
A Low-complexity Successive Detection Method
for OFDM Systems over Doubly Selective Channels

Chih-Liang Chen and Sau-Gee Chen

Abstract—For OFDM systems, the time variation of a mul-
tipath channel results in inter-carrier interference (ICI). It
leads to performance degradations. In reducing the problem,
current successive detection methods cost very high computa-
tional complexities. Among them, the minimum-mean-square-
error successive detection (MMSE-SD) method has the best
performance. This work proposes an improved data detection
method with low complexity by integrating the techniques of
Newton’s iterative matrix inversion method and the MMSE-SD
method which considers the effects of signal-to-interference-plus-
noise ratio (SINR). In order to efficiently integrate Newton’s and
MMSE-SD method, we develop an effective scheme with low
complexity for generating the initial values required by Newton’s
method. Based on the new initial value scheme, we are able to
simplify the criterion of maximum SINR determination to an
equivalent one with lower complexity. As a result, the proposed
algorithm has a much lower complexity of O(N2) than O(N3) of
the MMSE-SD algorithm, where N is the number of subcarriers.
Moreover, simulation results in different channel conditions show
that performances of the proposed MMSE-SD method are very
close to the MMSE-SD method.

Index Terms—Orthogonal frequency division multiplexing
(OFDM), inter-carrier interference, equalization.

I. INTRODUCTION

Since the recent decade, the demand for real-time and high-
rate multimedia services has been in a rapid growing pace. To
satisfy the demand, some advanced broadband communication
techniques have been proposed. In particular, the orthogonal
frequency division multiplexing (OFDM) technique is widely
adopted in current and next-generation communication sys-
tems. In an OFDM system, a serial data stream is split into
many parallel data streams, each is modulated by its own
subcarrier orthogonal to all the other subcarriers. By adding
a cyclic prefix (CP) to the beginning of each OFDM symbol,
the intersymbol interference (ISI), and intercarrier interference
(ICI) caused by delay spreads can be avoided. However, when
a channel response is time-varying, the channel variation will
introduce ICI and destroy the orthogonality among subcarriers
within an OFDM symbol. The ICI effect will seriously degrade
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the system performance. As such, the bit-error rate (BER) will
increase.

To overcome the ICI problems, several data equalization
techniques have been developed, such as the zero-forcing
(ZF) and minimum-mean-square-error (MMSE) equalization
methods. Unfortunately, both methods require matrix inversion
operations which are computationally intensive. Besides, ZF
equalization method will result in noise enhancement problem,
while MMSE equalization method requires the second-order
statistic of a channel. In order to reduce the computational
complexity, several simplified methods [1], [2] have been pro-
posed. However, those techniques still have the noise enhance-
ment problem. Specially, the method in [2] applies the well-
known Newton’s iterative matrix inversion to approximate the
zero-forcing equalization. Still, its performances are limited by
the zero-forcing equalization. On the other hand, the method
of MMSE equalization with successive detection (MMSE-SD)
[3] has good performance but with high computational cost.

To reduce the drawbacks of the mentioned techniques,
the objectives of this work are to achieve high performance
and simultaneously reduce the computational complexity.
Specifically, in order to achieve high performance, MMSE
equalization with successive detection (MMSE-SD) method
is adopted. To significantly reduce the complexity, this work
integrates Newton’s matrix inversion method with the MMSE-
SD scheme. Moreover, in order to efficiently apply Newton’s
matrix inversion method to the MMSE-SD method, a simple
but accurate method for generating the initial values for
Newton’s matrix inversion method is proposed. Furthermore,
we design a criterion with a lower computational complex-
ity than the conventional one, in determining the maximum
signal-to-interference plus noise ratio (SINR). As a result, the
proposed improved MMSE-SD method achieves the goal of
high performance and low complexity simultaneously. The
rest of this paper is organized as follows. Section II describes
the OFDM system model and ICI analysis. In Section III,
the proposed improved successive detection method will be
introduced. Simulation results of the proposed technique are
provided in Section IV. Finally, Section V is the conclusion.

