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Abstract: These research tasks present a measurement 

platform of Bluetooth asynchronous links in order to get the 
intrinsic time constraints of this network and communications 
protocols. These time measurements are necessary for the 
application we wish to implement for mobile robot control 
through Bluetooth link communication. We present the platform 
as well as the measurement protocol which we have carried out 
from real-time communicating operating systems. We have 
developed an application of radio and time data processing 
allowing a real-time evaluation of the global behavior of the 
communicating system. 
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system 

I.  INTRODUCTION 

The objectives of our research work [5] [6] are focused on 
the implemention of a Bluetooth [1] communication platform 
in point-to-point mode to control and command a mobile robot 
with a remote RTAI1 [12] real-time system. According to the 
properties of the Bluetooth [2] link communication in such a 
system, we can determine thanks to the measurement platform, 
the supported time constraints which will therefore be the 
entry parameters to the servo-control loop to control and 
command the robot through the Bluetooth WPAN2. Some 
research works on Bluetooth protocols [3] [11] and 
architectures [8] are done for communications but less 
frequently for command control systems [13]. The objectives 
of the work presented in this paper are to show the intrinsic 
properties of a DM13 point-to-point Bluetooth link in 
particular the ARQ4 influence on the servo-control loop. We 
are emphasizing the implementation of measurement platform, 
the associated protocol and our results.  

In this work we have identified the time constraints of the 
Bluetooth WPAN for applications requiring a high QoS level, 
such as remote process control or voice applications. The 
mobile robot control is an application with hard time 
contraints and whose imperfections of the wireless medium 
must be smoothed at the maximum by an efficient 
communication protocol. We determine in this paper the 
minimal time limit supported in the servo-control loop 
between real-time communicating systems. 
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II.  BENCHMARK MEASUREMENT 

A.  Bluetooth piloting module 

A1.  HCI interface and packets 

Thanks to specific commands, the HCI5 interface allows us 
to pilot the Bluetooth module for its intrinsic control via the 
Baseband layer. The transmission of the useful data for ACL6 
links are done via the LMP7 layer. These different commands 
and data are transmitted through specific packets identified in 
three categories: 
• the command packets used by the host to control the 

Bluetooth module, 
• the event packets used by the Bluetooth module to 

answer a command, 
• the data packets to transport towards another remote 

Bluetooth module. 
Fig. 1 presents the interaction of these three types of packets 

between the control station and the wireless Bluetooth module. 
Every HCI packet is identified by a specific header byte 
followed by its parameters as Fig. 1 presents. The ACL data 
packets sent on the HCI interface undergo a specific 
formatting from the Bluetooth module so that a new packet 
dedicated to transmitting on the ACL radio link is created. 

A2.  Bluetooth piloting 

In order to optimize the Bluetooth module configuration in 
our real-time environment we have defined an initialization 
sequence. The sequence of following commands, illustrated in 
TABLE 1, represents the necessary and satisfactory command 
to initialize the Bluetooth module. This sequence is 
independent of the role played by the Bluetooth module in 
master or slave communication, which has allowed us to 
develop a unique RT_init_BT.o programmed module for 
the initialization. Every specific master or slave entity must 
execute this module and moreover only the master can 
establish the connection with the slave whose MAC address he 
knows beforehand. Once the connection is created the slave 
generates an event of connection establishment. We assessed 
the processesing times of each command of this initialization 
module, whose off-connection time is slightly over 23ms. We 
noted on the other hand that the time of connection 
establishment is in charge for about 2s. It is important to 
consider this time during the Bluetooth establishment 
connection stage in a multi-robot environment (Piconet). 
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Fig. 1. Piloting a Bluetooth module via the HCI interface 

TABLE 1 – MEASUREMENT TIMES OF THE INITIALIZATION SEQUENCE 

Actions Bluetooth module initialization Automatic detection stage Activation of event control Changing data rate to 115Kbits/s
New DM1 connexion on ACL 

link

Applicative
order

> cmd reset > cmd wse INQUIRY_PAGE
> cmd sef 0x02 0x00 

0x02 > cmd esuartbr 115200
> cmd cc 0x111111111111 
DM1 R0 MANDATORY 0x0000 

0x00

HCI order # COMMAND 01 03 0C 00 # COMMAND 01 1A 0C 01 
03

# COMMAND 01 05 0C 03 
02 00 02

# command 01 09 FC 01 
02

# COMMAND 01 05 04 0D 
11 11 11 11 11 11 08 00 

00 00 00 00 00

Running time (ms) 8,198023 4,063218 2,732338 8,054214 1905,595

Initialization time (ms)

Total time of connexion 
establishment (s)

23,047793

1,928642793

 
 

Following this connection stage between master and slave, 
we itemize, in the next paragraph, the data transmission stage 
between the two communicating entities in real-time 
environment. 

