
An Unifying Replacement Approach for
Caching Systems

Kai-Hau Yeung, Kwan-Wai Ng, and Kin-Yeung Wong

Abstract: A cache replacement algorithm called probability
based replacement (PBR) is proposed in this paper. The
algorithm makes replacement decision based on the byte access
probabilities of documents. This concept can be applied to both
small conventional web documents and large video documents.

The performance of PBR algorithm is studied by both analysis
and simulation. By comparing cache hit probability, hit rate and
average time spent in three systems, it is shown that the proposed
algorithm outperforms the commonly used LRU and LFU
algorithms. Simulation results show that, when large video
documents are considered, the PBR algorithm provides up to
120% improvement in cache hit rate when comparing to that of
conventional algorithms.

The uniqueness of this work is that, unlike previous studies
that propose different solutions for different types of documents
separately, the proposed PBR algorithm provides a simple and
unified approach to serve different types of documents in a single
system.

Index terms: caching systems, cache replacement, video

I. INTRODUCTION

Cache is widely viewed as an effective way to improve
Internet performance. The use of it reduces not only retrieval
latency, but also networks traffic and server load. Cache
performance is mainly determined by the effectiveness of
cache replacement algorithms. Among them, LRU (Least
Recently Used) and LFU (Least Frequently Used) algorithms
are most popular. LRU evicts the document which was
requested the least recently, whereas LFU evicts the document
which is accessed least frequently. However, while they work
well in traditional computer systems, they do not provide best
performance in the Internet environment due to the difference
in access characteristics. Therefore, cache replacement
algorithms exclusively designed for Internet systems are
needed. In this paper, we propose a new replacement
algorithm called probability based replacement (PBR).

Manuscript received June 13, 2006 and revised November 11, 2007.

This research was supported by Macau Science and Technology
Development Fund numbered 099/2005/A and City University Strategic
Research Grant numbered 7001941.

K. H. Yeung and K. W. Ng are with the Department of Electronic
Engineering, City University of Hong Kong, Hong Kong (email:
eeayeung@cityu.edu.hk).

K. Y. Wong is with the Computer Studies Program, Macao Polytechnic
Institute, Macao (email: kywong@ipm.edu.mo)

PBR algorithm is particularly suited for systems that have to
handle a large number of continuous media streams (i.e., video
and audio). Since the conventional Web caching algorithms
are designed for Web documents such as text and image only,
they are not appropriate for those large media. Storing these
large document entirely will consume huge cache space and
hence seriously affect the overall performance of the cache. In
later part of this paper, we shall discuss how the PBR
algorithm can be extended to handle these large documents.

Many cache replacement algorithms for conventional Web
documents have been proposed. LRU-threshold [1] performs
as same as LRU, except documents with sizes larger than a
certain threshold are never cached. Hyper-G [2] is a
refinement of LFU with last access time and size being
considered. Site-based LRU [3] makes replacement decisions
based on the site information instead of object information. It
is similar to LRU but it purges all documents belonging to the
same site instead of a single document when replacement is
needed. On the other hand, Low Inter-reference Recency Set
(LIRS) [4] is a general and efficient replacement algorithm. It
was proposed to address the limitations of LRU by using
recency to evaluate Inter-Reference Recency (IRR) of
accessed blocks for making a replacement decision. Besides,
detection-based adaptive replacement (DEAR) [5], a
probabilistic replacement algorithm, was proposed for buffer
cache management. It has been proved to effectively enhance
the performance of caching of disk blocks in operating
systems. Other algorithms can be seen in [6].

Caching schemes for video documents have also been
studied widely. In [7], resource-based algorithm which
considers cache disk bandwidth and space, is proposed. In [8],
a partial video sequence caching scheme addressing issues of
heterogeneous clients is proposed. Similar to the idea of [8],
prefix caching scheme is proposed in [9] to store the prefix of
video documents so as to reduce client latency and perform
work-ahead smoothing. Prefix caching has also been studies in
[10], where the optimal prefix placement scheme for video
cache was analytically determined. On the other hand, [11]
present a caching architecture and associated cache
management algorithms to accelerate the streaming media
delivery. By using the technique of partial caching, it is able to
reduce service delay and improve overall stream quality.

