
Real-time performance evaluation
of Bluetooth ARQ protocol

Fabrice PEYRARD

Abstract: These research tasks present a measurement

platform of Bluetooth asynchronous links in order to get the
intrinsic time constraints of this network and communications
protocols. These time measurements are necessary for the
application we wish to implement for mobile robot control
through Bluetooth link communication. We present the platform
as well as the measurement protocol which we have carried out
from real-time communicating operating systems. We have
developed an application of radio and time data processing
allowing a real-time evaluation of the global behavior of the
communicating system.

Keywords: ARQ measurement, Bluetooth WPAN, real-time
system

I. INTRODUCTION

The objectives of our research work [5] [6] are focused on
the implemention of a Bluetooth [1] communication platform
in point-to-point mode to control and command a mobile robot
with a remote RTAI1 [12] real-time system. According to the
properties of the Bluetooth [2] link communication in such a
system, we can determine thanks to the measurement platform,
the supported time constraints which will therefore be the
entry parameters to the servo-control loop to control and
command the robot through the Bluetooth WPAN2. Some
research works on Bluetooth protocols [3] [11] and
architectures [8] are done for communications but less
frequently for command control systems [13]. The objectives
of the work presented in this paper are to show the intrinsic
properties of a DM13 point-to-point Bluetooth link in
particular the ARQ4 influence on the servo-control loop. We
are emphasizing the implementation of measurement platform,
the associated protocol and our results.

In this work we have identified the time constraints of the
Bluetooth WPAN for applications requiring a high QoS level,
such as remote process control or voice applications. The
mobile robot control is an application with hard time
contraints and whose imperfections of the wireless medium
must be smoothed at the maximum by an efficient
communication protocol. We determine in this paper the
minimal time limit supported in the servo-control loop
between real-time communicating systems.

Manuscript received January 05, 2007 and revised October 09, and December
 23, 2007.
Author is with Toulouse University Research laboratory LATTIS-EA4155,

France (e-mail: peyrard@iut-blagnac.fr)

 1 Real-Time Application Interface
2 Wireless Personnal Area Network
3 Data – Medium rate
4 Automatic Repeat reQuest

II. BENCHMARK MEASUREMENT

A. Bluetooth piloting module

A1. HCI interface and packets

Thanks to specific commands, the HCI5 interface allows us
to pilot the Bluetooth module for its intrinsic control via the
Baseband layer. The transmission of the useful data for ACL6
links are done via the LMP7 layer. These different commands
and data are transmitted through specific packets identified in
three categories:
• the command packets used by the host to control the

Bluetooth module,
• the event packets used by the Bluetooth module to

answer a command,
• the data packets to transport towards another remote

Bluetooth module.
Fig. 1 presents the interaction of these three types of packets

between the control station and the wireless Bluetooth module.
Every HCI packet is identified by a specific header byte
followed by its parameters as Fig. 1 presents. The ACL data
packets sent on the HCI interface undergo a specific
formatting from the Bluetooth module so that a new packet
dedicated to transmitting on the ACL radio link is created.

A2. Bluetooth piloting

In order to optimize the Bluetooth module configuration in
our real-time environment we have defined an initialization
sequence. The sequence of following commands, illustrated in
TABLE 1, represents the necessary and satisfactory command
to initialize the Bluetooth module. This sequence is
independent of the role played by the Bluetooth module in
master or slave communication, which has allowed us to
develop a unique RT_init_BT.o programmed module for
the initialization. Every specific master or slave entity must
execute this module and moreover only the master can
establish the connection with the slave whose MAC address he
knows beforehand. Once the connection is created the slave
generates an event of connection establishment. We assessed
the processesing times of each command of this initialization
module, whose off-connection time is slightly over 23ms. We
noted on the other hand that the time of connection
establishment is in charge for about 2s. It is important to
consider this time during the Bluetooth establishment
connection stage in a multi-robot environment (Piconet).

