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Analysis of data stored in a graph enables the discovery of certain information that could be hard to see if the data
were stored using some other model (e.g. relational). However, the vast majority of data in information systems
today is stored in relational databases, which dominate the data management field over the last decades. In spite
of the rise of NoSQL technologies, the development of new information systems is still mostly based on relational
databases. Given the increasing awareness about the benefits of data analysis as well as current research interest
in graph mining techniques, we aim to enable the usage of those techniques on relational data. In that regard,
we propose a universal relational-to-graph data conversion algorithm which can be used in preparation of data to
perform a graph mining analysis. Our approach leverages the property graph model which is mainly used by the
graph databases, while maintaining the level of relational data clarity.
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Konverzija relacijskih u grafovske baze podataka orijentirana na svojstva. Analiza podataka u formatu
grafa omogucava pronalazak odredenih informacija koje moze biti vrlo tesko vidjeti ako su podaci u nekom drugom
formatu (npr. relacijskom). Ipak, velika veéina podataka koji su danas dio informacijskih sustava pohranjena je
upravo u relacijskim bazama podataka koje dominiraju trzistem u posljednjih nekoliko desetljeca. I dalje se razvoj
novih informacijskih sustava uglavnom zasniva na relacijskim bazama podataka. Kako je sve veca svjesnost o
vrijednosti analize podataka, kao i aktualni interes istraZivanja u podrucju tehnika dubinske analize grafova, nas je
cilj omoguciti koristenje tih tehnika nad relacijskim podacima. U tom smislu, predlazemo univerzalni algoritam
konverzije podataka iz relacijskog modela u graf, koji se moze koristiti u pripremi podataka za izvodenje dubinske
analize grafova. Na$ pristup maksimalno iskoriStava model grafa sa svojstvima koji je u §irokoj uporabi u aktualnim
grafovskim bazama podataka, u isto vrijeme zadrZavajuéi razinu jasnoce relacijskih podataka.

Kljucne rijeci: grafovska baza podataka, GDBMS, dubinska analiza grafova, relacija-u-graf, model grafa sa svo-

jstvima

1 INTRODUCTION

Graph databases and graph data models are subject of
research for a very long time - the first graph data model is
proposed in 1975 [1]. During the first period of research, a
number of graph database models are proposed, as well as
data access and manipulation languages. Graph database
research set back until recently, when NoSQL databases
and data storage philosophy, a bit different from relational
databases and aiming towards a more efficient resource
leverage, was introduced to a broader audience. Devel-
opers and researches are more aware that data that is com-
monly used in various fields can be described in more nat-
ural way using graph models: semantic web, social net-
works, navigation system locations, natural sciences, etc.

Increased need for big data analysis has affected graph
data as well, resulting in a number of more or less suc-
cessful proposed algorithms which fall into this category.
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Graph mining is mostly oriented towards graph pattern de-
tection algorithms, which is most commonly related to fre-
quent subgraph mining methods. Frequent topics in graph
research are various measures (e.g. betweenness, central-
ity, closeness) and algorithms (e.g. shortest path, fastest
path) as well.

Most of the data consisted in information systems today
are stored in relational databases. The value of these data
might be considerable, regarding the fact that some infor-
mation systems are in production for long periods of time
and consist of big amounts of data collected through veri-
fied business processes. Enabling the view on this data in
form of a graph, brings the possibility of using graph min-
ing methods over original relational data. Hence the focus
of this research is design and implementation of universal
algorithms for data conversion from relational databases
to graph databases, while having graph mining methods,
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specifically frequent subgraph mining algorithms, in mind.

The main contribution of our work is a method of con-
verting the entire relational database to a graph database
with corresponding formalized algorithms. Comparing to
the similar works, the following state-of-the-art features
are presented: 1. the use of both node’s and edge’s proper-
ties in the property graph data model, 2. independence of
the data semantics and 3. conversion without data loss.