II. OFDM SYSTEM MODEL AND ICI ANALYSIS

A. OFDM System Model

Weinstein [4] suggested that the modulators in the trans-
mitter and the matched filters in the receiver for the OFDM
systems can be implemented by IDFT and DFT, respectively.
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Fig. 1. Discrete-time OFDM system model

Fig. 1 shows the discrete-time OFDM system model consid-
ering only one symbol. The modulated signal can be written
as

x(n) =
1
N

N−1∑

k=0

X(k)e
j2πkn

N , (1)

where 0 ≤ n ≤ N − 1 and X(k) is the transmitted data at the
k-th subcarrier. The modulated signal is then preceded with
a CP and delivered through a time-varying multipath fading
channel. Therefore, the received signal can be represented as

y(n) =
L−1∑

l=0

h(n, l)x(n− l)N + w(n) (2)

where h(n, l) is the l-th channel path at the time instant
t = n × ts, ts = T

N is the sampling period, T is the symbol
duration, L is the number of channel taps, (·)N represents
the modulo N operation, and w(n) is the sampled additive
white complex Gaussian noise (AWGN) with variance σ2. The
received signal after DFT at the k-th subcarrier is

Y (k) =
N−1∑
n=0

y(n)e−
j2πkn

N (3)

B. ICI Analysis

According to the system model depicted in Section II-A, the
received signal after DFT at the k-th subcarrier is obtained by
substituting (1) and (2) into (3)

Y (k) = G(k, k)X(k)︸ ︷︷ ︸
Desired Signal

+
N−1∑

m=0,m6=k

G(k, m)X(m)

︸ ︷︷ ︸
ICI

+W (k)

(4)
where

G(k, k) ∆=
1
N

N−1∑
r=0

L−1∑

l=0

h(r, l)e
−j2πlk

N , (5)

G(k, m) ∆=
1
N

N−1∑
r=0

L−1∑

l=0

h(r, l)e
j2πr(m−k)

N e
−j2πlm

N , (6)

and

W (k) =
N−1∑
n=0

w(n)e−
j2πkn

N , 0 ≤ m, k ≤ N − 1.

Thus, the received signal after DFT can be written as the
following matrix form

Y =
1
N

QHQHX + W

= GX + W (7)

where Y = [Y (0), · · · , Y (N − 1)]T , X = [X(0), · · · , X(N −
1)]T , W = [W (0), · · · ,W (N − 1)]T , H(n,m) = h(n, (n −
m)N ) is the H’s element at the n-th row and m-th column,
Q is an N -point DFT matrix with its elements Q(n,m) =
e
−j2πmn

N , and G is the channel frequency response matrix with
elements G(k, m) at the k-row and the m-th column.

Since the second term on the right hand side of (4) is not
zero when the channel is time-varying, the desired signal Y (k)
suffers ICI from all the other subcarriers. However, it can be
observed [1] that those ICI terms G(k,m)|m6=k are significant
only for m close to k. For further ICI analysis, let us first
define the time average of channel impulse response, h(n, l),
as

havg(l)
∆=

1
N

N−1∑
n=0

h(n, l) (8)

and the variation ∆h(n, l) of h(n, l) as

∆h(n, l) ∆= h(n, l)− havg(l) (9)

By substituting (8) into (5), (5) can be reduced to

G(k, k) =
L−1∑

l=0

havg(l)e
−j2πlk

N (10)

If the channel impulse response is time-invariant within an
OFDM symbol, ∆h(n, l) will be zero and G(k, m) = 0, for
m 6= k. In this channel condition, the received signal in (4)
only contains the desired signal term. Generally, the channel
impulse response will be time-varying, especially for a highly
mobile user. Fortunately, the variation of a channel path can
be described by a linear function [1] under the conditions of
slow fading up to moderately fast fading, particularly when the
normalized Doppler frequency (NDF) fnd is roughly less than
0.1, where NDF is defined as fnd

∆= fdT , and fd is the max-
imum Doppler frequency. Specifically, the variation of each
channel path within an OFDM symbol can be approximated
[1], [5], [6] as the following linear function of time index n

∆h(n, l) = (n− N − 1
2

)αl, 0 ≤ n ≤ N − 1, 0 ≤ l ≤ L− 1,

(11)
where αl is the slope of the l-th channel path. Given (9), the
response of the l-th channel path at the n-th time instance can
be written as

h(n, l) = havg(l) + (n− N − 1
2

)αl (12)

Therefore, by substituting (12) into (6), (6) can be represented
as

G(k,m)|m6=k =
1
N

N−1∑
r=0

L−1∑

l=0

(r − N − 1
2

)αle
j2πr(m−k)

N e
−j2πlm

N .