5 Host Controler Interface
6 Asynchronous Connection Less
7 Link Management Protocol

248 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

1845-6421/07/7023 © 2007 CCIS

FESB
Typewritten Text
 Original scientific paper

Fig. 1. Piloting a Bluetooth module via the HCI interface

TABLE 1 – MEASUREMENT TIMES OF THE INITIALIZATION SEQUENCE

Actions Bluetooth module initialization Automatic detection stage Activation of event control Changing data rate to 115Kbits/s
New DM1 connexion on ACL

link

Applicative
order

> cmd reset > cmd wse INQUIRY_PAGE
> cmd sef 0x02 0x00

0x02 > cmd esuartbr 115200
> cmd cc 0x111111111111
DM1 R0 MANDATORY 0x0000

0x00

HCI order # COMMAND 01 03 0C 00 # COMMAND 01 1A 0C 01
03

COMMAND 01 05 0C 03
02 00 02

command 01 09 FC 01
02

COMMAND 01 05 04 0D
11 11 11 11 11 11 08 00

00 00 00 00 00

Running time (ms) 8,198023 4,063218 2,732338 8,054214 1905,595

Initialization time (ms)

Total time of connexion
establishment (s)

23,047793

1,928642793

Following this connection stage between master and slave,
we itemize, in the next paragraph, the data transmission stage
between the two communicating entities in real-time
environment.

B. Real-time communicating tasks

In order to validate our experimental platform, we have, for
the first time on a real-time mono-system, defined two real-
time tasks with the same priority on this system. These
RT_send_acl.o and RT_receive_acl.o tasks process
data transmission and reception respectively. The slave
process (robot) must be initialized first, because it processes

Fig. 2. Communication protocol on mono-system

the aperiodic data reception on serial port interruption. The
master processing (control station) sends aperiodic data after
defining a random time, then arms a watchdog in case of non
reception of acknowledgment from the slave. Fig. 2 presents
the communication protocol between the two serial ports of
the same real-time system [4] in order to carry out the time
measurement from a single clock.

The first essential stage for system validation is to estimate
the global behavior of the real-time tasks by interconnecting
the serial ports with a wire medium. The reliability of this
system leads us then to carry out the same measurement after
changing the wired transmission to a Bluetooth
communication over the radio medium.

C. Benchmarcks

C1. Measurement on wire medium

Following the network and protocol architecture presented
in Fig. 2, we have first estimated the behavior of the wired
real-time mono-system by transmitting data packets of
variable size, between 1 and 512 bytes. Indeed, we wished to
check the intrinsic behavior of the rtai_spdrv.o module
[10] whose software buffer maximal size is specified at 512
bytes in the RTAI kernel [9]. This platform allows us to carry
out time measurements without the constraints of clock
synchronization in a multisystem environment. The values

PEYRARD: REAL-TIME PERFORMANCE EVALUATION OF BLUETOOTH ARQ PROTOCOL 249

were measured in the wired environment whose serial port
data rate is specified at 115200bits/s. We can note that the
results obtained are superior to the theoretical value, since they
include the transport of all the management bits of the serial
interface (stop bit, parity,…) as well as the crossing time of
the protocol layers of the real-time system. This additional
load is characterized by an increase of between 18 and 73% as
Fig. 3 presents.

0

10

20

30

40

50

60

70

80

90

100

1 51 101 151 201 251 301 351 401 451 501

Bytes

%

Fig. 3. Transmission time increases according to packet size

The smaller the packet size is, the bigger the global time
necessary for processing and transmission. Indeed, this is
mainly due to the software processing time by real-time tasks
in comparison with the low transmission time. Nevertheless, in
an application with strong time constraints, we could use
packets over 120 bytes in order not to exceed 20% of increase
in processing time.