Our approach leverages the property graph model, a
common data model used by graph databases, in order to
optimize graph data storage while maintaining the rela-
tional data clarity at the same time. The resulting graph
database provides a good data source for graph mining al-
gorithms. Since the entities and their relations from the
relational database are modeled as nodes and edges in the
graph database, this approach focuses on the graph min-
ing algorithms on entities instead on their attributes which
may or may not be taken into account. Considering the at-
tributes gives the broader and more relevant picture of the
data, which is the focus of our future work. This approach
may also serve as the crucial step in migrating the business
from relational database to graph database in general. It
may also provide a tool for exploring the usage of graph
databases for storing and analysis of more complex data
which can be found in various relational databases.

The paper is organized as follows. Related work is con-
sidered in Section 2. Some basic facts about graph data
model and current graph databases are presented in Sec-
tion 3. Definitions of relational and graph database el-
ements, along with some assumptions of the databases’
functions are given in Section 4. The conversion concept
and detailed algorithms are shown in Section 5. We show
the advantages of our work by comparing data models gen-
erated by our method and some other methods in Section
6. Future work is considered in Section 7.

2 RELATED WORK

There has been some extent of work in the area of
enabling graph-oriented approach on the relational data.
Soussi [2] suggests that relational database data could be
transformed in some other model which can later be used
to create a graph in a more simple way. Among other, those
models are ER (Entity-Relationship), RDF (Resource De-
scription Framework) and XML (eXtensible Markup Lan-
guage). Even though several XML extensions intended to
be used for graph description (such as GraphXML, GXL,
GraphML) exist, efficient algorithms for converting rela-
tional database in some of these formats are yet to be pro-
posed. Basic shortcoming of building a graph through
some other model in between is the inability of detection
of interactions between generated nodes without the appro-
priate ontology for necessary data and tables being built
beforehand.
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Several tools which enable graph-like feedback from
relational database has been proposed as well. These
tools enable the user, which is not aware of the underly-
ing relational database structure, to pose a query in a for-
mat of search keywords that could be found somewhere
in database tuples, and get the result in the format of
graph [3]. Depending on the database structure, complex
queries are internally generated, in which the tables are
naturally joined, outer joined or joined in a union. Based
on resulting tuples, graphs are composed, in which tables,
tuples and connection between them could be represented
in various ways. BANKS [4] models the tuples as the
graph nodes which are connected by edges which repre-
sent foreign keys or transitive tables. Similar solutions are
BLINKS [5], DBXplorer [6] and Discover [7].

Recently proposed GraphGen [8] and Aster6 [9] also
provide the ability of generating a graph from a relational
data. These tools aim to enable the view on relational data
as an in-memory graph, relying on the user to define the
data being converted. While they do enable graph min-
ing techniques on relational data, our approach enables the
permanent usage of the converted data which is stored in a
graph database, as well as providing the user the ability to
discover interesting facts about the data by mining through
the entire database without the need of a priori defining
which data should be put into the graph.

RDB2Graph [10] is the approach of transforming re-
lational data to graph using conceptual graph [11]. The
leaves of the graph created are values of the tuple’s at-
tributes. This algorithm does not support composite pri-
mary or foreign keys. While it may be suitable for fre-
quent subgraph mining from the perspective of attributes,
it is not as suitable for frequent subgraph mining from the
perspective of entities. For instance, tuples with multiple
overlapping attribute values may form frequent subgraphs
which represent only a part of the tuple, hence producing a
considerable amount of frequent subgraphs with a little rel-
evance to entities and relations between them. DB2Graph
algorithm [12] is based on RR-graph (relation-of-relations
graph). RR-graph is graph in which nodes represent the re-
lations (tables), node attributes represent values of the data
in the tables, while edges represent foreign keys between
tables. This approach is more appropriate regarding con-
version durations, but not tested on bigger databases.

The closest work to ours, in the sense of converting the
entire relational database to a graph database, is R2G [13].
However, while it uses properties with nodes, it disregards
the possibility of using edges in a more active way of stor-
ing data comparing to our approach. It also may aggregate
the unifiable tuples in the same node, which makes it less
suitable for use in terms of graph mining over relational
source.