B.  Real-time communicating tasks 

In order to validate our experimental platform, we have, for 
the first time on a real-time mono-system, defined two real-
time tasks with the same priority on this system. These 
RT_send_acl.o and RT_receive_acl.o tasks process 
data transmission and reception respectively. The slave 
process (robot) must be initialized first, because it processes  

 
Fig. 2. Communication protocol on mono-system 

the aperiodic data reception on serial port interruption. The 
master processing (control station) sends aperiodic data after 
defining a random time, then arms a watchdog in case of non 
reception of acknowledgment from the slave. Fig. 2 presents 
the communication protocol between the two serial ports of 
the same real-time system [4] in order to carry out the time 
measurement from a single clock. 

The first essential stage for system validation is to estimate 
the global behavior of the real-time tasks by interconnecting 
the serial ports with a wire medium. The reliability of this 
system leads us then to carry out the same measurement after 
changing the wired transmission to a Bluetooth 
communication over the radio medium. 

C.  Benchmarcks 

C1.  Measurement on wire medium 

Following the network and protocol architecture presented 
in Fig. 2, we have first estimated the behavior of the wired 
real-time mono-system by transmitting data packets of 
variable size, between 1 and 512 bytes. Indeed, we wished to 
check the intrinsic behavior of the rtai_spdrv.o module 
[10] whose software buffer maximal size is specified at 512 
bytes in the RTAI kernel [9]. This platform allows us to carry 
out time measurements without the constraints of clock 
synchronization in a multisystem environment. The values 
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were measured in the wired environment whose serial port 
data rate is specified at 115200bits/s. We can note that the 
results obtained are superior to the theoretical value, since they 
include the transport of all the management bits of the serial 
interface (stop bit, parity,…) as well as the crossing time of 
the protocol layers of the real-time system. This additional 
load is characterized by an increase of between 18 and 73% as 
Fig. 3 presents. 
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Fig. 3. Transmission time increases according to packet size 

The smaller the packet size is, the bigger the global time 
necessary for processing and transmission. Indeed, this is 
mainly due to the software processing time by real-time tasks 
in comparison with the low transmission time. Nevertheless, in 
an application with strong time constraints, we could use 
packets over 120 bytes in order not to exceed 20% of increase 
in processing time. 

C2.  Measurement with Bluetooth 

By using the same protocol presented in Fig. 2, we carried 
out the time measurements on the Bluetooth communicating 
mono-system whose results are presented in Fig. 4. We 
essentially note a weakness of Bluetooth’s useful data rate 
because of the different bytes making up the frame envelope 
(header, CRC, …), of the management bits of the serial 
interface, as well as the serialization times and the crossing of 
Bluetooth modules. 
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Fig. 4. Time measurements on Bluetooth real-time mono-system 

The user data rate offered by Bluetooth on this real-time 
platform doesn't exceed 40Kbits/s via the HCI interface, which 
proves to be in conformity with the data rate of about 
30Kbits/s [5] [13] measured on the software layers over HCI. 

We present in the Fig. 5 a comparative analysis of an ACL 
Bluetooth link with DM1 and DH1 packets of 366 bits. They 

differ from one another by a better quality of service for the 
DM1 packets because they implement an additional ⅔ FEC 
redundancy code. 

The difference in data rate between DH1 and DM1 is only 
5Kbits/s at the maximum whereas in theory it is 65Kbits/s. 
This difference is due to the serial port rate limitation of 
115.2Kbits/s. 
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Fig. 5. Bluetooth data rate measured with DM1 and DH1 packets 

Therefore, this limitation hasn’t allowed us to estimate 
DM3/DH3 and DM5/DH5 packets explicitly. Indeed in this 
case, the serial ports are a bottleneck for the ACL Bluetooth 
channels beyond 115.2Kbits/s. 