C2. Measurement with Bluetooth

By using the same protocol presented in Fig. 2, we carried
out the time measurements on the Bluetooth communicating
mono-system whose results are presented in Fig. 4. We
essentially note a weakness of Bluetooth’s useful data rate
because of the different bytes making up the frame envelope
(header, CRC, …), of the management bits of the serial
interface, as well as the serialization times and the crossing of
Bluetooth modules.

0

20

40

60

80

100

120

1 51 101 151 201 251 301 351 401 451 501

Bytes

K
bi

ts
/s

Wire

Bluetooth

Theoretical

Fig. 4. Time measurements on Bluetooth real-time mono-system

The user data rate offered by Bluetooth on this real-time
platform doesn't exceed 40Kbits/s via the HCI interface, which
proves to be in conformity with the data rate of about
30Kbits/s [5] [13] measured on the software layers over HCI.

We present in the Fig. 5 a comparative analysis of an ACL
Bluetooth link with DM1 and DH1 packets of 366 bits. They

differ from one another by a better quality of service for the
DM1 packets because they implement an additional ⅔ FEC
redundancy code.

The difference in data rate between DH1 and DM1 is only
5Kbits/s at the maximum whereas in theory it is 65Kbits/s.
This difference is due to the serial port rate limitation of
115.2Kbits/s.

0

5

10

15

20

25

30

35

40

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501

Bytes
K

bi
ts

/s

DH1

DM1

Fig. 5. Bluetooth data rate measured with DM1 and DH1 packets

Therefore, this limitation hasn’t allowed us to estimate
DM3/DH3 and DM5/DH5 packets explicitly. Indeed in this
case, the serial ports are a bottleneck for the ACL Bluetooth
channels beyond 115.2Kbits/s.

D. Conclusion

This mono-system experimental model has been designed
with the goal of validating the interoperability between the
RTAI real-time system and the Bluetooth wireless modules,
for asynchronous communications via the system serial
interface. We have characterized and developed the real-time
transmission and reception tasks by using the RTAI kernel
modules particularly for serial port interruption management.
Then, we have carried out a whole set of measurements on the
wired medium in order to estimate the global behavior of the
system, before carrying out these same measurements in the
Bluetooth wireless environment and we obtain like the
Bluetooth wireless communication performances only 35% of
the theorical data rate. We noted the impact of the crossing
time of the RTAI layers and the Bluetooth modules, which we
characterize more precisely in the following part. For 64% of
payload increase between DM1 and DH1 packets, we note
only 12% of throughput increase due to lack of FEC on DH1
packets. We have implemented a Bluetooth platform of
communication between two communicating entities managed
by distinct RTAI real-time systems.

E. Modelling and simulation of Bluetooth Baseband

The goal of this part is to show the advantage of the STPN8
model in the analysis of the data transfer phase of the
Bluetooth baseband layer. These is a dual function: first in
terms of the modelling power which is well designed to
represent the complex format of the packets at different
redundancy levels; then in terms of performance which is

8 Stochastic Timed Petri Net

250 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

assessed for the different types of data packets (DM1 and
DH1) to take into account the different probabilities of error
per bit.

E1. Receiver model

The receiver model on the slave site is illustrated by Fig. 6.
This Petri Net represents the reception of the payload field and
the sending of the NULL packet (either ACK or NACK) and
is associated with probability density functions.

Probability of Detection of errors on an ERroneous Payload:

∑
∑

=
−

=
−

−

−
= n

k
kn

EP
k
EP

k
n

k
kn

EP
k
EP

k
n

DERP
ppC

ppC
P

1

3

1

)1(

)1(

Probability of UnDetected errors on an ERroneous Payload:

∑
∑

=
−

=
−

−

−
= n

k
kn

EP
k
EP

k
n

n

k
kn

EP
k
EP

k
n

UDERP
ppC

ppC
P

1

4

)1(

)1(

Probability to have a Correct Bloc of 15 bits:

∑ =
−−=

1

0
15

15)1(
k

k
e

k
e

k
CB ppCP

Probability t affects the bits of each group of 10 bits.

