
 

 
 

 

 Abstract—In the first part of this paper, several basic ideas 
that prompted the coming of turbo codes are commented on. We 
then present some personal points of view on the main advances 
obtained in past years on turbo coding and decoding such as the 
circular trellis termination of recursive systematic convolutional 
codes and double-binary turbo codes associated with Max-Log-
MAP decoding. A novel evaluation method, called genie-
initialised iterative processing (GIIP), is introduced to assess the 
error performance of iterative processing. We show that using 
GIIP produces a result that can be viewed as a lower bound of 
the maximum likelihood iterative decoding and detection 
performance. Finally, two wireless communication systems are 
presented to illustrate recent applications of the turbo principle, 
the first one being multiple-input/multiple-output channel 
iterative detection and the second one multi-carrier modulation 
with linear precoding. 
 

Index Terms—Turbo code, iterative decoding. 

I. INTRODUCTION 

“The oldest, shortest words - yes and no - are those which 
require the most thought”. This pertinent observation by 
Pythagoras, fifth century B.C., could also be used as the motto 
for modern information theory. Before taking the final 
decision about the value of a particular bit, 0 or 1, modern 
telecommunication receivers have to think a lot about it. Using 
probabilities and permanent, multiple dialogue between the 
different processors of the receiver is the key to optimal 
performance. Though this vision seems common sense today, 
it was not so obvious in the very recent past. 

For instance, consider two cascaded Viterbi decoders, 
typically a detector followed by an error-correcting decoder. A 
Viterbi decoder works optimally, that is, it outputs the most 
likely message, taking into account the information that it has 
received and exploited. At the end of the 80’s, it was 
acknowledged that linking two locally optimal processing 
steps produced a globally optimal result, and this was the case 
for two cascaded Viterbi decoders. But this was without 
realizing that the first stage benefits only from part of the 
information available: the detector does not know that it is 
processing codewords, that is, bits which are not independent. 
Without feedback from the error-correcting decoder, the 
detector does not benefit from the diversity provided by the 
redundancy inside the codewords. 

More generally, the information feeding a receiver 
undergoes various successive processing steps, like 
demodulation, detection, decoding and so on. Even if the 
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algorithms that are used in each of these partial steps are 
optimal, the accumulated result may not be optimal because 
the processing stream is unidirectional. And it often happens 
that the processor with rank j can be helped by the work of the 
processor with rank j + 1 or beyond, because the data that the 
latter possesses have not been exploited by the former. Bi-
directional exchange of information between the different 
processors solves the problem almost ideally. It is really 
surprising that what today has become so obvious had been 
unrecognized for so long. This being said, the complexity of 
receivers using bi-directional message passing has noticeably 
increased compared to traditional structures and it is only in 
recent years that microelectronics has been able to cope with 
such complexity requirements. 
 

The first applications of the bi-directional message passing 
paradigm was turbo decoding [1] and a few years later turbo 
equalization [2]. Subsequently, the turbo principle, as it was 
coined in [3], led to numerous applications involving 
demodulation, single and multi-user detection, 
synchronisation and even cryptography. The spreading of the 
turbo principle was also at the origin of the rediscovery of 
Low-Density Parity Check (LDPC) codes [4,5] which have 
become the matter of many studies in the information theory 
community. 

This paper has been written to give some personal points of 
view on the main advances obtained these past few years on 
the turbo principle and the trends that are becoming apparent 
for the years to come. This presentation is not at all exhaustive 
and does not pretend to address all the ideas that have 
germinated in the field of turbo processing (thousands of 
papers have been produced on the subject). It is more like a 
sampling of representative questions that have been solved, 
more or less, or that are still under investigation. Three main 
sections make up the paper. The first one (chapter II) is 
devoted to turbo coding and decoding and presents a state-of-
the-art from the subjective point of view of the authors. In the 
second part (chapter III), a novel method to assess the 
performance of iterative processing, called genie-initialised 
iterative processing (GIIP), is introduced and commented on. 
Two recent applications of the turbo principle: multi-carrier 
modulation with linear precoding and multiple-in/multiple-out 
iterative detection are presented in the third part (chapter IV), 
as significant examples of the turbo principle generalisation. 

II. TURBO CODING AND DECODING 
II.1 The basic ideas that prompted the coming of turbo coding 
and decoding 

The most powerful channel coding scheme known before 
1993 was the standard concatenated code as depicted in Fig. 1, 
along with its decoder. We will not go into details with respect 
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 to the justification of this structure (see [6] for instance) but 
merely try to explain, with the passing of time, why this is not 
an optimal scheme, while it is still in use in modern systems 
such as DVB-T ([7]). 
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Figure 1. The standard concatenated code and its composite decoder. 
 