In the context of binding relational databases and
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graphs, some tools are proposed which exploit powerful re-
lational database engines and their computational abilities
as a graph storage, namely Vertexica [14] and Grail [15].

3 GRAPH DATABASES AND MODELS

The main characteristic of a graph database is the us-
age of graph database model. Angles defines this model as
"a model where the data structures for the schema and/or
instances are modeled as a (labeled) (directed) graph, or
generalizations of the graph data structure, where data ma-
nipulation is expressed by graph-oriented operations and
type constructors, and has integrity constraints appropriate
for the graph structure" [16]. A number of graph models
proposed before 2002 is shown in the same work.

The current graph databases are part of the NoSQL
movement and philosophy. Most of them use some sort
of property graph model. In general, data entities and re-
lations among them are referred to as nodes and edges. In
some cases, both nodes and edges can have properties at-
tached to them, and edges can be directed from starting
node to ending node.

There are a number of current graph databases avail-
able: AllegroGraph [17], Sparksee (formerly known as
DEX) [18, 19], HyperGraphDB [20, 21], Neo4j [22], Infi-
nite Graph [23], etc. A comparison of these and some other
graph databases, considering data storage, data operation
and manipulation features, graph data structures, represen-
tation of entities and relations, query facilities, integrity
constraints and support for essential graph queries is given
in [24]. Regarding graph data structures, all of the com-
pared databases supported labeled nodes and edges and di-
rected edges, while half of them supported node and edge
attribution (properties), including DEX, InfiniteGraph and
Neod;.

4 RELATIONAL AND GRAPH DATABASE ELE-
MENTS

This section briefly presents basic relational and graph
database elements which are used in this relational-to-
graph conversion approach. Some basic functions regard-
ing both relational and graph metadata which will be used
in the approach are mentioned here as well.

4.1 Relational database

An entity is a subject that has an essence and character-
istics that differ it from its surroundings.

An attribute A is a characteristic of an entity. It is also
referred to as a column.

A relational schema R is a named set of attributes: R =
{A1, Ay, ..., Ap}.
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A relation r is defined on a relational schema R as a
finite set of tuples. Relation is also referred to as a table,
and that term will be used henceforth.

A tuple tis a true statement in the context of a table and
contains the values of its attributes. Tuple is also referred to
as arow. The value of an attribute A in a tuple ¢ is referred
to as t[A]. In this context, this notation is also used to get
a concatenated value of multiple attributes in a tuple.

Database shema R is a set of relational schemas:
R = {Ry, Ra, ..., Ry, }. Database instance r on a database
schema R is a set of relations {ry,ro,...,7,} such that a
table r; is defined on a relational schema R;.

4.2 Graph database

A graph database with labeled and property-enabled
nodes and edges can be defined as:

g:(VaEvLa)\aP»’/T) (1)

where V' = {v1,va,...,v,} is the set of nodes and F =
{e1, €2, ..., e, } is the set of edges, providing each edge has
two nodes it connects, e = (v;,v;). L is the set of labels
which can label a node or an edge,and A : VU FE — Liis
a labeling function. In the following text, labels are stated
with a semi-colon in front, using a Neo4j notation, e.g.
dabel. P = {(K1,V1), (K2, V2),...(Kn, Vi) } is a set of
properties which are key-value pairs, and 7 : VUE — Pis
a property-assigning function for nodes and edges as well.

Given the fact that there is a notion of starting and end-
ing node of an edge, graph databases can support both di-
rected and undirected graphs. It is most often left to the
user of the database to determine which type of graph will
be used. In our method, we assume the database to contain
undirected graphs.

5 RELATIONAL DATABASE
DATABASE CONVERSION

5.1 The concept

TO GRAPH

In this section, we state the key aspects of the proposed
conversion method.

1. Undirected graph which is created in the process may
not necessary be connected or acyclic. Connected-
ness and acyclicity depends on the relational database
structure and the data contained within.