15
1 CB

EP
Pp −

=

Transitions Associated probability densities

t117 f117(x)=δ(x-nTB)

t118
f118(x)=2PERP*δ(x-n TB) + (1-2 PERP)
with n ≤ x ≤ n+1

t120 f120(x)= δ(x)

t121
f121(x)= 2PUDERP*δ(x-n TB) + (1-2 PUDERP)
with 0 ≤ x ≤ 1

t122 f122(x)= δ(x)

t123
f123(x)= 2PUDERP,2*δ(x-n TB) + (1-2 PUDERP,2)
with 0 ≤ x ≤ 1

To wait for
the packet x

P12

P32

P26

P27

P29

P30

P31

t12

t11

t118

t120 t121

t122

t119

To wait for
the packet

(x+1)

Payload
consideration

t117
Payload
(FEC2/3
analysis)

Payload
(CRC

Analysis)

Payload (Data
Obtention)

P19

t123

P33

P34

t58

t75

t76

P28

P20

Send
NULL (NACK)

Send
NULL (ACK)

Decision to
send ACK

t124

P30’

Decision to
send NACK

(P28) Correct Actual payload
(P30’) Erroneous Actual payload

To wait for
the packet x

P12

P32

P26

P27

P29

P30

P31

t12

t11

t118

t120 t121

t122

t119

To wait for
the packet

(x+1)

Payload
consideration

t117
Payload
(FEC2/3
analysis)

Payload
(CRC

Analysis)

Payload (Data
Obtention)

P19

t123

P33

P34

t58

t75

t76

P28

P20

Send
NULL (NACK)

Send
NULL (ACK)

Decision to
send ACK

t124

P30’

Decision to
send NACK

(P28) Correct Actual payload
(P30’) Erroneous Actual payload

Fig. 6. Receive Petri Net and associated probabilities

E2. Analysis

On the basis of the randomized state graph, and by using the
evaluations allowed by the STPN model and its associated
tool, we, in particular, can obtain quantitative abstract views.
These views allow the assessment of the incorrect payload
probabilities pDERP of DM1 and DH1 packets, depending on
error probabilities pe of the wireless medium as illustrated by

Fig. 7. Modelling and simulation with STPN tools are
explained in detail in publications [6] and [7], research in
which the theoretical study is focused on the error probability
of DM1 and DH1 packets. The errors on header or/and
payload packets act directly upon the behavior of ARQ the
mechanism. These theoretical results shown on Fig. 7 can be
compared with previously obtained results for DM1 and DH1
data rates shown on Fig. 5, and the FEC used for DM1
confirming the QoS by an error probability not exceeding
6.09E-14 with pe =10-3. This allows a reduction in the use of the
ARQ protocol.

0,00E+00

2,00E-05

4,00E-05

6,00E-05

8,00E-05

1,00E-04

1,20E-04

1,00E-06 1,00E-05 1,00E-04 5,00E-04 1,00E-03

P D
E

R
P

Pe

DM1

DH1

Fig. 7. Incorrect payload probabilities

III. MEASUREMENT PLATFORM

In this part we present the whole measurement platform,
using the RTAI real-time operating system and the Bluetooth
communication system to collect data on time measurements
for processing and transmission, radio signal levels and
communication data rates.

A. Measurement architecture

The software architecture associated with each hardware
entity, illustrated in Fig. 8, is composed of a Linux operating
system of the Redhat-8 type, with an RTAI kernel and a real-
time Bluetooth module piloting task. The real-time task for
piloting the Bluetooth modules carries out an initialization
sequence [5] thus allowing the definition of the module type
(master or slave) to link the two modules, associating an
asynchronous DM1 channel. A DM1 packet can carry up to 17
bytes of useful data.