The first comment that comes to mind is about the type of 
convolutional code used in the concatenated structure: a non-
recursive non-systematic code whereas recursive systematic 
convolutional (RSC) codes generally offer better performance, 
especially when puncturing is performed [8]. RSC codes have 
been brought back into favour through turbo codes mainly 
thanks to their ability to enable parallel concatenation, but 
they also have advantages with respect to performance, which 
is a free added bonus. 
 

The second observation concerns the large sub-optimality of 
the decoder, as already discussed in the introduction. When 
the decoding process amounts to a single passage through the 
two component decoders, the inner Viterbi decoder does not 
benefit at all from the redundancy that the Reed-Solomon 
codewords contain. To make this possible, a feedback (turbo) 
strategy has to be carried out. But, to recall the sentence of 
Pythagoras at the beginning of this paper, the data to be 
brought back to the Viterbi decoder input must not be merely 
the binary decisions of the Reed-Solomon decoder. Soft 
values, that is, probabilities or logarithms of likelihood ratios 
(LLR) when working in the logarithmic domain, have to be 
introduced. Moreover, these probabilities or LLRs have to be 
constructed in such a way that correlation effects in the 
feedback loop are minimized. It is then imperative that the 
data sent back to the Viterbi decoder do not contain its own 
decisions. It was very easy to imagine the so-called extrinsic 
information which is simply obtained by subtraction when 
handling LLRs. 

 
This being said, the standard concatenation depicted in Fig. 

1 does not easily lend itself to turbo decoding, because the 
Reed-Solomon decoder is not naturally a soft-in/soft-out 
(SISO) decoder. Other component codes have to be 
considered, such as convolutional codes that were first studied 
in a serial concatenation to demonstrate the interest of using 
soft values [9]. Turbo decoding was elaborated following this 
serial scheme, which was later transformed into a parallel 
concatenation [10]. 

Another important observation about the code of Fig. 1 is its 
relative weakness with respect to random coding, which is the 
reference as regards error-correction coding. Of course, the 

deinterleaver is devised so that possible packets of errors 
stemming from the Viterbi decoder are spread before feeding 
the Reed-Solomon decoder. But because the deinterleaver is 
regular (linewise writing and columnwise reading), it is not 
able to spread consecutive packets of errors in a different way 
each time. This characteristic is of no importance when 
classical non-iterative decoding is performed, because the 
correlation effects that interleaving regularity may produce 
need bi-directional message passing between the two 
component decoders. In this case, the correlation effects may 
noticeably decrease the gain offered by iterative decoding. 
Non regular permutations are necessary to design good turbo 
codes just as, in the same way, irregular control matrices are 
needed to construct good LDPC codes. 
 
II.2 Main advances since 1993 
 

The list which is proposed and commented on here is not 
exhaustive. It is limited to advances that have actually been 
adopted in real implementations because of their practical 
interest. 
 

From the coding standpoint, circular (tail-biting) termination 
of component codes, relatively prime permutation and the use 
of m-binary convolutional codes probably constitute the main 
advances. 
 

The circular trellis termination of a convolutional code 
involves allowing any state as the initial state and encoding 
the sequence so that the final state of the encoder register will 
be equal to the initial state [11]. The circular termination can 
be used for both non-recursive and recursive codes. For the 
latter, leading to so-called circular recursive systematic 
convolutional (CRSC) codes, circular termination is possible 
on the condition that the message length is not a multiple of 
the RSC generator period. This technique is powerful though 
very simple, enabling block encoding for any size and any 
rate, without any loss in performance or spectral efficiency. 
Moreover and above all, because a circle has no discontinuity, 
circular termination does not introduce any side effects and, 
for this reason, is well-suited to the design of 
multidimensional codes. 
 

The interleaving or permutation design for turbo coding has 
been the subject of many studies since 1993, as has also the 
design of graphs for LDPC coding, which is a comparable 
problem. From very empirical models, like the one used for 
deep space turbo coding [12], to more recent proposals, 
permutation has evolved towards simplicity thanks to circular 
trellis termination which transforms perfectly convolutional 
codes into block codes. In this case, the starting point for 
devising good permutations is the so-called relatively prime or 
circular permutation, first in its regular version (Fig. 2), then 
in versions that include some controlled disorder such as the 
dithered relatively prime (DRP, [13]) or the almost regular 
permutation (ARP, [14]) models, the latter having been 
adopted in several standards such as [15]. Such simple 
mathematical interleavers (as opposed to interleavers defined 
by a look-up table) are quasi-optimum with respect to the span 

180 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006



 

 
 

 

(i.e. the sum of the spatial distances that separate any couple 
of encoded symbols, before and after the permutation), while 
being able to discard most possible error patterns with a 
rectangular shape [14]. 
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Figure 2. Regular relatively prime (or circular) permutation. The skip 

parameter P is relatively prime with block length k. 
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Figure 3. A double-binary recursive systematic convolutional (RSC) 

code with memory 3. A and B are the inputs, A, B and Y are the 
outputs. The natural coding rate is 2/3. 

