853.0 634.0 762.3 830.9 623.2 851.6 693.7
7x9 Network
Best 96277 95296] 95969] 97440| 95246] 95640] 94304] 96329 94908] 95110 94888 95080
Average | 102158.6] 100379.7] 99699.3] 99268.4| 98848.2] 98567.7] 98511.7] 98098.4] 97800.3] 97955.1] 97686.8| 97413.1] 97589.5
St. Dev. 2110.1 1769.0] 1288.6 989.0] 1442.2] 1405.5| 1322.7] 1183.6] 1249.3| 1396.3] 1260.3] 1244.1] 1225.7




ALMEIDA-LUZ et al.: SOLVING THE LOCATION AREA PROBLEM

137

TABLE VII
EXPERIMENT 2: DEFINING THE BEST CR

Fitness Evaluation
5x5 Network
CR 0.01 0.03 0.05 0.07 0.09 0.1 0.25 0.5 0.75 0.9
Best
Mean 27249.01 27277.3] 27159.5] 27145.8] 27107.2] 27070.6] 27038.6] 27090.4] 27086.5] 27136.1
St. Dev. 131.8 112.9 141.5 119.7 127.1 106.2 76.8 111.2 129.7 146.5
5x7 Network
Best 40672 40645 40645 40645 40525 41465 42219
Mean 41661.7| 41552.2] 41674.8] 41763.8] 41405.4] 41188.6] 41228.7] 41398.2] 42384.7] 42616.6
St. Dev. 627.2 486.6 586.8 449.0 536.6 474.9 416.0 486.0 219.5 278.5
7x7 Network
Best 64769  65030] 64729 63815 63874 64674  64305] 67380] 67232
Mean 66819.0] 66739.1] 66368.1] 66185.7] 66029.1] 66057.7] 65915.5] 67396.8] 68937.2] 69361.9
St. Dev. 876.1 703.7 638.1 956.5] 1041.1 974.6 6214 1077.1 690.7] 1246.8
7x9 Network
Best 95487 94402] 95208 95565 95492 96979 97884 101417] 103666
Mean 100178.8] 98751.6] 98362.5] 98015.2] 97943.1] 97547.0] 99332.5] 103542.7] 105689.5] 105707.1
St. Dev. 1313.7]  1730.6] 14469 1064.6] 1021.1] 10154 920.7| 2467.3] 1779.6 988.0

With these fixed parameters, the experiment was executed
initially with Cr equal to 0.1 and follow changing it to the
values 0.25, 0.50, 0.75 and 0.9. After obtaining all the results,
we could observe that, in the most of the cases, they became
worse with the increase of the CR value. Until this moment it
was possible to say that the best value was Cr=0.1, but to take
more complete conclusions we decided to experiment lower
values from 0.01 to 0.09. Finally, looking to all the results (see
Table VII), it is possible to conclude that really Cr=0.1 is the
best and more stable value to obtain better results.

F.3 Experiment 3 — Defining the best F

In the third experiment we pretend to define the best value
of F, that allows us to obtain the best fitness values in the
majority of the test networks or, if it is possible, to all the test
networks.

TABLE VIII
EXPERIMENT 3: DEFINING THE BEST F

Fitness Evaluation
5x5 Network
F 0.1 0.25 0.5 0.75 0.9
Best
Mean 27080.6 27072.7 27141.8 27134.3 27078.4
St. Dev. 123.7 106.8 125.5 112.8 114.2
5x7 Network
Best 40473 40466
Mean 41491.0 41221.5 41194.3 41287.8 41266.3
St. Dev. 558.2 536.1 447.2 477.9 475.3
7x7 Network
Best 64893 64893 64671 64879
Mean 66051.2] 66140.0 66192.1 65993.3 65981.9
St. Dev. 554.3 749.8 602.5 679.3 790.2
7x9 Network
Best 96220 95076 94774 95105
Mean 98116.6 97821.8 97826.5 97884.3 97849.8
St. Dev. 1022.6 1281.1 1402.2 925.5 1213.3

So, in order to execute this experiment we fixed the value
of NI to 250 (from experiment 1), Cr to 0.1 (from experiment
2), DE scheme as DE/rand/1/bin and 1000 generations as stop
criterion (as defined in the two earlier experiments). The value
of F was initialized to a probability of 0.1, and then the
algorithm was also evaluated with the values of 0.25, 0.50,
0.75 and 0.9.