(13)
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According to (10) and (13), the channel frequency response
matrix can be rewritten as

G =
1
N

QHQH

=
1
N

Q(Havg + Dα)QH

=
1
N

(QHavgQH + QDαQH)

=
1
N

(QHavgQH + QDQHQαQH)

=
1
N

(Ĥavg + QDQHα̂) (14)

where D is a diagonal matrix and its diagonal elements are
−N−1

2 , 1− N−1
2 , · · ·, n− N−1

2 , · · ·, and N−1
2 . Both Havg and

α are circulant matrices with their elements Havg(n,m) =
havg((n−m)N ) and α(n,m) = α(n−m)N

at the n-th row and
the m-th column, which contain the static terms and slopes of
the channel, respectively. Furthermore, Ĥavg

∆= QHavgQ
H

and α̂
∆= QHαQH are diagonal matrices. Note that (14)

will be useful for achieving low complexity of the proposed
detection method (as will be described in Section III-E).

III. PROPOSED IMPROVED SUCCESSIVE DETECTION
METHOD

First, the MMSE-SD method and Newton’s iterative ma-
trix inversion method will be briefly reviewed. Second, an
integrated detection method that efficiently takes advantages
of these two methods will be proposed. To further reduce
complexities while maintain performances, a low-complexity
algorithm for the initial inverse matrix and maximum SINR
estimation will be introduced.

A. MMSE-SD Method

The MMSE-SD method [3] can be regarded as an ap-
plication of MMSE vertical Bell Labs layered space-time
(V-BLAST) method. Basically, the whole process can be
decomposed into three steps. In the first step, the system
equalization matrix is obtained, followed by the second step of
determining the maximum SINR subcarrier index and solving
the subcarrier data with the equalization matrix. Then, the last
step cancels the interferences contributed by the maximum
SINR subcarrier, and reconstructs the channel matrix. Eventu-
ally, by going back to the first step iteratively, one can obtain
the updated equalization matrix, the next maximum SINR
subcarrier, and its associated data of the remaining subcarriers.

By canceling the interferences iteratively, the MMSE-SD
method will achieve good performance. On the other hand,
canceling the interferences iteratively will significantly in-
crease the computational complexity. Hence, it is a trade-off
problem between performance and computational complexity.
Later, this section will detail a technique that achieves good
performance and low computational complexity at the same
time.

B. Newton’s Iterative Matrix Inversion Method

For approximating the matrix inversion of a known N -by-
N matrix A, Newton’s iterative matrix inversion equation [7]
can be written as

Uj+1 = Uj(2I−AUj), 0 ≤ j ≤ J (15)

where I is the identity matrix, J is the number of iteration,
which is defined by the system requirement, and Uj is an
approximation to A−1 at the j-th iteration. Note that (15)
requires two matrix multiplications in each iteration. To reduce
the complexity, one can expand the iteration equation as

UJ =
2J∑

m=1

c(J,m){(U0A)m−1}U0 (16)

where U0 is the initial matrix. Then, the complicated matrix
multiplication of (U0A)m−1 can be further reduced to vector
multiplications. The detailed reduction process will be given in
Section III-E. Besides, although there is an increased number
of summation terms, the later simulation in Fig. 2 shows that
the approximation UJ to A−1 is accurate enough at about
the 3th iteration (i.e. J = 3). Hence, the gain in reducing the
number of matrix multiplications significantly dominates the
cost in the moderately increased number of matrix additions.
Besides, in practical realizations, the coefficients c(J,m) can
be generated off-line by expanding UJ in terms of U0 and
stored in a memory.

C. Proposed Initial Value Decision Scheme for Newton’s
Method

For achieving high performance and low complexity, there
are two important issues about how to integrate the successive
detection method and Newton’s iterative matrix inversion
method effectively. One is the way to determine the initial
values for Newton’s iterative matrix inversion method, which
is critically related to both the performance and complexity of
Newton’s method. The proposed efficient initial values will re-
duce the complexity without noticeable performance degrada-
tion. The other issue is determining the maximum SINR sub-
carrier index, which is one of the considerably computation-
consuming steps in the successive detection method. First, we
will propose a low-complexity initial value decision scheme
in this subsection. Based on this initial value decision scheme,
an accurate and simple criterion for the maximum SINR
subcarrier index determination will be proposed in the next
subsection.

For low-complexity realization of the initial matrix U0, let
U0 be a diagonal matrix as,

U0 =




u0 0 · · · 0
0 u1 0 · · · 0

0 u2

...
...