The quality of service of the bit error rate is provided by the
data redundancy implemented by the ⅔ FEC. Moreover data
integrity is guaranteed by the CRC16. The maximum
theoretical useful data rate is therefore 108.8Kbits/s. Once this
initialization stage is carried out correctly, the transmission
real-time task becomes periodic and activates the
communication protocol we especially designed for the
measurement of the Bluetooth communication link. This
measurement protocol periodically sends a DM1 packet that
must be positively acknowledged. The useful payloads of data
and acknowledgement packets contain 17 bytes,
corresponding to the maximum size supported by the norm for
DM1 packets. The useful payload of acknowledged packets
contains a value for the reception radio signal level from the
slave module. This value corresponds to the RSSI9 in dBm

9 Received Signal Strength Indicator

PEYRARD: REAL-TIME PERFORMANCE EVALUATION OF BLUETOOTH ARQ PROTOCOL 251

Fig. 8. Measurement platform and software architecture

Fig. 9. Measurement protocol

measured on the Bluetooth module on reception of the data
packet. Protocol behavior and radio measurements are
illustrated by the chronogram in Fig. 9. This protocol is on the
LLC310 layer. Let us bear in mind that the LLC3 layer
corresponds to a constantly reliable and acknowledged
transfer. Our protocol uses the Bluetooth layer 2 based on the
TDD11 type access method. We are not analysing here in
detail this access method, but only explain briefly its principle
for communication with DM1 packets. The time is slotted at
intervals of 625µs. The master module uses 1 time slot to
communicate with a slave module; the latter uses the
following time slot to acknowledge the data from the master.

 10 Logical Link Control

11 Time Division Duplex

Therefore, a master/slave exchange lasts 1.25ms at best. If the
ARQ layer 2 protocol records non-reception of the packet after
timer expiration or transmission errors thanks to the CRC, it
will automatically undertake retransmissions on the
appropriate following time slots. With the available modules
for Bluetooth Ericsson, it is impossible to configure the TDD
protocol for layer 2. Without going into detail on the intrinsic
working of the TDD, we would like to give an indication for
the PDU12 layer 2:
• initially, the ARQ protocol parameters indicate the

number of retransmissions desired in the event of error or
packet loss,

12 Protocol Data Unit

252 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

• secondly, to transmit all the packets, correct or not, to the
LLC layer from the LMP layer.

This would have allowed us to have better control over the
behavior of the Bluetooth modules, in order to limit the
resulting delays in the servo-control loop of the control
system. On the other hand, as the error packets are sent up to
the LLC layer, it becomes possible to analyze the radio link
quality in real-time, and to anticipate a temporary halt of the
robot before the radio link breaks and the robot goes out of
control. With Bluetooth modules allowing such a
parametrization of layer 2, we illustrate in Fig. 10 an example
of a servo-control loop with and without automatic
retransmission. In the second case we observe the
communication length in the servo-control loop is of 2*625µs,
whereas in the first case it is twice the value with the
possibility that the communication might not be correct on
time slots 3 and 4. This second case requires of course that the
real-time communicating application undertakes the
retransmissions of the bad or lost packets. These
retransmissions can be calibrated according to the application,
as for example when piloting a moving robot, it may be
necessary to give an immobilization instruction if the previous
one to turn to the left was not performed. However, the
hardware architecture of the Bluetooth communicating
modules proves to be limited in terms of real-time
performance, because it must be used through the
asynchronous RS-232 interface. We present in the conclusion
of this paper future ideas for an integrated platform in order to
reduce this limitation.

Fig. 10. ARQ servo-control and re-transmission

B. Measurements

After presenting the global environment of the
communication platform, we dedicate this part to the
explanation of the measurement protocol.

First of all, let us recall that according to the kind of real-
time application, a classification of the measurement types is
necessary:

• either in deferred time, that is to say in post-execution of
the system, or with a time shift between the moment
when data is generated and the moment when it is
interpreted. This measurement type generally requires

data storage and is suited for applications with weak time
constraints, also named soft real-time applications.