Observing the results obtained with this experiment, that are
presented in Table VIII, it is possible to verify that,
principally, the F values of 0.5 and 0.9 permit obtain better
results. But F=0.5 was the elected one because it is the one
that performs better when considering also the fitness average
evolution.

F.4 Experiment 4 — Defining the best DE scheme

After the three earlier experiments we have obtained and
fixed the best values for the DE parameters as NI=250, Cr=0.1
and F=0.5. So in this last one we try to define what is the most
appropriate scheme, that is, the DE scheme that permits to
obtain the best results. For that, and again for each test
network, the algorithm has been executed applying all the ten
DE schemes.

Once obtained all the results, we could conclude that the
scheme DE/rand/1/bin is the one that performs better (see
Table IX), and that permits to obtain the best fitness value in
three of the four test networks.

Finishing these four experiments we had defined the best
DE configuration, applied to the Location Areas problem,
setting the parameters as NI=250, Cr=0.1, F=0.5 and DE
scheme as DE/rand/1/bin.
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TABLE IX
EXPERIMENT 4: DEFINING THE BEST DE SCHEME

Fitness Evaluation
5x5 Network
Exponential Crossover Binomial Crossover
Scheme Bestl Randl | RandToBestl | Best2 Rand?2
Best 27282H 27048 27211] 27211
Mean 27871.2] 276204 27946.3] 277842 27572.8 27420.6| 27291.4| 27102.7
St. Dev. 305.0 297.3 395.9 354.6 295.9 255.5 169.4 125.6
5x7 Network
Best 41141 41141 40722 40722 41340 40645] 40346 40525
Mean 427721 42499.1 42853.6] 42497.0] 42542.5] 41692.0| 41261.8 41917.4| 41627.5| 41351.4
St. Dev. 987.1 1010.5 1136.6 794.4 927.9] 400.8] 562.2 676.1 600.4
7x7 Network
Best 66215 65281 66243 65188 65658 64890 64560 65290
Mean 67709.3] 67510.0 68417.0] 67708.2] 67367.4] 66366.3] 65737.1 66976.2] 66247.6] 66273.2
St. Dev. 1093.5] 13308 1276.8] _1399.4] 1126.5] 8283|8542 893.7] _ 790.7]7 520:6|
7x9 Network
Best 100386] 100484 98967 99512 100295| 95125] 94841 96408
Mean 102580.6] 103191.6 103152.4f 103199.8] 103100.8] 97947.5] 97895.1 98346.4| 97479.8| 97598.4
St. Dev. 1166.4 1212.2 1643.1 1751.7 1213.0f 996.4| 12754 1408.7] 1285.8
5x5 Network BBest1Exp
ERand1Exp
60000 1 mRandT oBest1Exp
50000 - mBestlExp
BRand2Exp
40000 - Best1Bin a)
30000 mRand1Bin
RandT oBest1Bin
20000 1 #Best2Bin
10000 - mRand2Bin
mAlways-Update
0 Never-Update
5x7 Network = Best1Exp
mRand1Exp
90000 1 ERandToBest1Exp
80000 1 mBest2Exp
70000 1 mRand?Exp b)
60000 1 Best1Bin
50000 - )
BRand1Bin
40000 - _
RandT oBest1Bin
30000 _
20000 - mBeast?Bin
10000 - mRandzZBin
0 . mAlways-Update
Never-Update
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7x7 Network =Best1Exp
BRand1Exp
140000 1 | mRandToBest1Exp
120000 - | mBest2Exp
100000 - -lRandQExp
Best1Bin
80000 1 'mRand1Bin
60000 1 L RandT oBest 1Bin
40000 | mBestZBin
20000 - BRand2Bin
0 . mAlways-Update c)
MNever-Update
7x9 Network mBest1Exp
mRand1Exp
250000 - mRandToBest1Exp
mBest?Exp
200000 1 ERand?Exp
150000 Best1Bin d)
BRand1Bin
100000 4 RandT oBest1Bin
®mBest2Bin
50000 - :
mRand2Bin
0 ; mAlways-Update
MNever-Update