As seen from the above discussions, most previous works
on Web caching systems focus either on conventional Web
documents or on large documents. The uniqueness of our
study is, however, on proposing a PBR algorithm that

256 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

1845-6421/07/6076 © 2007 CCIS

FESB
Typewritten Text
Original scientific paper

elegantly provides a simple and unified approach to serve both
types of documents in a single system. The algorithm is also
well studied by simulation and analysis. Results show that it
outperforms the LRU and LFU algorithms by giving 85% and
50% improvement in cache hit rate respectively. The rest of
the paper is organized as follows: In section II, we shall
discuss the proposed PBR algorithm and its performance study.
In Section III, we first discuss the problems of caching video
documents. We then discuss how the PBR algorithm can be
extended for caching these documents. At last, we conclude
the paper in Section IV.

II. PBR ALGORITHM FOR CONVENTIONAL WEB OBJECTS

In this section, we propose a probability based replacement

(PBR) algorithm. The mechanism and the performance
analysis on it will also be discussed.

A. Mechanism

Consider a generalized Internet system which contains N
unique documents. The documents have different sizes and we
denote the size of document i in bytes as si. Let C be the total
cache size available in the server, and C > si, for all i. Let pi be
the probability that a user will access document i, and

pi =1
i=1

N

∑ . (1)

Since pi are usually unknown to the system, they can be
estimated from the past history of document accesses. Let hi
be the cache hit probability for document i. The hit rate of the
system can then be obtained by

HR = hi pi
i=1

N

∑ . (2)

Denote bi be the byte access probability of document i. It is
defined as

bi =
access probability of document i

size of document i
=

pi

si

. (3)

The proposed (PBR) algorithm is based on byte access
probability. It is to always cache documents with higher byte
access probabilities bi first. The design rational behind is
explained as follows. Consider a particular situation that Z
highest bi's documents, namely d1, ..., dZ, are already stored in
the cache as shown in Fig. 1. A set of documents with a total
size s in the cache is going to be replaced by a new set of
incoming documents having the same total size s. Since the
summation of the bi's for the original set in the cache must be

larger than that for the new set, the overall hit rate of the cache
after the replacement will be lowered. Therefore, the hit rate of
the cache will be maximum if no replacement such as the one
mentioned above is made. In this case, the cache always stores
the documents with highest bi’s. Note that LRU and LFU
algorithm will always replace documents in the cache when a
new document access arrived. This will not ensure the
documents with higher byte access probabilities in the cache.

The details of replacement (PBR) algorithm is as follow.
This algorithm first requires the documents in the cache are
sorted in ascending order according to their byte access
probabilities to form a probability list (see Fig. 2). As a result,
the documents with largest bi is put at the bottom of the list.
The byte access probabilities of the documents can be updated
periodically, and the list will be a rather static one if the bi’s of
the documents change slowly. Let bi and si be the byte
access probability and the size of the ith document in the list,
respectively. Obviously, bi > b j if i>j. when a replacement
decision has to be made, says a new document (not in the
cache) with byte access probability bnew and size snew is
accessed, the new document will only replace the first X
documents at the top of the cache if and only if

bnew ≥ bk
k=1

X

∑ (4)

where X is the smallest number of documents which have a
total size greater than snew or

sk
k=1

X

∑ ≤ snew ≤ sk
k=1

X −1

∑ . (5)

By using this algorithm, the documents with relatively higher
byte access probabilities will therefore always be cached.

Fig. 1. Cache Optimality.

YEUNG et al.: AN UNIFYING REPLACEMENT APPROACH FOR CACHING SYSTEMS 257

Fig. 2. Byte access probability list.