2. Each node represent one tuple from a relational
database table. Some edges represent a tuple, other
represent the foreign key.

3. Labels are used to label different types of nodes and
edges. Each node and each edge get exactly one la-
bel, even though some graph databases enable the el-
ements to have multiple labels. Labels help determine
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the type of a node or an edge and are crucial for this
procedure.

4. Node’s label is the name of relational database’s table
whose tuple is represented by that node. The same is
true for the edge label if edge represents a tuple. If an
edge represents the foreign key, then the name of the
foreign key is used as edge’s label.

5. Node’s and edge’s properties are key-value pairs rep-
resenting tuple’s attributes and their values. The at-
tribute name becomes the key of the property, it’s
value becomes the value of the property. Edges rep-
resenting foreign keys do not have any properties.

6. Each node or edge representing a tuple has the "id"

property, which gets the value of the tuple’s primary
key. If the primary key is composite, then concate-
nated value is used. The concatenation delimiter may
be chosen as the one which does not appear in data
values, such as #, but the choice of concatenation
delimiter is actually of no importance, because it is
certain that concatenated value of all primary key at-
tributes will be unique for a table regardless of the
choice of delimiter.
All elements (node or edges) representing tuples of a
single relational database table will get the same la-
bel and unique ids, i.e. the id property is not unique
throughout the entire graph, but the combination of
label and id is.

7. Tables with exactly two foreign keys, whose primary
key is not referenced by any other table are the rela-
tional representation of the M:N relationships among
entities. Their tuples will be represented by edges.
Those edges will connect two nodes which represent
two referenced tuples in foreign key tables.

8. The tuples of all other tables are to be represented by
nodes.

9. In the case of parallel (but not cyclic) relationships
between two relational database tables (i.e. one table
has two or more foreign keys referencing the same ta-
ble), nodes representing those tables’ tuples will have
multiple edges between them, each labeled as the for-
eign key name. For instance, person can have place
of birth and place of residence, which would be rep-
resented in a relational database as two foreign keys
from person table to a place table. During the con-
version, if the place of birth and the place of residence
are the same for a specific person, then the node repre-
senting a person and the node representing that place
will be connected with two different types of edges.
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10. Tuple attributes which are part of the foreign key are
not written in properties. That information is con-
tained in the sole relation with the other graph ele-
ments, be it referencing node or edge. Primary key
values are contained in the id properties, foreign key
values are contained in the relation to another graph
element, while only dependent attributes are written
as properties of graph elements.

5.2 Identifying conversion metadata

Our goal is to define an efficient algorithm for export-
ing (unloading) the data from a relational database and im-
porting (loading) it to a graph database. This implies each
table’s data should be considered a minimum number of
times in the process. Therefore, before the actual conver-
sion is done, the process should be prepared by inspecting
the relational database’s metadata. Relational databases
in general follow Codd’s relational data model rules, so
database’s metadata (description of tables, primary and
foreign keys, etc.) is accessible in the same manner as the
"normal" data is.

Through the metadata analysis, the following should be
identified:

e tables whose tuples will become edges
e tables whose tuples will become nodes

e cyclic relationships formed by foreign keys, which
will form cyclic loops in the graph

e order of creation nodes and edges

e attributes in each table which are part of a primary
key, which will be used as ids

e attributes in each table which are part of foreign keys,
which will be used in forming edges

e attributes in each table which are not part of any key,
which will be used in forming node and edge proper-
ties

Algorithms performing these tasks work with
database’s metadata, and their performance depends
on the complexity of the relational database (primarily
number of tables and foreign keys), but not the size of the
database itself.

For the sake of algorithm presentation, we assume the
following simple functions exists in a relational database:

o pk(r) which provides the set of primary key attributes
of a table r,

e fks(r) which provides the set of foreign keys on a
table r,
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e refd(fk) which finds the table referenced by a for-
eign key fk (primary key table),

e refing(fk) which finds the referencing table of a for-
eign key fk (foreign key table).