Fig. 4. Comparison Results a) 5x5 Network b) 5x7 Network c) 7x7 Network d) 7x9 Network

F.5 Comparing our results with other applied algorithms

Now, if we compare our results with the classical strategies
always-update and never-update we may say that, for all the
used test networks, our approach always obtains better
solutions (lower fitness values) as it is possible to see in Fig.
4.

Comparing with studies of other authors, as Taheri and
Zomaya [4, 6, 13], that use respectively genetic algorithms,
simulated annealing and hopfield neural network approaches,
our results are very similar and in some cases even better.

b
o K

For example, for the 5x5 network, our best fitness solution
corresponds to a cost of 26990 and their best result is between
25000 and 30000. Using the 5x7 network, our best fitness
solution represents a cost of 40205 and their results are
between 40000 and 45000. In the 7x7 network our lower cost
is 63307 and their best value is between 60000 and 65000.
Finally, for the 7x9 network the best fitness value obtained by
our approach is 92900 and their best solution is between
90000 and 95000.

All of these costs were calculated with the network
partitioning defined by the DE algorithm and represented in
Fig. 5.

D=0
0382070,
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Fig. 5. Best LAs Configuration a) 5x5 Network b) 5x7 Network ¢) 7x7 Network d) 7x9 Network

With respect to the ideal number of location areas, we
observed that, for the 5x5 network, all the best solutions
correspond to a network partitioning in 3 Location Areas (see
Fig. 5a). When we refer to the 5x7 network, the best solution
corresponds to a partitioning in 4 distinct LAs (see Fig. 5b).
Moving to the 7x7 network, the ideal partitioning is
represented in 5 LAs (see Fig. 5¢). For the bigger network, the
7x9, the best configuration corresponds to a partitioning in 8
LAs (see Fig. 5d).

Relatively to the shape of the LAs, the most of them do not
have a circular shape, as in the actual GSM systems. Their
forms are diverse but principally of triangular or rectangular
shape.

F.6 The importance of the number of generations

The DE algorithm is a population-based algorithm that
improves its results generation by generation. Considering
this, we may say that obtaining the best results depends on the
number of generations defined as stop criterion. In this work,
we always have used 1000 generations, because increasing it
corresponds to increase the execution time. However, there
are several works [4, 14] that present the results obtained with
an “infinite” or very high number of iterations (generations).
With the objective of compare our results with those ones, we
decided to execute our approach for all the four tests networks
using 5000 generations as stop criterion.

In Table X is shown the evolution of results (best fitness
value/lower cost for each test network) over the algorithm
execution during the 5000 generations. It is possible to
conclude that having more generations, permits to obtain
better results.

TABLE X
EVOLUTION OF RESULTS OVER 5000 GENERATIONS

Test Generations

Network 1000 | 2000 | 3000 | 4000 | 5000
5%5 26990 | 26990 | 26990 | 26990 | 26990
5x7 40205 | 40117 | 40085 | 40085 | 39859
X7 63307 | 62720 | 61951 | 61567 | 61037
7x9 92900 | 91104 | 90687 | 90437 | 89973

Now, in Table XI we compare the new results with the ones
presented by Taheri and Zomaya in [14], where “infinite” or
very high number of iterations is used. We can observe that

DE (with only 5000 iterations) always performs better than
GA (Genetic Algorithm). If we compare with HNN (Hopfield
Neural Network), SA (Simulated Annealing) or with the GA-
HNNx (different combinations of Genetic Algorithm and
Hopfield Neural Network, see [14]), in the most of the cases
the results are similar or even better.