B. Performance Analysis

B.1 Hit Rate

Assume that the cache is holding Z documents with highest
bi's as shown in Fig. 2. Maximum number of Z is always
chosen under the condition that the total size of the documents
do not exceed the size of the cache. That is,

si
i=1

Z

∑ ≤ C . (6)

As the documents in the cache are sorted by their byte access
probabilities, the cache hit probability of document i can be
easily obtain as

hi =
1 bi ≥ b1

0 otherwise

⎧
⎨
⎩

. (7)

The hit rate of PBR algorithm can then be obtained by
substituting Equation (7) into Equation (2).

B.2 Average Document Access Time

An Internet system can be modeled by a M/G/1 queuing
system. The arrival process of this queuing system can be
assumed to be Poisson with rate λ as the number of users
accessing an Internet system is usually large. Arrived
document requests are served one by one in a FCFS manner
with a mean service rate μ (see Fig. 3). We denote the mean
service time by Ts, where Ts =1/μ. Let μi be the service rate for

document i. It is reasonable to assume that the service time of
a document is proportional to its size, i.e., 1/μi∝si. Suppose the
average service time for the hit documents can be shortened by
a speed-up factor φ when compared to that of the miss
documents. Then we have,

Ts = pi
i=1

N

∑ hi
φ
μ i

+ (1− hi)
1
μ i

⎡

⎣
⎢

⎤

⎦
⎥ . (8)

Having obtained the mean service time Ts, the average
queuing time of document requests, denoted as TW, can be
obtained by the P-K formula [12]. The average sojourn time of
the document requests T is equal to

T=Tw+Ts . (9)

C. Simulation and Numerical Examples

To study the performance of PBR algorithm, a trace-driven
simulation was run. In the simulation, a 10-day log from the
WWW Server of the Department of Electronic Engineering,
City University of Hong Kong was used. The log contains
95031 accesses and the total access size is about 1GB. The
server has totally 14366 unique documents and the accesses of
these documents were ranged from once to 2198 times. The
total size of these 14366 documents is 298MB. TABLE I
shows the top 30 documents accessed in this period, and their
corresponding number of accesses and sizes. Although the
total size of these 30 documents only contributes 0.04% of the
total size of the WWW database, more than 17% of the
accesses were targeted on them in the 10-day period. This
implies that even a small cache can significantly improve the
performance of a WWW server.

Fig. 4 plots the size distribution of the documents. The
figure shows only the statistics for document sizes smaller
than 100 kilobytes (it represents almost 98% of the
documents). From the figure, we observe that most of the
documents are small, and 74% of the documents have sizes
smaller than 10 kilobytes. Fig. 5 plots the access frequencies
of the documents with sizes smaller than 50KB. From the
figure, we observe that most of the document accesses target
on small documents with sizes smaller than 10 Kbytes.
Another observation is that the access frequency of a
document is roughly proportional to the inverse of its size
(1/si). Similar observation was made by Bestavros as reported
in [13].

Fig. 3. M/G/1 queuing model for the Internet system.

258 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

TABLE I
TOP 30 DOCUMENTS FROM CITYU-EE WEB SERVER IN THE 10-DAY
PERIOD.

Rank Document

(/=http://www.ee.cityu.edu.hk)
Document

size
No. of
access

1 / 3788 2198
2 /panel.gif 7677 1343
3 /tit1e20.gif 6942 1303
4 /gif/newtiny.gif 141 1121
5 /gif/eetitle.gif 1658 845
6 /people/people.html 1422 760
7 /gif/s green.gif 104 753
8 /gif/s_red.gif 326 743
9 /~95473199/f50front.jpg 29542 659