• either in real-time, that is to say that at the exact moment
when data is generated, when it is immediately
interpreted, which is the case for applications with
strong time constraints or in hard real-time as for the
remote robot control application.

For our measurement platform, we used a real-time
operating system piloting the master module to collect all the
data measured during an exchange between master/slave.
These data are then processed and interpreted on the go but
never stored.

B1. Measurement protocol

The measurement protocol is based on periodic master/slave
exchanges using Bluetooth DM1 packets. The master module
is the coordinator for the global measurement system. Its part
is therefore to collect its local radio measurements and to
create a DM1 packet requesting the remote radio measurement
from the slave module. The latter carries out the local radio
measurement and creates a DM1 answer packet containing the
radio measurement. Thanks to this protocol of radio data
collecting, the master module can measure in real-time the
performance of the LLC3 link. It deduces the data rate
performances of the DM1 link at work. The radio
measurements, known as RSSI, carried out on the master and
slave modules, are coded in 1 byte each. The master module
codes in 4 bytes each time stamp of the real-time system
clock. This allows the time measurement of the exchanges
right through. At the outcome, the master module deduces the
useful throughput of the DM1 link and codes it in 4 bytes.
Therefore, at every sampling period, the coordinator of the
global measurement system generates 10 bytes of measured
data. The problem of selecting a measurement system, among
those previously presented, then arises. We didn't choose the
measurement type in deferred time, because the real-time task
of the master module rates the measuring protocol at a
sampling frequency of 25ms, for the processing request and
the radio measurements. At such a frequency, the data
measured for 1 hour represent 1.44Mbytes to store before
processing and analysis. Therefore, the deferred time
measurement is not suited for our application, especially for
extended observations. We therefore chose real-time
measurement initially to carry out the measurements and
estimate the communicating system benchmarks, and
subsequently, to act on the servo-system from the moment the
measurement protocol considers the system to be corrupt.

B2. Data acquisition

Collection of the measured data is carried out by the real-
time tasks of the communicating systems and more especially
by the measurement coordinators. These measurements must
then be transferred to another task of the system, in order to
unload the coordinators’. Two fundamental aspects are to be
taken into account for the choice of the data transfer mode:
• data processing is asynchronous in relation to data

generation,

PEYRARD: REAL-TIME PERFORMANCE EVALUATION OF BLUETOOTH ARQ PROTOCOL 253

• the measured data volume is 10 bytes per 25ms period.
We must therefore fix the appropriate transfer mode for

these constraints. Among the existing communication methods
(signals, file, pipe, message, shared memory, queue …)
between the tasks of the real-time operating system, we chose
to use a real-time queue (RT_FIFO13) because it offers the
best compromise in terms of use and performance. It is a
communication method ideally suited for inter-task data
transfers with a time schedule in the exchanged data. We
calibrated this FIFO size at 1024 bytes according to the
sampling period of 25ms for data generation and according to
the processing sampling period in the mean time of 100ms to
2.1s. In addition, we took into consideration the fact that the
data collecting task is asynchronous to that of the coordinator
via the FIFO. It is therefore the coordinator's task that
manages the total monitoring of the FIFO to avoid overflow in
the queue. According to Fig. 8, in order to give maximum
flexibility to the graph production of the measured data, we
introduce a client application (step 1) through a Web14 server
which is activated by the coordinator of the global system. A
non-real-time task such as ‘cgi-bin’ has been developed in
order to recover the data (step 2) stored in the RT_FIFO (step
3) to send them through the http protocol (step 4) toward the
client application: this is developed as a Java Applet offering
total portability whatever the target client system. The
collected data are formatted and finally displayed on a graph.

C. Benchmarks

Thanks to this real-time measurement protocol which is
remotely analyzable on a computer with an Internet navigator,
we carried out the intrinsic measurements of the Bluetooth
communication protocols and those of the current modules.
We carried out measurements on the Bluetooth DM1 link
throughput by varying the packet size of the application layer.