Also, these simple functions are presumed to be imple-
mented in a graph database:

e G.add_node(:label,id) which creates a node labeled
label with an id value of id,

e G.add_edge(vy,ve,: label,[id]) which creates an
edge labeled label with an optional id ¢d between
nodes vy and vo,

e G.get_node(:label,id) which finds and returns a
node labeled label with an id id,

e z.add_property(K,V) which adds a property
named K with a value V' to a graph element x.

5.3 Defining conversion order

The first task in defining conversion process is iden-
tification of future nodes and edges as well as the or-
der of conversion of the tables, in order to minimize
the effort of importing data. For this purpose, function
get_migration_order given in the Algorithm 1 is used.
Data which is part of a table which references two other
tables and is not referenced by any other table is put aside
and will be converted to edges at the end of the process.
These tables are listed in the ToEdges set.

Data which is part of a table that does not reference
any other table should be converted first in a way that
new nodes are created for each tuple. After that, tables
which reference those tables already converted are consid-
ered. For each tuple, a new node should be made, and for
each of its foreign keys, an edge connecting that node with
the nodes already in database which represent referenced
tuples from the primary tables. With increasing number
of tables converted to graph, this process is repeated un-
til there are no more tables which are not converted. All
of these tables are put in ordered list T'oNodes, which is
used in a conversion processes.

5.4 Identifying cyclic references

Since some databases allow cyclic references among
tables, those has to be taken into account while designing
the migration process. Cyclic references imply that, while
migrating some foreign keys to edges, there might not yet
exist appropriate nodes for those edges to connect to, hence
these foreign keys should be migrated after all the tuples
from the referenced tables.
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Algorithm 1 Defining table migration order for a database:
get_migration_order(r)

Input: relational database instance r
Output: set of tables to migrate to edges
Output: ordered list of tables to migrate to nodes
1. ToEdges <+ 0, ToNodes + ()
2.for all » € r | |fks(r)] = 2 A
r & {refing(fks(s)),s € r} do
ToFEdges < ToEdges Ur
end for
repeat
{candidates in each round are those tables that have
not been selected yet and which reference only ta-
bles that are already selected}
7. candidates < {r € r |r ¢ ToNodes N1 ¢
ToEdges A refing(fks(r)) C ToNodes}
8. for all r € candidates do
9. ToNodes <— ToNodes U r
10.  end for
11. until candidates # ()
12. return ToEdges, ToN odes

A

In general case, table r; can reference table ry via its
foreign key fk;, table ry can reference table r3 via its for-
eign key fko, continuing to the table r,,_; referencing table
r, via foreign key fk,,_; and finally table r,, referencing
table r; via foreign key fk,, thusly closing the referencing
cycle. We refer to the foreign key fk,, as the cycle-closing
foreign key.

The simplest form of a cyclic reference (for n = 1) is the
most common - self-referencing tables are often used for
representation of a hierarchical data, such as organizational
units and alike.

A database table is tested for being referenced in
a cyclic manner by observing its foreign keys and
the tables they reference using the recursive function
find_cycle_ref_for_table given in the Algorithm 2.

If the referencing table of a foreign key is in fact
the table from which the search started, than the cycle-
closing foreign key has been found and is added to the list
CyclicF K s which holds all the foreign keys that form any
cycle in the database instance. A list of foreign keys al-
ready visited and examined while testing a single table for
being cyclically referenced is maintained to provide recur-
sion exit. The function find_all_cycle_ref in the Algo-
rithm 3 is used to ensure finding foreign keys which are
part of any cycle for all the tables in a database instance.
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Algorithm 2 Cyclic references detection for referenced ta-
ble: find_cycle_ref for_table(referenced, fk)
Input: referenced table
Input: fk foreign key to be investigated
observed + refing(fk)
if observed = referenced then
CyclicF K s + CyclicF K s U observed
end if
if fk € VisitedFK s then
return
else
VisitedF K's < VisitedF'K s U observed
end if
for all fk; € fks(observed) do
find_cycle_ref_for_table(referenced, fk;)
. end for