10 /gif/return.gif 1082 621
11 /gif/eetitle06.gif 1658 609
12 /gif/ hinese.gif 110 551
13 /~edap045/cgi-bin/video3.html 402 533
14 /people/people.gif 488 426
15 /image/bar/eebar06.gif 1690 320
16 /people/academic.html 6275 275
17 /people/all_student.html 14825 271
18 /~edap045/leung.html 2759 246
19 /image/icon/s green.gif 104 244
20 /~eelmpo/ 3462 243
21 /gif/cyancube.gif 346 240
22 /gif/purcube.gif 374 240
23 /gif/redcube.gif 235 237
24 /gif/grencube.gif 241 237
25 /~eelmpo/ee2235/ee2235.html 5207 232
26 /~edap064/mpeg/beginnerguide.jpg 16137 ?30
27 /~edap064/mpeg/videobitstream.gif 5625 225
28 /~edap064/mpeg/

videostreamdatahierarchy.gif
3857 222

29 /~edap064/mpeg/
Macroblockcomposition.gif

1088 221

30 /~uedap045/cgi-bin/video2.htm1 403 220

 Computer simulation on LRU, LFU and PBR
algorithms using the 10-day log was performed. φ is assumed
to be 0.01 in our simulation. Fig. 6 plots the hit rates of the
algorithms against the cache size. It can be observed from the
figure that the analytical results for PBR, when assuming that
pi∝1/si, differ from the simulation results by at most 13%.
Another observation is that when the cache size is small, PBR
algorithm has 85% and 50% improvement in cache hit rate
when compared to that of LRU and LFU respectively. When
the cache size is large, PBR algorithm still maintains at least
26% and 18% improvement in cache hit rate over that of LRU
ad LFU.

Fig. 7 plots the average document access time T against
the server utilization when the cache size is 10% of the total
sizes of the documents. From the figure, we observe that
PBR algorithm again outperforms LRU and LFU algorithms
under all server utilization. The maximum server utilization
for LRU and LFU is only about 0.85 while that for PBR
algorithm is over 0.95.

Fig. 4. Size distribution of the documents in the access log.

Fig. 5. Access frequency against document size.

Fig. 6. Hit rate against cache sizes.

Fig. 7. Average document access time against server utilization
(cache size is 10% of the total document size.).

YEUNG et al.: AN UNIFYING REPLACEMENT APPROACH FOR CACHING SYSTEMS 259

III. A UNIFYING APPROACH WITH CONSIDERATION OF
LARGE OBJECTS

In section II, the concept of byte access probability and
the basic of PBR algorithm for conventional web objects are
introduced. In this section, the algorithm is extended to
become a unifying approach with the consideration of large
video objects.

A. Challenging of Caching Video Documents

As mentioned earlier, the basic accessing unit in the
Internet environment is a document. When conventional
replacement algorithms such as LRU or LFU are used, only
the access frequency of each document is considered when
making replacement decisions and the document size is not
considered. Furthermore, LRU and LFU will always replace
documents in the cache when new documents arrive. Due to
these two reasons, a currently cold video document, which is
usually large in size, may occupy the whole cache when it is
accessed. When this happens, small but active documents are
replaced from the cache and the overall cache hit rate will be
lowered significantly. We shall observe the same problem
when other types of large documents such as high-quality
audio documents are accessed. When PBR algorithm is used,
the replacement decision is controlled by the byte access
probability bi of each document. Unlike LRU and LFU
algorithms, a newly accessed document may not replace
documents in the cache if its bi is not high enough. Since
video documents will usually have smaller bi’s due to their
large sizes, the chance of caching video documents is
relatively small. The problem mentioned above is therefore
solved when PBR algorithm is used.

In previous research works, the access probability pi is
usually estimated by one single constant for each document.
However, this is often not the case for video documents.
Web users may drop off a video at any time while watching
it. They may also choose their favorite pop music in some
music web pages by listening to just the first part of each
music song. So the probability of access for the starting part
of each video (or audio) may be higher than the ending part
of the document. In general, pi is not uniform within a
continuous media stream. If the PBR algorithm discussed
above is used to with caching those video documents, the
byte access probability of each video document will be
represented by one single bi. This is not enough to reflect the
byte access probability of each part of the video. Therefore,
the PBR algorithm discussed in section II should then be
extended for the cache systems considering video documents.