...
. . . 0

0 · · · 0 uN−1




(17)

By utilizing the minimum squared-error cost function [2],
the initial matrix can be determined through the following
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optimization function,

U0 = arg min
U0

‖R0‖2 = arg min
U0

‖I−AU0‖2 (18)

where ‖R0‖ means the Frobenius norm of the initial residual
matrix R0, and the residual matrix Rj at the j-th iteration is
defined as Rj = I − AUj . Thus, the optimum initial value
solutions [2] can be shown to be

uk =
A∗(k, k)

N−1∑
m=0

|A(k,m)|2
(19)

where 0 ≤ k ≤ N − 1 and A(k,m) is the element of A at
the k-th row and the m-th column.

However, the initial values (19) require significant compu-
tation especially when Newton’s method is combined with
the successive detection method. In order to reduce the com-
plexity of (19), we propose the following simple but accurate
method for the generation of the initial values. When applying
the Newton’s iterative matrix inversion method to MMSE
equalization matrix (GHG + σ2IN )−1GH , A in (16) is
equal to (GHG + σ2IN ). As analyzed in Appendix A, since

|A(k, k)|2 >>
N−1∑

m=0,m6=k

|A(k, m)|2, one can reduce (19) to

uk =
A∗(k, k)

N−1∑
m=0

|A(k, m)|2

≈ A∗(k, k)
|A(k, k)|2 =

1
A(k, k)

(20)

Here, for evaluating the performances of (19) and (20)
in different NDF conditions, one can define the following
performance metric of the normalized mean square error
(NMSE) at the j-th iteration,

NMSEj = E{

N−1∑
k=0

N−1∑
m=0

|A′(k, m)−Uj(k, m)|2

N−1∑
k=0

N−1∑
m=0

|A′(k, m)|2
}

where E{.} is the expectation value operator, A′(k, m) and
Uj(k, m) are the elements of A−1 and Uj , respectively, at
the k-th row and the m-th column, and 0 ≤ j ≤ J . NMSE
represents the normalized difference between the ideal inverse
matrix and output of Newton’s iterative matrix inversion
method. By applying (19) and (20) to Newton’s method,
one can evaluate the NMSE performances due to these two
initial values. According to Fig. 3, the NMSE curves of (19)
and (20) virtually overlap. However, (20) has a much lower
computational complexity than (19). Especially, this outcome
still holds even in high NDF conditions. Also shown is that
both initial value estimations give very small errors around
10−5 even after the second iteration, and converge to around
10−30 after the 5th iteration.

2 3 4 5 6 7 8
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−35
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10
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10
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−10
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Iteration Number of Newton’s Iterative Matrix Inversion Method

N
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S
E

 

 
Initial value by (23), NDF=0.03
Initial value by (22), NDF=0.03
Initial value by (23), NDF=0.05
Initial value by (22), NDF=0.05
Initial value by (23), NDF=0.08
Initial value by (22), NDF=0.08

Fig. 2. NMSEs of (22) and (23) versus iteration number in different NDFs

D. Proposed Criterion for Maximum SINR Determination

Next, we need to determine the maximum SINR subcarrier
index based on the mentioned initial matrix. Note that here
we apply Newton’s iterative matrix inversion method to the
evaluation of (GHG + σ2IN )−1, so that the approximate
MMSE equalization matrix at the J-th iteration is

(GHG + σ2IN )−1GH ≈ UJGH (21)

Then, the estimated MMSE X̃ of X in (7) at the J-th iteration
is

X̃ = UJGHY

= UJGHGX + UJGHW (22)

Moreover, to achieve high performance, successive detection
method is adopted. For successive detection, the conventional
criterion for determining the maximum SINR subcarrier index
[3] is given as

argmax
k

SINR=argmax
k

|< ûJ,k,gk >|2
N−1∑
m6=k
m=0

|< ûJ,k,gm >|2+σ2‖ûJ,k‖2
(23)

where ûJ,k is the k-th row vector of the equalizer matrix
UJGH , gk is the k-th column vector of G, and < . > is
the inner product operator.