D.  Conclusion 

This mono-system experimental model has been designed 
with the goal of validating the interoperability between the 
RTAI real-time system and the Bluetooth wireless modules, 
for asynchronous communications via the system serial 
interface. We have characterized and developed the real-time 
transmission and reception tasks by using the RTAI kernel 
modules particularly for serial port interruption management. 
Then, we have carried out a whole set of measurements on the 
wired medium in order to estimate the global behavior of the 
system, before carrying out these same measurements in the 
Bluetooth wireless environment and we obtain like the 
Bluetooth wireless communication performances only 35% of 
the theorical data rate. We noted the impact of the crossing 
time of the RTAI layers and the Bluetooth modules, which we 
characterize more precisely in the following part. For 64% of 
payload increase between DM1 and DH1 packets, we note 
only 12% of throughput increase due to lack of FEC on DH1 
packets. We have implemented a Bluetooth platform of 
communication between two communicating entities managed 
by distinct RTAI real-time systems. 

E.  Modelling and simulation of Bluetooth Baseband 

The goal of this part is to show the advantage of the STPN8 
model in the analysis of the data transfer phase of the 
Bluetooth baseband layer. These is a dual function: first in 
terms of the modelling power which is well designed to 
represent the complex format of the packets at different 
redundancy levels; then in terms of performance which is 

 
8 Stochastic Timed Petri Net 
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assessed for the different types of data packets (DM1 and 
DH1) to take into account the different probabilities of error 
per bit. 

E1.  Receiver model 

The receiver model on the slave site is illustrated by Fig. 6. 
This Petri Net represents the reception of the payload field and 
the sending of the NULL packet (either ACK or NACK) and 
is associated with probability density functions. 

Probability of Detection of errors on an ERroneous Payload: 
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Transitions Associated  probability densities  

t117 f117(x)=δ(x-nTB) 

t118 
f118(x)=2PERP*δ(x-n TB) + (1-2 PERP)                  
with n ≤ x ≤ n+1 

t120 f120(x)= δ(x)  

t121 
f121(x)= 2PUDERP*δ(x-n TB) + (1-2 PUDERP) 
with 0 ≤ x ≤ 1 

t122 f122(x)= δ(x)  

t123 
f123(x)= 2PUDERP,2*δ(x-n TB) + (1-2 PUDERP,2) 
with 0 ≤ x ≤ 1 
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Fig. 6. Receive Petri Net and associated probabilities 

E2.  Analysis 

On the basis of the randomized state graph, and by using the 
evaluations allowed by the STPN model and its associated 
tool, we, in particular, can obtain quantitative abstract views. 
These views allow the assessment of the incorrect payload 
probabilities pDERP of DM1 and DH1 packets, depending on 
error probabilities pe of the wireless medium as illustrated by 

Fig. 7. Modelling and simulation with STPN tools are 
explained in detail in publications [6] and [7], research in 
which the theoretical study is focused on the error probability 
of DM1 and DH1 packets. The errors on header or/and 
payload packets act directly upon the behavior of ARQ the 
mechanism. These theoretical results shown on Fig. 7 can be 
compared with previously obtained results for DM1 and DH1 
data rates shown on Fig. 5, and the FEC used for DM1 
confirming the QoS by an error probability not exceeding 
6.09E-14 with pe =10-3. This allows a reduction in the use of the 
ARQ protocol. 
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Fig. 7. Incorrect payload probabilities 

III.  MEASUREMENT PLATFORM 

In this part we present the whole measurement platform, 
using the RTAI real-time operating system and the Bluetooth 
communication system to collect data on time measurements 
for processing and transmission, radio signal levels and 
communication data rates. 

A.  Measurement architecture 

The software architecture associated with each hardware 
entity, illustrated in Fig. 8, is composed of a Linux operating 
system of the Redhat-8 type, with an RTAI kernel and a real-
time Bluetooth module piloting task. The real-time task for 
piloting the Bluetooth modules carries out an initialization 
sequence [5] thus allowing the definition of the module type 
(master or slave) to link the two modules, associating an 
asynchronous DM1 channel. A DM1 packet can carry up to 17 
bytes of useful data.  