TABLE XI
COMPARISON OF NETWORK COSTS WITH DIFFERENT ALGORITHMS

Algorithm
Test
GA- GA- GA-
Network

DE GA HNN SA HNN1 | HNN2 | HNN3
5x5 26990 | 28299 | 27249 | 26990 | 26990 | 26990 | 26990
5x7 39859 | 40085 | 39832 | 42750 | 40117 | 39832 | 39832
<7 61037 | 61938 | 63516 | 60694 | 62916 | 62253 | 60696
7x9 89973 | 90318 | 92493 | 90506 | 92659 | 91916 | 91819

Considering these results we may say that if our algorithm
runs using endless generations, it would probably overcome
the remaining results obtained by the other methods.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new approach based on DE algorithm
with the objective of finding the best configuration for the
LAs in a mobile network. It also intends to understand the
influence of DE parameters and schemes. One of the principal
characteristics of using DE algorithm is the fact that we
always obtain (until the optimal solution is found) an equal or
better individual in each generation.

We have shown that our approach improves the results
obtained with other classical location management strategies
as always-update and never-update.

When our implementation results are compared with the
ones of other authors, it is possible to conclude that they are
considered interesting because they are equal or better, when
applied to the same test networks. We have studied in detail
the best configuration of DE, and the best parameters, after a
big number of experiments with four distinct networks, are NI
of 250, Cr of 0.1, F of 0.5 and DE/rand/1/bin as the best
scheme. It is also possible to conclude that in general the
binomial schemes perform better than the exponential ones.
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Each execution with the 5x5 test network took about 15
seconds, with the 5x7 test network took about 25 seconds and
with the 7x7 and 7x9 test networks took 35 and 40 seconds
respectively. Considering the execution time for each test
network, we may say that it is proportional to the network
size, but also that those times are low and good to be used in
industry. In total, to perform all the experiments (more than
5000 independent runs), for this paper, around 90 hours were
needed.

As future work we have the intention of test our approach
working with bigger test networks seeing if it works well or if
the performance decreases.

We have also planned to use real data (like SUMATRA
[15]) as input for generating the test networks and then to
apply our approach.

The application of other evolutionary strategies to the LA
problem and the comparison of their results with the ones
accomplished by the DE algorithm are also a matter of future
work.

Finally, the formulation of the LA problem as a
multiobjective optimization problem will be investigated as
well.

ACKNOWLEDGMENTS
This work has been developed in part thanks to the project
OPLINK (TIN2005-08818-C04-03). Thanks also to the
Polytechnic Institute of Leiria, for the economic support
offered to Sonia Almeida-Luz to make this research.

REFERENCES

[1] K. Pahlavan, A.H. Levesque: “Wireless Information Networks”,
John Wiley & Sons, Inc, 1995.

[2] V.W.S. Wong, V.CM. Leung: Location Management for Next-
Generation Personal Communications Networks. IEEE Network,
October 2000, vol. 14, no. 5, pp. 18-24

[3] P.R.L. Gondim: Genetic Algorithms and the Location Area

Partitioning Problem in Cellular Networks. IEEE 46th Vehicular

Technology Conf. Mobile Technology for the Human Race, May

1996, vol. 3, pp. 1835-1838.

J. Taheri, A.Y. Zomaya: A Genetic Algorithm for Finding

Optimal Location Area Configurations for Mobility Management.

30th Anniversary of the IEEE Conference on Local Computer

Networks (LCN), Nov. 2005, pp. 568-577.

P. Demestichas, N. Georgantas, E. Tzifa, V. Demesticha, M.

Striki, M. Kilanioti, M. Theologou: Computationally Efficient

Algorithms for Location Area Planning in Future Cellular

Systems. Computer Communications, vol. 23, no. 13, July 2000,

pp. 1263-1280.

J. Taheri, A.Y. Zomaya: A Simulated Annealing Approach for

Mobile Location Management, in 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS), April

2005, pp. 194-201.