Clearly, (23) is very complicated. However, since the ac-

cumulation term of the denominator
N−1∑

m6=k,m=0

|< ûJ,k,gm >|2 is

expectedly smaller than the noise term σ2‖ûJ,k‖2 in reason-
able SNR conditions [12] and the inner product < ûJ,k,gk >
is close to unity, (23) can be simplified as

arg max
k

SINR ≈ arg max
k

|< ûJ,k,gk >|2
σ2 ‖ûJ,k‖2

≈ arg max
k

1
σ2 ‖ûJ,k‖2

≈ arg min
k

‖ûJ,k‖2 (24)

Since according to (18), U0 is the closet diagonal matrix to
the inverse matrix of A, U0A can be reasonably assumed to
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be close to an identity matrix (because the diagonal elements
of A here are much larger than the off-diagonal elements),
and (16) can be approximated as

UJ =
2J∑

m=1

c(J,m){(U0A)m−1}U0

≈
2J∑

m=1

c(J,m)Im−1U0

≈
2J∑

m=1

c(J,m)U0 (25)

Finally, by substituting (25) for UJ in UJGH , one has the
following simplified optimization function

arg max
k

SINR ≈ arg min
k

‖ûJ,k‖2

≈ arg min
k

‖û0,k‖2

≈ arg min
k

|uk ×G(k, k)|2 (26)

which has a much lower complexity than (23).

E. Proposed Improved Sub-block MMSE Successive Detection
Method

In fact, in (16), (U0A)m−1 still requires a lot of com-
putation. Besides, in order to obtain the equalization matrix
(GHG + σ2IN )−1GH for MMSE equalizer, the result of
Newton’s iterative matrix inversion method still has to perform
matrix multiplication with GH .

This work will utilize the channel responses in time domain
instead of the channel frequency responses in frequency do-
main to significantly reduce the computational complexity as
follows. First, we substitute (16) into (22) and solve the output
X̃ of the linear MMSE equalizer as

X̃ = UJGHY

=
2J∑

m=1

c(J,m){(U0A)m−1}U0GHY

=
2J∑

m=1

c(J,m)sm (27)

where sm is defined as

sm
∆= {(U0A)m−1}U0GHY

and note that A = (GHG + σ2IN).
Thus, X̃ can be obtained by summing all c(J,m)sm terms,

where sm can be recursively calculated by the equation

sm = {U0(GHG + σ2IN )}sm−1 (28)

Relying on (28), one can simplify all the matrix operations of
(27) to vector operations except GHG in A. The GHG term
can be further expanded by substituting (14), G = 1

N (Ĥavg +
QDQHα̂), into GHG as

GHG =
1

N2
{ĤH

avgĤavg + (QDQHα̂)HĤavg

+ĤH
avg(QDQHα̂) + α̂HQDHDQHα̂} (29)

X  X                                               X

X  X  X

     X  X  X

          X  X  X

                              X  X  X

                                   X  X  X

                                        X  X  X

                                             X  X  X

X                                               X  X 

,1blk
G

,2blk
G

, 4blk N−G

, 3blk N−G

, 2blk N−G

=G

Fig. 3. An example G of matrix simplification and partitioning, q = 1

Note that QDQH and QDHDQH can be obtained in ad-
vance. Since Ĥavg and α̂ are diagonal matrices which contain
the time-domain channel information, (29) can be realized with
low complexity. Thus, based on the above discussion, X̃ can
be obtained with low computational complexity.

In fact, according to the ICI discussion in Section II-B,
only a few ICI elements close to the diagonal elements in G
are significant. By considering only those central diagonal ICI
terms, one can separate matrix G into N (2q+1)-by-(2q+1)
sub-matrices as (30), where 0 ≤ k ≤ N − 1. We assume that
there is no ICI effect needed to be considered except the 2q
most adjacent subcarriers to the central subcarrier. As a result,
each Gblk,k is a (2q + 1)-by-(2q + 1) matrix. Fig. 3 gives an
example of q = 1.

Through the sub-matrix partition procedure, the linear
MMSE equalizer can be modified from one N -by-N matrix
to N (2q + 1)-by-(2q + 1) matrices as follows.

UJ,blk,kGH
blk,k = (GH

blk,kGblk,k + σ2I2q+1)−1GH
blk,k, (31)

where 0 ≤ k ≤ N − 1. Thus, the equalized data vector X̃blk,k

corresponding to the k-th subcarrier in (27) can be rewritten
as

X̃blk,k =
2J∑

m=1

c(J,m)sm,blk,k (32)

where sm,blk,k can be calculated recursively by

sm,blk,k={U0,blk,k(GH
blk,kGblk,k+σ2I(2q+1))}sm−1,blk,k (33)

Although there are N equalized data vectors X̃blk,k, 0 ≤
k ≤ N −1, to be calculated according to (32), only the center
scalar element X̃blk,k(q + 1) (shown below) of each X̃blk,k

vector is needed by the proposed successive detection method.