The quality of service of the bit error rate is provided by the 
data redundancy implemented by the ⅔ FEC. Moreover data 
integrity is guaranteed by the CRC16. The maximum 
theoretical useful data rate is therefore 108.8Kbits/s. Once this 
initialization stage is carried out correctly, the transmission 
real-time task becomes periodic and activates the 
communication protocol we especially designed for the 
measurement of the Bluetooth communication link. This 
measurement protocol periodically sends a DM1 packet that 
must be positively acknowledged. The useful payloads of data 
and acknowledgement packets contain 17 bytes, 
corresponding to the maximum size supported by the norm for 
DM1 packets. The useful payload of acknowledged packets 
contains a value for the reception radio signal level from the 
slave module. This value corresponds to the RSSI9 in dBm 
                                                 
9 Received Signal Strength Indicator 
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Fig. 8. Measurement platform and software architecture 

 
Fig. 9. Measurement protocol 

measured on the Bluetooth module on reception of the data 
packet. Protocol behavior and radio measurements are 
illustrated by the chronogram in Fig. 9. This protocol is on the 
LLC310 layer. Let us bear in mind that the LLC3 layer 
corresponds to a constantly reliable and acknowledged 
transfer. Our protocol uses the Bluetooth layer 2 based on the 
TDD11 type access method. We are not analysing here in 
detail this access method, but only explain briefly its principle 
for communication with DM1 packets. The time is slotted at 
intervals of 625µs. The master module uses 1 time slot to 
communicate with a slave module; the latter uses the 
following time slot to acknowledge the data from the master. 

                                                 
                                                10 Logical Link Control 

11 Time Division Duplex 

Therefore, a master/slave exchange lasts 1.25ms at best. If the 
ARQ layer 2 protocol records non-reception of the packet after 
timer expiration or transmission errors thanks to the CRC, it 
will automatically undertake retransmissions on the 
appropriate following time slots. With the available modules 
for Bluetooth Ericsson, it is impossible to configure the TDD 
protocol for layer 2. Without going into detail on the intrinsic 
working of the TDD, we would like to give an indication for 
the PDU12 layer 2: 
• initially, the ARQ protocol parameters indicate the 

number of retransmissions desired in the event of error or 
packet loss, 

 
12 Protocol Data Unit 
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• secondly, to transmit all the packets, correct or not, to the 
LLC layer from the LMP layer. 

This would have allowed us to have better control over the 
behavior of the Bluetooth modules, in order to limit the 
resulting delays in the servo-control loop of the control 
system. On the other hand, as the error packets are sent up to 
the LLC layer, it becomes possible to analyze the radio link 
quality in real-time, and to anticipate a temporary halt of the 
robot before the radio link breaks and the robot goes out of 
control. With Bluetooth modules allowing such a 
parametrization of layer 2, we illustrate in Fig. 10 an example 
of a servo-control loop with and without automatic 
retransmission. In the second case we observe the 
communication length in the servo-control loop is of 2*625µs, 
whereas in the first case it is twice the value with the 
possibility that the communication might not be correct on 
time slots 3 and 4. This second case requires of course that the 
real-time communicating application undertakes the 
retransmissions of the bad or lost packets. These 
retransmissions can be calibrated according to the application, 
as for example when piloting a moving robot, it may be 
necessary to give an immobilization instruction if the previous 
one to turn to the left was not performed. However, the 
hardware architecture of the Bluetooth communicating 
modules proves to be limited in terms of real-time 
performance, because it must be used through the 
asynchronous RS-232 interface. We present in the conclusion 
of this paper future ideas for an integrated platform in order to 
reduce this limitation. 

 
Fig. 10. ARQ servo-control and re-transmission 

B.  Measurements 

After presenting the global environment of the 
communication platform, we dedicate this part to the 
explanation of the measurement protocol. 

First of all, let us recall that according to the kind of real-
time application, a classification of the measurement types is 
necessary: 

• either in deferred time, that is to say in post-execution of 
the system, or with a time shift between the moment 
when data is generated and the moment when it is 
interpreted. This measurement type generally requires

 

data storage and is suited for applications with weak time 
constraints, also named soft real-time applications. 