We observed that data rates increase according to the packet
size as in Fig. 11.

5

10

15

20

25

30

1 101 201 301 401 501

Time (x100 ms)

T
hr

ou
gh

pu
t (

K
bi

ts
/s

)

255-byte

170-byte

 85-byte

17-byte

Fig. 11. Throughput with DM1 packets

We confirmed in a quiet radio environment that the minimal
useful throughput is about 11Kbits/s, and the maximum is
29Kbits/s. These experimental measurements allowed us to
note variable times in byte processing according to their

13 Real-Time – First In First Out
14 A no real-time Apache process

volumes in the radio links. These processing times are
composed of the processing time in the real-time tasks as well
as the serialization time in the Bluetooth modules. We might
observe that the available modules require between 0.13 and
0.32ms processing 1 byte. The processing times of real-time
systems are 1000 times smaller and therefore considered as
insignificant.

These time measurements are illustrated by Fig. 12.
Paradoxically, the greater the load to process bytes, the lower
the processing time is, but never under 0.11ms/byte.

0

5

10

15

20

25

30

35

17 85 170 255

Bytes

K
bi

ts
/s

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

m
s

Throughtput

Time

Fig. 12. Processing time by byte and throughput

This is because byte by byte data processing requires a
routine execution of the Bluetooth module for every byte. This
same routine is used for the processing of several bytes.
Therefore we must determine a compromise between the
volume of information to be transmitted in every packet and
the minimum time to be adhered to validate the servo-control
loop for control and command. According to the curves in Fig.
12, performance is optimal around 120 bytes. From the
measurement protocol, Fig. 9, and the 17-byte data packets,
the recorded measurements, Fig. 13, bring forward a minimum
processing time of 24,327ms. That is the minimum time
necessary for the master module to obtain an answer to a
request, i.e the 34-byte transmission. In established
communications and without disturbance, we notice that the
automatic repetitions of the ARQ protocol are regularly in
demand, for ARQ=1 and ARQ=2 values.

23

24

25

26

27

28

1 101 201 301 401 501 601 701

Time (x100 ms)

P
ro

to
co

l a
cc

es
s

ti
m

e
(m

s) ARQ = 2

ARQ = 1

ARQ = 0

Fig. 13. Access time of the measurement protocol and ARQ influence

This leads to time increases of 2*625µs and 4*625µs
respectively on the Bluetooth radio transmission. The ARQ
protocol behavior is not suited for to control and command of
real-time tasks, because it is a non-deterministic mechanism
(in terms of repetitions) and induces considerably greater

254 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

times in the servo-control loop as presented in Fig. 10. The
real behavior measured confirms our hypotheses, and would
require total control and mastery of the ARQ protocol, which
is not the case with our Bluetooth modules. In Fig. 9, we have
specified the detailed transmission times, and we can deduce
that the serialization time of each DM1 packet in each
Bluetooth module is 4ms in agreement with the result in Fig.
3. The measurement platform interface is illustrated in Fig. 14,
which represents the measurements carried out for a packet
size of 255 bytes. The times measured by the coordinator are
about 140,32ms for a maximum throughput of 29Kbits/s. With
voluntary disruptions of the system, by antenna obstructions,
we notice meaningful variations in the RSSI radio
measurements, sometimes resulting in reductions in the data
rate.

Fig. 14. Measurement platform interface

Multiple measurements have allowed us to notice that radio
fading voluntarily generated near the antenna Bluetooth
modules, immediately triggered variations in the RSSI before
communication quality is affected. This observation is
fundamental for the control and command of remote robot
because it allows the prediction of a possible corruption of the
radio link, and therefore the operator can take appropriate
measurements. This phenomenon can be integrated into the
servo-control loop of the system to anticipate delays generated
by corruption of the communication link.