X̃blk,k(q + 1) =
2J∑

m=1

c(J,m)sm,blk,k(q + 1), (34)
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Gblk,k≡




G((k−q)N,(k−q)N) · · · G((k−q)N,(k−1)N) G((k−q)N, k) 0 · · · 0
· · ·
· · ·

G((k−1)N,(k−q)N) · · · G((k−1)N,(k−1)N) · · · G((k+1)N,(k+q−1)N) 0
G(k,(k−q)N) · · · G(k,(k−1)N) G(k, k) G(k,(k+1)N) · · · G(k,(k+q)N)

0 G((k+1)N,(k−q+1)N) · · · G((k+1)N,(k+1)N) · · · G((k+1)N,(k+q)N)
· ·
· ·
0 · · · 0 G((k+q)N, k) G((k+q)N,(k−1)N) · · · G((k+q)N,(k+q)N)




(30)

As a result, by utilizing the sub-matrix approximation method,
the improved sub-block MMSE detection method (ISB-
MMSE-SD) can reduce the complexity of updating sm with
N -dimensional operations to that of updating N scalar compo-
nents sm,blk,k(q+1), 0 ≤ k ≤ N−1, which are the (q+1)-th
(center) components of vector sm,blk,k.

As discussed above, the successive detection process will
be performed according to the subcarrier order from high
SINR to low SINR, which is determined by (26), while (32)
will be applied to the equalization process. The complete
procedures of the ISB-MMSE-SD method are summarized
below.

Step 1: Set n = 1 as the initial value of the subcarrier
counter. Also set a proper Newton’s iteration number J .
Step 2: Determine the maximum SINR subcarrier index
through the proposed criterion (26):

i1 = arg min
k

|ublk,k ×G(k, k)|2

where 0 ≤ k ≤ N − 1 and ublk,k is the element of U0,blk,k

at the (q + 1)-th row and the (q + 1)-th column, which
is obtained by using (20) (assuming A = GH

blk,kGblk,k +
σ2I(2q+1)).
Step 3: Perform the proposed Newton’s-method-based
MMSE equalization process for the subblock on the selected
subcarrier in:

X̃blk,in(q + 1) =
2J∑

m=1

c(J,m)sm,blk,in(q + 1)

where X̃blk,in
(q + 1) and sm,blk,in

(q + 1) are the (q +
1)-th data of the selected subcarrier in X̃blk,in and
sm,blk,in

, respectively. Based on Newton’s method, note that
sm,blk,in

(q + 1), 1 ≤ m ≤ 2J , can be obtained through
taking out the center element of sm,blk,in in (33), iteratively.
Step 4: Perform the data decision for the data at the selected
subcarrier in:

X̂(in) = slice(X̃blk,in
(q + 1)))

Step 5: Cancel the interferences from the selected subcarrier
in:

Y = Y − gin
X̂(in)

where gin
is the in-th column vector of G.

Step 6: Reconstruct the new channel matrix by padding a
N -by-1 zero vector at in-th column of G:

G = [g0, · · · ,gin−1,0,gin+1, · · · ,gN−1]

Step 7: Determine the maximum SINR subcarrier of all the
remaining subcarriers:

in+1 = arg min
k/∈{i1···in}

|ublk,k ×G(k, k)|2

Step 8: Increase the subcarrier counter by one, i.e. n = n+1.
If n 6= N , go to Step 3; else, the end of the whole process.

As shown above, the proposed method relies on the time-
domain channel knowledge. There are many time-domain
channel estimation techniques in literature can be utilized here.
For example, the one in [11] has good performances. Next, the
performance of the proposed ISB-MMSE-SD method will be
evaluated.

IV. PERFORMANCES ANALYSIS

A. Complexity Analysis

Fig. 4 shows the structure of the proposed improved sub-
block MMSE successive detection method. As shown, there
are seven main function blocks for the following demonstra-
tion and the detailed complexity analysis.
• Block A: There are two kinds of modes in block A. One

is the initial mode; the other is the iteration mode. At
the beginning, block A requires 4N2 real multiplication
operations and 3N2 real addition operations in the initial
mode. Then, block A will deliver the result of (GHG +
σ2I) to the next block. After that, block A turns into the
iteration mode. In the iteration mode, block A just needs
to deliver σ2 to the next block for updating the previous
selected subcarrier in block B without any computation.