B. PBR Algorithm for Frequent Video Accesses

Consider a multimedia Internet system which contains text,
image, audio and video documents. In this system, we assume
that interactive features for video and audio accesses such as
“Pause”, “Fast Forward”, “Fast Reverse” and “Fast Search”
are not supported. Web users can only play an audio or video
document from the beginning of the document, but can stop
playing at anytime. Since the user can stop accessing a
document at any time, pi is not uniform within a video
document. As discussed above, the cache will operate in far
from optimal condition if only one single pi, is used for each
document. The solution to this problem is to segment video
document into blocks, and use different bytes access
probabilities (bi) for these blocks. If we do this, a natural
question arises for the right choice of block size. This issue is
addressed in the following analysis.

Consider a video document i with size s, as shown in Fig.
8. The size of a block is assumed to be k bytes, and there are
totally [si/k] blocks. Let the byte access probability of the jth

byte of the document be bi,j. The probability bi,j will be a
decreasing function of j. This is because a user must play a
video document from the beginning of the document but can
stop playing at any time. Let bi,m be the byte access
probability of the starting byte of the rth block where m = (r-
1)k+1. If we take this bi,m as the overall byte access
probability of this block, the mean-square error for this block
r when the block size is k is equal to

Ek,r =
1
k

bi,m + l − bi,m()
l= 0

k−1

∑
2

. (10)

Consider the situation when the block is enlarged by one
byte by including byte m+k.

The mean-square error for this enlarged block will be
changed to

Ek+1,r =
1

k +1
bi,m + l − bi,m()

l= 0

k

∑
2

 (11)

or

Ek+1,r =
1

k +1
kEk,r + bi,m +k − bi,m()2[]. (12)

Fig. 8. A segmented video document.

260 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

Since bi,j is a decreasing function for any number n where
m≤n≤m+k-1

bi,m +k − bi,m()2
> bi,n − bi,m()2 (13)

This implies,

k bi,m +k − bi,m()2
> bi,n − bi,m()2

n= m

m +k−1

∑ (14)

or

bi,m +k − bi,m()2
> Ek,r . (15)

From Equations (12) and (15), we can thus conclude that

Ek+1,r >
1

k +1
kEk,r + Ek,r[] (16)

or

Ek+1,r>Ek,r (17)

Notes that for any blocks starting from any byte m, the
same result stated in Equation (17) is obtained. Therefore we
can conclude that the mean-square error of a block increases
as k increases. In other words, minimum mean-square error is
obtained when the block size is as small as possible. However,
when the block size decreases, the database in holding the byte
access probability information will increase. Therefore, the
minimum block size is limited by physical factors such as
memory available and the processing requirement of
database management.

Fig. 9 shows an example of cache replacement using PBR
algorithm. Consider a particular situation that video
document i, which is segmented into ten blocks with block
size k, is being accessed by a user. The byte access
probability of each block of this video is denoted as bi,1,
bi,k+1, …, bi,9k+1 as shown in the figure. Suppose that the first
three blocks of the video are cached because their byte
access probabilities are high enough. Note that the caching
of this document rarely happens when it is not segmented
because the byte access probability of the whole document is
relatively much smaller. Segmenting videos will therefore in
effect allow the beginning blocks of popular videos to be
cached. This will certainly improve the overall caching
performance.

Note that though video objects will be segmented, after
segmentation, the same replacement approach based on the
PBR algorithm will be applied for all objects. That is why it
is called unifying approach. Also note that, thought large
objects such as ZIP files exist in the Internet, they have to be
downloaded as a whole. Therefore, segmentation technique
should not be applied to them. This exceptional type of large
file should be handled as a conventional web object. That is, if
they are unpopular, they will be replaced with a smaller or a
more popular object.