• either in real-time, that is to say that at the exact moment 
when data is generated, when it is immediately 
interpreted, which  is the case for applications with 
strong time constraints or in hard real-time as for the 
remote robot control application. 

For our measurement platform, we used a real-time 
operating system piloting the master module to collect all the 
data measured during an exchange between master/slave. 
These data are then processed and interpreted on the go but 
never stored. 

B1.  Measurement protocol 

The measurement protocol is based on periodic master/slave 
exchanges using Bluetooth DM1 packets. The master module 
is the coordinator for the global measurement system. Its part 
is therefore to collect its local radio measurements and to 
create a DM1 packet requesting the remote radio measurement 
from the slave module. The latter carries out the local radio 
measurement and creates a DM1 answer packet containing the 
radio measurement. Thanks to this protocol of radio data 
collecting, the master module can measure in real-time the 
performance of the LLC3 link. It deduces the data rate 
performances of the DM1 link at work. The radio 
measurements, known as RSSI, carried out on the master and 
slave modules, are coded in 1 byte each. The master module 
codes in 4 bytes each time stamp of the real-time system 
clock. This allows the time measurement of the exchanges 
right through. At the outcome, the master module deduces the 
useful throughput of the DM1 link and codes it in 4 bytes. 
Therefore, at every sampling period, the coordinator of the 
global measurement system generates 10 bytes of measured 
data. The problem of selecting a measurement system, among 
those previously presented, then arises. We didn't choose the 
measurement type in deferred time, because the real-time task 
of the master module rates the measuring protocol at a 
sampling frequency of 25ms, for the processing request and 
the radio measurements. At such a frequency, the data 
measured for 1 hour represent 1.44Mbytes to store before 
processing and analysis. Therefore, the deferred time 
measurement is not suited for our application, especially for 
extended observations. We therefore chose real-time 
measurement initially to carry out the measurements and 
estimate the communicating system benchmarks, and 
subsequently, to act on the servo-system from the moment the 
measurement protocol considers the system to be corrupt. 

B2.  Data acquisition 

Collection of the measured data is carried out by the real-
time tasks of the communicating systems and more especially 
by the measurement coordinators. These measurements must 
then be transferred to another task of the system, in order to 
unload the coordinators’. Two fundamental aspects are to be 
taken into account for the choice of the data transfer mode: 
• data processing is asynchronous in relation to data 

generation, 

PEYRARD: REAL-TIME PERFORMANCE EVALUATION OF BLUETOOTH ARQ PROTOCOL 253



• the measured data volume is 10 bytes per 25ms period. 
We must therefore fix the appropriate transfer mode for 

these constraints. Among the existing communication methods 
(signals, file, pipe, message, shared memory, queue …) 
between the tasks of the real-time operating system, we chose 
to use a real-time queue (RT_FIFO13) because it offers the 
best compromise in terms of use and performance. It is a 
communication method ideally suited for inter-task data 
transfers with a time schedule in the exchanged data. We 
calibrated this FIFO size at 1024 bytes according to the 
sampling period of 25ms for data generation and according to 
the processing sampling period in the mean time of 100ms to 
2.1s. In addition, we took into consideration the fact that the 
data collecting task is asynchronous to that of the coordinator 
via the FIFO. It is therefore the coordinator's task that 
manages the total monitoring of the FIFO to avoid overflow in 
the queue. According to Fig. 8, in order to give maximum 
flexibility to the graph production of the measured data, we 
introduce a client application (step 1) through a Web14 server 
which is activated by the coordinator of the global system. A 
non-real-time task such as ‘cgi-bin’ has been developed in 
order to recover the data (step 2) stored in the RT_FIFO (step 
3) to send them through the http protocol (step 4) toward the 
client application: this is developed as a Java Applet offering 
total portability whatever the target client system. The 
collected data are formatted and finally displayed on a graph. 

C.  Benchmarks 

Thanks to this real-time measurement protocol which is 
remotely analyzable on a computer with an Internet navigator, 
we carried out the intrinsic measurements of the Bluetooth 
communication protocols and those of the current modules. 
We carried out measurements on the Bluetooth DM1 link 
throughput by varying the packet size of the application layer. 