_ =
SO0 XN R WD =

—
[\

Algorithm 3 Cyclic references detection in a database:
find_all_cycle_ref(r)
Input: relational database instance r
Output: set of cycle-closing foreign keys

1. CyclicFKs <

2. forallr € rdo

3. VisitedFKs + ()
4. forall fk € fks(r) do
5 find_cycle_ref_for_table(r, fk)
6. end for
7
8

. end for
. return CyclicFKs

5.5 Converting the data

In the end of table conversion process, data which is
part of tables to be converted in edges is processed and
new edges are created.

Function table_to_graph, described in Algorithm 4,
provides the data migration of a single table to a graph
database.

If a table is previously determined to be converted to
nodes, a new node is created in the graph database for ev-
ery tuple of the table. Every new node is labeled as the
table’s name, and is provided with an id which is a con-
catenated value of all the attributes which form the primary
key of the table. As stated before, attributes of the table
which are not part of a primary key or any foreign key are
converted to node’s properties, where property name is the
attribute name, and property value is the attribute value in
the tuple.

While processing the tuple, all foreign keys which are
not part of any cyclic relationship are processed as well.
For each of them, a previously created node labeled with
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the name of the referenced table and with id equal to con-
catenated values of attributes in the foreign key, is found.
A new edge between newly created node and this node is
created. This edge is labeled with the name of the foreign
key.

Algorithm 4 Table migration: table_to_graph(r, G)

Input: table r with schema R
Input: graph database G
Output: graph elements representing tuples being added
to graph database
1. forallt € r do
2. id «+ tlpk(r)]
3. ifr € ToNodes then
4. v < G.add_node(:r,id)
5. forall A; € R |A; ¢ pk(r) AN A; ¢ fks(r) do
6 v.add_property(A;,t[A;])
7 end for
8 forall fk € fks(r) |fk ¢ CyclicFKs do
9 Trefd < refd(fk)

10. idrefd — t[fk]

11. Urefd < G.get_node(:rrefd, idrefq)
12. G.add_edge(v,vyresa, k)

13. end for

14.  endif

15.  ifr € ToEdges then
16. fk‘l, ka — fks(r)

17. Trefdl < refd(fki)

18. Trefd2 < refd(fkz)

19. idrefdl t[fkl]

20. idTefdQ — t[fkg]

21. Urefdl $— g.get_node(:rrefdl, idrefdl)
22. Urefaz < G.get_node(:rrcfaz, idretdz)
23. e < G.add_edge(vrefar, Vrefaz, T id)
24, forall A; € R |A; ¢ pk(r) AN A; ¢ fks(r) do
25. e.add_property(A;,t[A;])

26. end for

27.  endif

28. end for

If a table is previously determined to be converted to
edges, a new edge is created in the graph database for every
tuple of the table. Nodes which the edge will connect are
found using the labels (names of the referenced tables) and
ids (concatenated values of attributes in each of the keys in
a tuple). The new edge is labeled with the table name, and
given the id which corresponds to the primary key value.
At the end, all non-key attributes in a tuple are added as
properties of the edge, in the same way it is done for the
nodes.

Function convert_db (Algorithm 5) describes the main
conversion process. After identifying the cyclic foreign
keys and the migration order, tables are converted to nodes
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and edges.

Algorithm 5 RDB to GDB Conversion: convert_db(r)

Input: relational database instance r
Output: graph database instance G
CyclicFK s + find_all_cycle_ref(r)
ToEdges, ToNodes < get_migration_order(r)
G+ 0
for all r € ToNodes do
table_to_graph(r,G)
end for
for all r € ToEdges do
table_to_graph(r,G)
end for
for all fk € C'yclicFKs do
Trefing — refmg(fk)
Trefd — refd(fk)
forallt € r.cfing do
14. idre fing < tlpk(r)]
15. idrefd t[fk]
16. Urefing < G.get_node(:Trefing, dre fing)
17. Urefd < G.get_node(:rrefd, idreta)
18. G.add_edge(vrefing, Vrefd, :[k)
19. end for
20. end for