Fig. 9. Byte access probability list with segmented videos.

Fig. 10. Byte access probabilities of the blocks in a 10s AVI video
document with variable δ’s.

Fig. 11. Byte access probabilities of the blocks in a 10s AVI video
document with variable k’s.

YEUNG et al.: AN UNIFYING REPLACEMENT APPROACH FOR CACHING SYSTEMS 261

TABLE II
VIDEO DOCUEMTNS GENERATION WITH DIFFERENT SIZE DISTRIBUTION.

Group Size

range
(MB)

Number of video documents

Video proportion=10% Video
proportion=20%

Size
distribution
=uniform

Size
distribution

∝1/si

Size distribution
=uniform

1 0.5-1 270 660 610

2 1-2 270 330 610

3 2-3 270 220 610

4 3-4 270 165 610

5 4-5 270 132 610

6 5-6 270 110 610

Total 1620 1617 3660

C. Simulation and Numerical Examples

To study the performance of the PBR algorithm with
segmented videos, we assume that bi,j is a decreasing step
function with the block number r, that is

bi, j =
pi

k
1
r

(1−δ) +δ
⎡
⎣ ⎢

⎤
⎦ ⎥ (18)

where r = [j/k] and δ is a factor reflecting the drop-off rate of
users. When δ equals 0.75, 25% of the users will not watch the
video until the end. In our study, we assume that (δ is constant
for all video documents. We also assume that the minimum
block size is 110 KB (which is about one second long of a
160x120 256K color AVI video). Fig. 10 and Fig. 11 plot the
byte access probability function of a 10-second AVI video
document with variable δ’s and k’s, respectively.

In order to demonstrate the advantages of video
segmentation, simulation using the 10-day access log of the
CITYLU-EE Web Server was run. To simulate an
environment with frequent video accesses, additional video
documents are generated to the log so that the number of video
documents accounts for about 10% or 20% of the total number
of documents in the server. The video documents are
generated according to six size groups and two different size
distributions (uniform and inversely proportional) in each
group, as shown in TABLE II. We also use these two typical
distributions to model the access probabilities of the video
documents. Thus, there are all together four different
conditions in our simulation, denoted as S1, S2, S3 and S4 as
shown below:

S1 : Distribution of video size=uniform; pi=1/N
S2 : Distribution of video size=uniform; pi∝1/si
S3 : Distribution of video size∝1/s; pi∝1/N
S4 : Distribution of video size∝1/s; pi∝1/si

Having obtained the pi’s for all documents, the bi’s can be
calculated by using Equation (3). For video documents, the
bi,j’s of each blocks can be obtained by using Equation (18).
With a particular cache size, the byte access probability list is
generated. In our simulations, the same M/G/1 queuing model
described in Section II B is used. There are at least 5x104
arrivals in each simulation run. φ is assumed to be 0.01.

Note that the aim of our paper is not to design another
algorithm which outperforms all the previous works in caching
video objects. Instead, our aim is to provide a unified approach
to handle the two types of objects (conventional and video)
consistently. This could simplify the implementation of cache
servers. Today, most implementations of cache servers use a
single policy (typically, LRU and LFU) to handle all kinds of
web object. Since our proposal, PBR, is also aimed at handling
all kinds of web object, we compare the performance of PBR
to that of LRU and LFU.

Fig. 12 plots the hit rate against the cache size for S1, S2,
S3 and S4 with δ = 0.5, k=110KB and video proportion is 10%
of all documents. From the figure, we have a number
observations. The first one is that PBR with segmented videos
provides the best throughput among the four algorithms.
Taking S4 as an example, when the cache size is small, PBR
with segmented videos outperforms PBR without video
segmentation, LFU and LRU by providing 16%, 90% and 120%
improvement in cache hit rate respectively. When the cache size
increases, PBR with segmented videos still maintains at least
8%, 34% and 40% improvement for the other three algorithms
respectively. Better improvements by PBR with segmented
videos are observed under conditions S1, S2 and S3. The second
observation is that results of S1 are very close to those of S3.
Similar case occurs for the results of S2 and S4. This implies
that the size distribution of the video documents is not sensitive
to the caching performance. Finally, we observe that, when the
distribution of pi is changed (i.e. uniform vs. 1/si), the
performance of all algorithms are significantly improved. This
means that the distribution of pi is an important factor to the
caching performance.