We observed that data rates increase according to the packet 
size as in Fig. 11. 
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Fig. 11. Throughput with DM1 packets 

We confirmed in a quiet radio environment that the minimal 
useful throughput is about 11Kbits/s, and the maximum is 
29Kbits/s. These experimental measurements allowed us to 
note variable times in byte processing according to their 

                                                 
13 Real-Time – First In First Out 
14 A no real-time Apache process 

volumes in the radio links. These processing times are 
composed of the processing time in the real-time tasks as well 
as the serialization time in the Bluetooth modules. We might 
observe that the available modules require between 0.13 and 
0.32ms processing 1 byte. The processing times of real-time 
systems are 1000 times smaller and therefore considered as 
insignificant. 

These time measurements are illustrated by Fig. 12. 
Paradoxically, the greater the load to process bytes, the lower 
the processing time is, but never under 0.11ms/byte. 
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Fig. 12. Processing time by byte and throughput 

This is because byte by byte data processing requires a 
routine execution of the Bluetooth module for every byte. This 
same routine is used for the processing of several bytes. 
Therefore we must determine a compromise between the 
volume of information to be transmitted in every packet and 
the minimum time to be adhered to validate the servo-control 
loop for control and command. According to the curves in Fig. 
12, performance is optimal around 120 bytes. From the 
measurement protocol, Fig. 9, and the 17-byte data packets, 
the recorded measurements, Fig. 13, bring forward a minimum 
processing time of 24,327ms. That is the minimum time 
necessary for the master module to obtain an answer to a 
request, i.e the 34-byte transmission. In established 
communications and without disturbance, we notice that the 
automatic repetitions of the ARQ protocol are regularly in 
demand, for ARQ=1 and ARQ=2 values. 
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Fig. 13. Access time of the measurement protocol and ARQ influence 

This leads to time increases of 2*625µs and 4*625µs 
respectively on the Bluetooth radio transmission. The ARQ 
protocol behavior is not suited for to control and command of 
real-time tasks, because it is a non-deterministic mechanism 
(in terms of repetitions) and induces considerably greater 
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times in the servo-control loop as presented in Fig. 10. The 
real behavior measured confirms our hypotheses, and would 
require total control and mastery of the ARQ protocol, which 
is not the case with our Bluetooth modules. In Fig. 9, we have 
specified the detailed transmission times, and we can deduce 
that the serialization time of each DM1 packet in each 
Bluetooth module is 4ms in agreement with the result in Fig. 
3. The measurement platform interface is illustrated in Fig. 14, 
which represents the measurements carried out for a packet 
size of 255 bytes. The times measured by the coordinator are 
about 140,32ms for a maximum throughput of 29Kbits/s. With 
voluntary disruptions of the system, by antenna obstructions, 
we notice meaningful variations in the RSSI radio 
measurements, sometimes resulting in reductions in the data 
rate. 

 
Fig. 14. Measurement platform interface 

Multiple measurements have allowed us to notice that radio 
fading voluntarily generated near the antenna Bluetooth 
modules, immediately triggered variations in the RSSI before 
communication quality is affected. This observation is 
fundamental for the control and command of remote robot 
because it allows the prediction of a possible corruption of the 
radio link, and therefore the operator can take appropriate 
measurements. This phenomenon can be integrated into the 
servo-control loop of the system to anticipate delays generated 
by corruption of the communication link. 

IV.  CONCLUSION 

We have presented our research work on the measurements 
of processing times of the DM1 asynchronous Bluetooth link 
managed by real-time systems. We have put forward the 
influence of packet size on the throughput and ARQ protocol. 
With regard to this phenomenon, we have estimated the 
processing time of one byte in the Bluetooth modules as well 
as the necessary crossing times of the software layers of RTAI 
real-time systems. The real-time radio measurements on the 
module master and slave are essential information for the 
operation of a control and command protocol of a robot 
integrating time delays. This represents a way of forecasting 
the communication state. The processing times of the DM1 
packets by Bluetooth modules are distinctly superior to radio 

transmission times. This is due to the weak performance of the 
hardware architecture of the communicating modules. The 
technological developments of high data rate interfaces have 
progressed in terms of performance and integration offering 
more effective Bluetooth communicating systems (v2.0, v2.1, 
+EDR) and integrating instruction interfaces: this is 
particularly true for audio and video streaming transports 
between WAN access equipment and mobile phones with hard 
time contraints. 
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