• Block B: Similar to block A, block B has two modes. In
the initial mode, block B needs to perform N division
operations for determining the highest SINR subcarrier.
After the initial mode, block B updates ublk,i with one
real division operation, where i is the selected subcarrier
corresponding to step 7 of the proposed ISB-MMSE-SD
method.

• Block C: In order to determine the maximum SINR
subcarrier, block C only requires 2N multiplication oper-
ations in the initial mode. After the initial mode, block C
just needs to select the among the remaining subcarriers
without any computation according to the result coming
from the initial mode.

• Block D: In order to obtain the initial value of the accu-
mulation terms in s1,blk,k block D requires [(2q + 1)2 +
16(2q+1)] real multiplication and [(2q+1)2 +8(2q+1)]
real addition operations.
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Fig. 4. Structure of ISB-MMSE-SD method for complexity analysis

TABLE I
COMPLEXITY COMPARISON

Methods Number of Number of Number of

Additions Multiplications Divisions

Zero-forcing 11N3 − 3N2 12N3 + 6N2 2N2 − 2N

−4N −10N

MMSE-SD [3] O(N3) O(N3) O(N2)

Proposed 8N2 8N2 N2 + N

ISB-MMSE-SD +{(12×2J−11) +{(12×2J−11)

×(2q + 1)2 ×(2q + 1)2

+(4× 2J + 4) +(16× 2J )

×(2q + 1) ×(2q + 1)

+(6×2J+4)}N +(10×2J+6)}N

• Block E: For obtaining the rest of the accumulation terms
in (46), block E requires [(3×2J −3)× (2q +1)2 +(4×
2J − 4) × (2q + 1) + (2 × 2J − 2)] multiplication and
[(3 × 2J − 3) × (2q + 1)2 − (2 × 2J − 2) × (2q + 1)]
addition operations. Note that we only need to obtain the
elements of the selected subcarrier in (46).

• Block F: Clearly, the equalization and data detection
require 2× 2J real multiplication and (2J − 1) addition
operations.

• Block G: The ICI cancellation here needs N multiplica-
tion and N addition operations.

Note that all the mentioned operations are done on complex
numbers, unless indicated specifically. Due to the successive
detection, all the functions in these blocks are performed N
times. However, block A, B, and C will be turned into the
iteration mode after that the highest SINR subcarrier index
has been detected.

The total complexity of the proposed ISB-MMSE-SD
method is summarized in Table I. Also given are the complex-
ities of the MMSE-SD method and the zero-forcing detection
method, where O(·) means ”order of”. In the MMSE-SD
method, the most computation-consuming steps are in itera-
tively determining the highest SINR subcarrier and performing
equalization operations. We have greatly simplified the process
by applying the result of (26) and (32) to the ISB-MMSE-SD
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Fig. 5. Number of addition operations versus FFT length

method.
Besides, Fig. 5, Fig. 6, and Fig. 7 show the complexities

of addition, multiplication, and division operations for three
different methods under various values of FFT lengths N ,
respectively. As shown in Fig. 5 and Fig. 6, when the FFT
length is larger than 16, the proposed ISB-MMSE-SD method
has fewer addition and multiplication operations than the
conventional methods. Similarly, as shown in Fig. 7, ISB-
MMSE-SD method has fewer division operations than the
conventional methods. Thus, the proposed method has much
lower complexity than the compared methods, and meantime
achieves high performance as verified below.

B. Simulation Results

Here, we simulate an OFDM system assuming N = 64
subcarriers, CP length Lcp = 16. The adopted modulations
are QPSK and 16-QAM. The simulation channel is a Rayleigh
fading channel described in [8]. The power delay profile is
chosen as the ”Vehicular B” highly selective channel model
defined by ETSI for the evaluation of UMTS radio interface
proposals [9]. Since this channel has a large delay spread, it is
frequency selective. Furthermore, the bit error rate (BER) per-
formance of the proposed detection algorithms are compared
with those of the zero-forcing and the MMSE-SD schemes [3].
Fig. 8 and Fig. 9 show the BER simulation results of all the
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Fig. 6. Number of multiplication operations versus FFT length
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Fig. 7. Number of division operations versus FFT length

mentioned methods, under two different normalized Doppler
frequency settings of fnd = 0.05 and fnd = 0.08.