As discussed above, the size distribution of the video
documents is insensitive to system performance, we shall only
use the uniform distribution for the document size in our
following studies. Fig. 13 plots the hit rate against the cache size
with different values of k’s under S1 and S2. From the figure,
we observe that the distribution of pi’s affects the performance
of LRU and LFU, but not PBR. This may be due to the fact that
PBR already provides nearly optimal performance, as discussed
earlier in this paper. Another observation is that the hit rate
increases as k decreases. This verifies our earlier conclusion that
the block size should be as small as possible.

Fig. 14 plots the hit rate against the cache size with different
values of δ under S1 and S2. From the figure, we observe that δ
will not affect the caching performance of PBR very much.

262 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

Fig. 15 shows that caching performance of all algorithms
under two different video proportions of 10% and 20%. From
the figure, we observe that the performance of PBR once again
is not so affected by the video proportion of documents, which
are not the cases for LRU and LFU. From this observation we
can conclude that LRU and LFU provide even worse
performance when video accesses become more dominant in the
future Internet systems. In contrast, PBR is a better choice for
both text based and video based systems.

Fig. 16 plots the average document access time against server
utilization under S1 and S2 respectively. Under situation S1, the
maximum server utilization for LRU is only about 0.5 (0.55 for
LFU) while that for PBR with segmented videos is about 0.8.
Under situation S2, the maximum server utilization for LRU is
about 0.6 (0.64 for LFU) while that for PBR with segmented
videos is over 0.85.

Fig. 12. Hit rate against cache size for different type of traffic (S1, S2,
S3 and S4) with δ =0.5, k=110Kbytes and video proportion is 10% of
all documents.

(a) (b)

Fig. 13. Hit rate against cache size with values of k. (a) For situation S1. (b) For situation S2.

(a) (b)

Fig. 14. Hit rate against cache size with different values of δ. (a) For situation S1. (b) For situation S2.

YEUNG et al.: AN UNIFYING REPLACEMENT APPROACH FOR CACHING SYSTEMS 263

(a) (b)

Fig. 15. Hit rate against cache size for different video proportion. (a) For situation S1. (b) For situation S2.

(a) (b)
Fig. 16. Average time spent in the system against server utilization. (a) For situation S1. (b) For situation S2.

IV. CONCLUSIONS

In this paper, a novel cache replacement algorithm called
Probability Based Replacement (PBR) for Internet systems is
proposed. This algorithm replaces documents with the smallest
byte access probability bi and performs replacement only
when the bi of incoming document is larger than those
documents with smallest bi in the cache. Through both
analysis and simulation, we observe that, for small caches, the
PBR algorithm outperforms conventional LRU and LFU
algorithms by giving 85% and 50% improvement respectively
in cache hit rate. When the cache size is large, the algorithm
still provides 26% and 18% improvement over that of LRU
and LFU respectively. In the second half of this paper, we

have discussed the challenging of caching large video
documents. To solve the problems, the PBR algorithm is
extended by the segmentation technique. That is, different
parts of a video document will be treated differently when
making cache replacement decisions. Through extensive
simulations, it is shown that the PBR algorithm with
segmented videos provides constantly much better
performance than that of conventional replacement algorithms.

REFERENCES

[1] M. Abrams, C.R. Standbridge, G.Abdulla, S. Williams and E.A.
Fox. “Caching Proxies: Limitations and Potentials,” WWW-4,
Boston Conference, December, 1995.