—_ = =
D= O 0NN R W

—_
w

Last part of the conversion process is creation of edges
originated from cycle-forming foreign keys. This is the
only part of the process where relational data is revisited,
only to scan those tables with cycle-forming foreign keys,
in order to determine which nodes should be connected by
the new cycle-forming edge. Cycle-forming edges are cre-
ated in the same way the other edges which originate from
foreign keys are. The new edge is labeled with the foreign
key name, and it has no additional properties.

6 EXPERIMENTS

During the testing period, we have conducted several
conversions of the copies of OLTP databases used in dif-
ferent information systems, which were stored in IBM In-
formix relational database management system. Neo4j
graph database was used as target database.

For illustration of our method’s efficiency, we present
here the comparison of the graph data model generated by
our method with two models used by some other methods.

The data used in this experiment is part of a Stack
Exchange [25] question and answer web sites aimed for
various professionals (such as StackOverflow). We used
a smaller set of data, specifically the site aimed towards
database professionals (dba.stackexchange.com). Data
consists of 8 relational database tables. For simplicity, we
have omitted one of them (PostHistory), while others took
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part in the conversion processes (Posts, Users, Badges,
Comments, PostLinks, Tags and Votes). In total, these ta-
bles contained 903.298 tuples, 57 attributes, with an aver-
age of 1,57 foreign keys per table.

Using this relational data as a source, conversion has
been made into three different graph models:

e Zero-property model: Each tuple becomes a node, ev-
ery attribute becomes a node connected to the tuple
node, every foreign key becomes an edge. This model
is used in approaches such as RDB2Graph.

e Node-property model: Each tuple becomes a node,
every attribute becomes a node property, every for-
eign key becomes an edge. This model is used in ap-
proaches such as R2G.

e Full-property model: the model used in the method
presented in this paper.

The graph description data for these models is shown
in table 1. Last row shows the size of these databases im-

plemented in Neo4j database system.

Table 1. Number of objects and size of target databases

model zero-property  node-property  full-property
nodes 6.632.525 903.298 716.825
edges 4.631.988 1.092.647 928.240
props 0 2.206.509 2.206.509
size (MB) 6.473 3.275 3.392

Comparing to approaches mentioned in Section 2
which model all attributes as nodes (zero-property model),
such as RDB2Graph, our proposition results in signifi-
cantly smaller number of generated nodes and edges but
with a lot of properties (all of them). Comparing to ap-
proaches which model all tuples as nodes with their at-
tributes modeled as properties, such as R2G, our propo-
sition results in about 20% smaller number of nodes, about
15% smaller number of edges and the same number of
properties. Size of the databases in all three cases depends
on the internal ways Neo4j stores data, so it is given here
for illustrative purposes only.

Figure 1 shows the part of the imported data (posts re-
lated to user with id value 8) using the full-property model
in the Neo4j graphical interface. Nodes with different la-
bels have different colors. For graphical purposes, captions
and sizes are set for each type of node and edge. On the
bottom of the screen, the properties of the selected node
(post with id 147) are visible.

Let us now explore the impact of these models to real-
life queries upon a graph database. Stack Exchange al-
ready offers public access to queries regarding specific user
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Fig. 1. Part of converted data shown in Neo4j browser

etc. [26]. We have built similar queries with a difference of
addressing bigger amount of the data. These queries have
been implemented in each model:

e ql: Users and their accepted answer ratio. Finds user
names, total number of answers, number of accepted
answers and accepted answer ratios, including only
users with at least 10 answers and one accepted an-
SWer.

e 2: Users and their comment score. Finds user names,
number of comments and average comment scores,
including users with at least 20 comments.

e q3: Duplicated posts. Finds duplicated posts, includ-
ing duplicates of duplicates, their duplicates, and so
on, up to 4th level. (The limitation to the 4th level
was introduced in order to get comparable results in
reasonable time.).