Since the detection results are almost independent of the
number N of total subcarriers, we did not run simulation
assuming higher N than 64 in the manuscript (as we ex-
pect that the results would be the same as the lower N
cases). The reason why is due to the fact that the channel
variation is independent of the total number of subcarriers
[8]. Moreover, although the inter-carrier interference (ICI)
term in (4) is dependent on N , it is only dominated by a
few ICI terms coming from the adjacent subcarriers closet
to the k-th subcarrier. According to simulation results, even
when the number q of the considered adjacent subcarriers are
as small as 2, the simulated performance has already been
very close to the optimal results (which consider all the ICI
subcarriers). For q greater than 2, the results are even better
and virtually the same as the optimal results. That means the
effect of parameter N ’s magnitude on the simulation results
is basically indiscernible for N greater than a single-digit
value. As such, it is expected that the same simulation results
would be generated for subcarrier numbers higher than 64,
and the simulation results with 64 subcarriers can also be
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Fig. 8. BER performance comparison at NDF=0.05
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Fig. 9. BER performance comparison at NDF=0.08

applied to other systems with more subcarriers, such as IEEE
802.11n/16e and DVB-T/H.

As shown in the figures, the proposed ISB-MMSE-SD
method has better performance than the zero-forcing (ZF)
method regardless of the adopted modulation, with lower com-
plexity, in both simulation environments. On the other hand,
the ISB-MMSE-SD method only considers the 4 most adjacent
neighboring subcarriers, i.e. q = 2. Clearly, the performance of
the ISB-MMSE-SD method approaches that of the MMSE-SD
method very closely, but requires much less complexity than
the MMSE-SD method. Moreover, with 16-QAM modulation,
Fig. 8 and Fig. 9 also show that the performance of the
proposed ISB-MMSE-SD method is closer to the MMSE-
SD method than those of ISB-MMSE-SD method with QPSK
modulation.

V. CONCLUSION

This work presents an improved sub-block MMSE suc-
cessive detection method with low computational complexity.
Especially, simulation results under the conditions of simul-
taneous presence of time and frequency selective show better
performance than the zero-forcing approach and close perfor-
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mance to the MMSE-SD method, but with much lower com-
putational complexity than both methods. Hence, the proposed
improved method can be effectively applied to OFDM systems
in time-varying and multi-path Rayleigh fading channels such
as WLAN, DVB-H and WiMax systems, and etc..

APPENDIX A

PROOF OF |A(k, k)|2 >>
N−1∑

m=0,m6=k

|A(k, m)|2

Since A = (GHG + σ2IN ), the elements in A are

A(k, m) =
N−1∑
s=0

G∗(s, k)G(s,m) + σ2 (35)

Here, these elements are classified into two groups. One is the
group of diagonal elements, called the diagonal group. The
other is the group of the remaining non-diagonal elements,
called the non-diagonal group. As discussed in Section II-B
and shown in Fig. 2,

|G(k, k)|2 >>
N−1∑

m=0,m 6=k

|G(k, m)|2, (36)

at reasonable SNR, and the square absolute values of those
two group are separately given by





diagonal group:
|A(k, k)|2 ≈ |G(k, k)|4

non-diagonal group:

|A(k,m)|2k 6=m ≈
N−1∑

s=0, m 6=k

|G(s, k)|2|G(s,m)|2
(37)

The comparison will start at summing square absolute
values of the non-diagonal group as follows,

N−1∑
m=0
m 6=k

|A(k, m)|2 ≈
N−1∑
m=0
m6=k

N−1∑
s=0
k 6=m

|G(s, k)|2|G(s, m)|2

≈
N−1∑
s=0
k 6=m

|G(s, k)|2
N−1∑
m=0
m 6=k

|G(s, m)|2 (38)

Again, because of (36), (38) can be further derived as
N−1∑
m=0
m 6=k

|A(k, m)|2 <<
N−1∑
s=0
k 6=m

|G(s, k)|2|G(s, s)|2

<< |G(k, k)|4 (39)

By combining (37) and (39), one can obtain the following
relationship of the elements in the initial matrix for Newton’s
iterative inversion method.

|A(k, k)|2 >>
N−1∑
m=0
m 6=k

|A(k, m)|2 (40)
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