264 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

[2] S. Williams, M. Abrams, C.R. Standbridge, G.Abdulla and E.A.
Fox, “Removal Policies in Network Caches for World-Wide Web
Documents,” In Proceedings of the ACM Sigcomm96, August,
1996, Stanford University.

[3] K. Y. Wong and K. H. Yeung, "Site-Based Approach in Web
Caching Design", IEEE Internet Computing, Vol.5, No.5, pp.28-
34, September/October, 2001.

[4] S. Jiang and X. Zhang, “Making LRU friendly to weak locality
workloads: a novel replacement algorithm to improve buffer
cache performance,” IEEE Transactions on Computers, vol. 54,
no. 8, pp. 939 – 952, Aug., 2005.

[5] J. Choi, S. H. Noh, S. L. Min, E. Y. Ha, and Y. Cho, "Design,
Implementation, and Performance Evaluation of a Detection-
Based Adaptive Block Replacement Scheme," IEEE Transactions
on Computers, vol. 51, no. 7, pp. 793-800, Jul., 2002

[6] K. Y. Wong, "Web Cache Replacement Policies: A Pragmatic
Approach" IEEE Network, Jan-Feb. 2006, pp. 28-34.

[7] R. Tewari, H. M. Vin, A. Dan, D. Sitaram, “Resource-based
caching for Web servers”, In Proceedings of SPIC/ACM
conference on Multimedia Computing and Networking, January
1998.

[8] Y. M. Chiu and K. H. Yeung, "Partial Video Sequence Caching
Scheme for VOD Systems with Heterogeneous Clients", IEEE
Transactions on Industrial Electronics, Vol.45, No.1, pp.44-51,
Feb. 1998.

[9] S. Sen, J. Rexford and D. Towsley, “Proxy prefix caching for
multimedia streams,” In Proceedings of IEEE INFOCOM’99, vol.
3, pp. 1310-1319, 1999.

[10] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy
cache allocation for efficient streaming media distribution,” Proc.
IEEE INFOCOM’02, vol. 3, pp.1726-1735, 2002.

[11] S. Jin, A. Bestavros, and A. Iyenger, “Accelerating Internet
streaming media delivery using network-aware partial caching,”
Proc. IEEE ICDCS’02, pp. 153-160, 2002.

[12] Mike Tanner, "Practical Queuing Analysis," The IBM McGraw-
Hill Series, 1995.

[13] Azer Bestavros, Robert L. Carter, Mark E. Crovella, Carlos R.
Cunha, Abdelsalam Heddaya and Sulaiman A. Mirdad,
“Application-Level Document Caching in the Internet,” Proc. 2nd
Int’l Workshop on Services in Distributed and Networked
Environment, pp. 166-173, 1995.

Kai-Hau Yeung is an associate professor in the
Department of Electronic Engineering, City
University of Hong Kong. His research
interests include Internet infrastructure
security, mobile communication systems, and
Internet caching systems. He is also an active
industry consultant in the areas of computer
networking and communication systems. From
1996 to 1998, he was involved in a project to
develop a 900 MHz GSM mobile handset. The

project team in City University successfully developed a handset
prototype for a listed company in Hong Kong. He is a member of the
IEEE, ACM, and BCS. He is also a Cisco Certified Network
Professional, a Cisco Certified Academy Instructor and a Certified
Ethical Hacker.

Kwan-Wai Ng received the B.E. degree in
computer engineering and the M.E. degree in
information technology from the City
University of Hong Kong, Hong Kong, in 1995
and 1998, respectively.

Kin-Yeung Wong received his B.Sc. and
Ph.D. degrees, both in information
technology, from the City University of Hong
Kong. He is currently an associate professor at
Macao Polytechnic Institute. He is active in
research activities, and has served as a
reviewer and technical program committee
member in various journals and conferences.
His research interests include Internet caching
systems, wireless communications, and

network infrastructure security.

YEUNG et al.: AN UNIFYING REPLACEMENT APPROACH FOR CACHING SYSTEMS 265