IV. CONCLUSION

We have presented our research work on the measurements
of processing times of the DM1 asynchronous Bluetooth link
managed by real-time systems. We have put forward the
influence of packet size on the throughput and ARQ protocol.
With regard to this phenomenon, we have estimated the
processing time of one byte in the Bluetooth modules as well
as the necessary crossing times of the software layers of RTAI
real-time systems. The real-time radio measurements on the
module master and slave are essential information for the
operation of a control and command protocol of a robot
integrating time delays. This represents a way of forecasting
the communication state. The processing times of the DM1
packets by Bluetooth modules are distinctly superior to radio

transmission times. This is due to the weak performance of the
hardware architecture of the communicating modules. The
technological developments of high data rate interfaces have
progressed in terms of performance and integration offering
more effective Bluetooth communicating systems (v2.0, v2.1,
+EDR) and integrating instruction interfaces: this is
particularly true for audio and video streaming transports
between WAN access equipment and mobile phones with hard
time contraints.

REFERENCES

[1] Bluetooth SIG, « Specification of the Bluetooth system: Core
V1.0 », 1999.

[2] Bluetooth SIG, « Specification of the Bluetooth system: Core
V1.2 », 2001.

[3] Das A., Ghose A., Razdan A., Saran H., Shorey R., « Enhancing
performance of asynchronous data traffic over the Bluetooth
wireless ad-hoc network », Proceeding of IEEE INFOCOM’01,
USA, 2001.

[4] Frederick M., William P. Shackleford, « Timing Studies of Real-
Time Linux for Control », Real-Time Linux Workshop, October
2001, Milan – Italy.

[5] Khoutaif T., Peyrard F., « Performances evaluation of the
asynchronous Bluetooth links in a real-time environment », IEEE
PWC'05 (Personal Wireless Communications), ISBN 1-86094-
582-1, pp. 235-243, Colmar, France. Août 2005.

[6] Khoutaif T., Juanole G., « Formal Modelling and Evaluation of
the Data Transfer Phase of the ACL links on the WPAN
Bluetooth », ETFA 2006, 11th IEEE International Conference on
Emerging Technologies and Factory Automation, September 20-
22, 2006, Prague, Czech Republic.

[7] Khoutaif T., Peyrard F., « Reliability stydy of a data transfert
protocol with multi-redondancies packets », FET’07, 7th IFAC
International Conference on Fieldbuses and Networks in Industrial
and Embedded Systems, november 7-9, 2007 ,Toulouse, France.

[8] Law C., Mehta A. K., Siu K-Y., « A New Bluetooth Scatternet
Formation Protocol », Mobile Networks and Applications Journal,
Volume 8, Number 5 / October, 2003.

[9] Mantegazza P., Bianchi E., Dozio L., Ghiringhelli G.L.,
« Complex control system, Applications of DIAPM-RTAI at
DIAPM », Real-Time Workshop, Vienna, Austria, 1999.

[10] Mantegazza P., Renoldi G., « Real-Time Application Interface
documentation of Serial Port Drivers », RTAI 2002.

[11] Peyrard F., Val T., « Simulation et analyse de performances de
liens synchrones Bluetooth avec Opnet », Colloque Francophone
sur l'Ingénierie des Protocoles CFIP'2002, Montréal, 27-30 mai,
2002.

[12] RTAI Programming Guide1.0, DIAPM, September 2000.
[13] Val T., Fraisse P., Andreu D., « Vers l'utilisation de Bluetooth

pour la commande à distance de robots mobiles », Revue
International JESA, Vol. 37 – n° 7-8/2003, pp. 859-892, January
2004.

Fabrice PEYRARD obtained his PhD in
Computer Sciences in 1998. He is scientific
researcher in the LATTIS laboratory of
Toulouse University in the field of wireless
local network communications. He is a
professor assistant at the IUT of Blagnac
(France) and lectures in Network and
Telecommunications.

PEYRARD: REAL-TIME PERFORMANCE EVALUATION OF BLUETOOTH ARQ PROTOCOL 255