During the experiment, the queries were implemented
in Cypher programming language [27], executed on a
server with a pre-cached data. The performance of the
Neo4j database was measured. Each query executed 10
times, and the mean time is taken into account. Neo4j was
running on a Linux Debian server, with a single Intel Xeon
E7-4830 (2.13GHz) CPU and 7 Gb of memory assigned to
the database engine.

Average times of performing each of the queries on
all models are shown in figure 2. For clarity, times for
each query are connected with a line. While the zero-
property model shows the worst results for all queries, the
results of the full-property model is slightly faster than
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Fig. 2. Average times (s) of running queries ql, g2 and g3
on each model

the node-property model. Expectedly, average duration of
each query corresponds to the model size - bigger models
are slower than the smaller ones. It has to be noted though,
that these queries examine many nodes (for example, in
query gl 26% of nodes in the whole database are being
examined). In most everyday cases, query will focus on a
single node, its immediate neighbors and their properties,
so these differences may not be noted. However, for graph
mining purposes like finding frequent subgraphs and other
queries which run through many graph elements, smaller
models should be preferred.

7 FUTURE WORK

Implementation of the universal relational-to-graph
database conversion process provides the means of apply-
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ing various graph mining methods on the relational data.
Our future work is twofold.

In the most part, analytics based on the relational data
relies on the means of developing the analytic tools. For
example, data warehouses can provide analytics based on
available reports which in turn rely on the available data
which came in through the ETL process. Both are de-
signed and implemented by people who had an idea what
should be analyzed. On the other hand, applying existing
graph mining methods such as frequent subgraph mining
to a converted graph database, may show connections be-
tween the data that were previously not considered, or even
expected. A complex relations between tuples that belong
to various tables might exists and reveal a new insight into
that data. Based on patterns, irregularities could be found
as well. Our first goal is to explore the usage of those graph
mining methods which may help identify interesting com-
plex and maybe unexpected data connections.

Over the years of RDBMS’ domination, various types
of data had been stored in relational databases, some of
which is temporal and spatio-temporal data. Recently, the
importance of dynamic graphs is emphasized. Static graph
shows the data accumulated over time and possible overes-
timate relations between the data. Instead of that, dynamic
graph (or temporal graphs) represent a graph that evolve
over time, or time series of graphs. Given the increased re-
search interest in temporal graphs analysis [28], our second
goal is to explore the possibilities of creating a temporal
graph from temporal or spatio-temporal relational database
source.

8 CONCLUSION

The growing awareness of usefulness of big data anal-
yses and graph mining algorithms, combined with the fact
that the majority of human-produced data resides in rela-
tional databases, result in need of relational database to
graph database conversion methods.

Our goal is to make the relational data available for
graph mining algorithms, and in this paper, we have pre-
sented a method of converting the entire relational database
to a graph database. The presented algorithms leverage the
property graph data model, making use of both node’s and
edge’s properties. Algorithms are independent of the data
semantics, and provide the conversion without data loss.
Since some relational databases allow cyclic relationships
between tables, algorithms for identification such relation-
ships are presented as well. Main idea behind the con-
version algorithm is to read the relational data and load it
into the graph database in as few steps as possible. This
is accomplished by determining table’s load order, and all
the tables but those which are part of cyclic relationships
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are scanned only once. The tables taking part in cyclic re-
lationships are revisited after the initial load, in order to
establish new edges based on cycle-closing foreign keys.

Even though the entire database conversion can be time
and space consuming process, we find it to be a practical
solution in the case of performing repetitive multiple graph
mining methods on the generated data which leverage fea-
tures of the modern graph databases. Also, we find that the
modeling dependent attributes as properties is the optimal
way of maintaining all of the source data, given the total
amount of relational data being converted.

Finally, we have verified the proposed process by ap-
plying it to the real world case and presented the results.
We have compared the data models created by our method
with those created by other methods and shown the advan-
tages of full-property model regarding large-scale queries
on a graph database.
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