J. Taheri, A.Y. Zomaya: Clustering Techniques for Dynamic

Mobility Management, in the 4th ACM Workshop on Mobility

Management and Wireless Access (Part of MSWiM’06), October

2006, pp. 10-17.

[8] R. Subrata, A.Y. Zomaya: Evolving Cellular Automata for
Location Management in Mobile Computing Networks. IEEE
Transactions on Parallel and Distributed Systems, vol. 14, no. 1,
January 2003, pp. 13-26.

[9] K. Price, R. Storn: Web Site of Differential Evolution (on March
2008): http://www.icsi.berkeley.edu/~storn/code.html.

[10] R. Storn, K. Price: Differential Evolution — A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces. In Journal of Global Optimization, December 1997, vol.
11, no. 4, pp. 341-359.

[11] S.M. Almeida-Luz, M.A. Vega-Rodriguez, J.A. Gémez-Pulido,
J.M. Sanchez-Pérez: A Differential Evolution Algorithm for
Location Area Problem in Mobile Networks. In SoftCOM 2007 -

[4

—

[5

—_

[6

—_

[7

—

141

15th International Conference on Software, Telecommunications
and Computer Networks - co-sponsored by the IEEE
Communications Society (COMSOC), ISBN: 953-6114-95-X,
pp- 1-5, September 2007.

[12] S.M. Almeida-Luz, M.A. Vega-Rodriguez, J.A. Gémez-Pulido,
JM. Sanchez-Pérez: Defining the Best Parameters in a
Differential Evolution Algorithm for Location Area Problem in
Mobile Networks. In EPIA 2007 — 13th Portuguese Conference
on Artificial Intelligence, Guimardes (Portugal); Published in
“New Trends in Artificial Intelligence”, (Eds). APPIA,
Associagdo Portuguesa para a Inteligéncia Artificial, December
2007. ISBN: 978-98-995-6180-9; pp. 219-230.

[13] J. Taheri, A.Y. Zomaya: The Use of a Hopfield Neural Network
in Solving the Mobility Management Problem. IEEE/ACS
International Conference on Pervasive Services (ICPS'04), 2004,
pp- 141-150.

[14] J. Taheri, A.Y. Zomaya: A Combined Genetic-Neural Algorithm
for Mobility Management. Journal of Mathematical Modelling
and Algorithms, Springer Netherlands, Volume 6, Number 3,
September 2007, pp. 481-507.

[15] Stanford University Mobile Activity TRAces (SUMATRA) (on
March 2008): http://infolab.stanford.edu/sumatra/.

Sénia M. Almeida-Luz is a professor of
Programming and Information Systems in the
Dept. of Computer Engineering, School of
Technology and Management, Polytechnic
Institute of Leiria, Leiria, Portugal. She is
currently making investigation to her PhD in
evolutionary computing and optimization. Her
main research interests are information
systems, applications of artificial intelligence
and evolutionary computing.

Miguel A. Vega-Rodriguez is a professor of
Computer  Architecture in the Dept.
Technologies of Computers and
Communications, University of Extremadura,
Spain. He received a PhD degree in Computer
Science from the University of Extremadura.
Dr. Vega-Rodriguez has authored or co-
authored more than 200 publications including
journal papers, book chapters and peer-
reviewed conference proceedings. Furthermore, he is editor and
reviewer of several international journals. Dr. Vega-Rodriguez’s
main research interests are parallel and reconfigurable computing,
and also evolutionary computing.

Juan A. GOmez-Pulido is a professor of
Computer  Architecture in  the  Dept.
Technologies of Computers and
Communications, University of Extremadura,
Spain. He received a PhD degree in Computer
Science from the Complutense University of
Madrid in 1993. His main research interests
are artificial intelligence and applications of
reconfigurable hardware to different fields of

signal processing.

Juan M. Sanchez-Pérez is Professor of
Computer  Architecture in the Dept.
Technologies of Computers and
Communications, University of Extremadura,
Spain. He received a PhD degree in Physics
from the Complutense University of Madrid
in 1976. His research interests are artificial
intelligence, logic design and modern
computer architectures.