 
 

In the history of information theory, non-binary coding like 
Reed-Solomon coding has largely proved its efficiency to lead 
to powerful error-correction schemes. There are at least two 
ways to construct a convolutional code with m-bit input 
symbols, either from the Galois field GF(2m), or from the 
Cartesian product (GF(2))m. A code elaborated in GF(2m) with 
code memory ν exhibits 2νm possible states, while the number 
of states of the code devised in (GF(2))m has only 2ν states, 
with the same value of ν. Fig. 3 gives an example of a double-
binary convolutional code defined in (GF(2))2. The 
advantages of m-binary turbo codes by comparison with 
binary turbo codes are various and have been commented on 
in [16]. 
 

From the decoding point of view, three major advances 
among many seem to stand out: the Max-log-MAP 
simplification of the MAP (Maximum a posteriori) algorithm 
[17], the introduction of the scaling factor on extrinsic 
information, and the possibility to implement parallelism in a 
turbo decoder. 

When turbo decoding was elaborated to open up the way to 
the first integrated turbo encoder/decoder [18], the MAP 
algorithm was unknown to the inventor [19]. The SISO which 
was used at that time was the soft-output Viterbi algorithm 
(SOVA) inspired both by [20] and [21]. The MAP algorithm 
was used later only for the needs of the first publication [1], 
while considered as far too complex to replace the SOVA in 
practical implementations. Today, thanks to the work initiated 
in [22], simplified versions of the MAP algorithm have been 
adopted instead of the SOVA. The complexity of a MAP 
component decoder is now roughly twice that of a Viterbi 
decoder and, as pointed out in [23], the 8-state turbo decoder 
used in 3G mobile phone [24] represents, with 6 iterations, 
fewer states to process than the 256-state Viterbi decoder, 
which is the other decoder of the same standard. Moreover, 
when considering the drastic simplification of the MAP 
algorithm into the Max-log-MAP version, which does not 
require the knowledge of the noise variance, unlike the 
former, it is very surprising to observe no significant 
performance degradation, especially for m-binary turbo codes 
[16]. In fact, it is better to use the Max-log-MAP version with 
an appropriate scaling factor for extrinsic information (see 
below) than the full MAP algorithm with a poorly estimated 
value of the noise variance. 
 

The scaling factor which is applied to extrinsic information 
before being used by either of the two decoders plays a double 
favourable role. First, it alleviates the correlation effects in the 
iterative process coming from the loops or cycles that cannot 
be avoided in the graph of the finite-length turbo or LDPC 
code. Second, the scaling factor is very favourable when using 
the Max-log-MAP algorithm instead of the full MAP 
algorithm. The simplified version, in which the maximum 
function substitutes for the sum, tends to overestimate the 
LLRs and the scaling factor helps compensate this 
overestimation. A proper value for the scaling factor is around 
0.7 or 0.8, except for the last iteration during which it can be 1 
in order for the decoders to benefit to the full from the 
minimum Hamming distance of the code. 
 

Working out parallelism in turbo decoders is a fairly recent 
concept [25, 14] motivated by the competition that the natural 
parallelism in LDPC decoders has initiated. Since the most of 
the material complexity of an iterative decoder is due to the 
storage requirement, especially that of extrinsic information, 
the architectures that allow several processors to work 
together in order to speed-up the decoding, without increasing 
the memory capacities, are not a large price to pay. Thanks to 
the parallelism and to the clock frequencies available today, 
data throughputs have reached impressive speeds, even with 
the field programmable gate-array (FPGA) technology. As for 
latencies, because the most powerful codes call for 
permutations or graphs that are highly irregular, their iterative 
decoding needs the whole received codeword in order to be 
started. This is the minimum delay that iterative decoding 
imposes and that remains too penalizing for some 
applications, compared with the latency of a simple Viterbi 
decoder, for instance. 
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III. ASSESSING ITERATIVE DECODING: THE GENIE-INITIALISED 
ITERATIVE PROCESSING (GIIP) METHOD 

Iterative decoding and more generally iterative processing of 
any concatenated functions are problems that fall into the field 
of non-linear dynamic systems. In view of the large number of 
variables to take into account, that is, in practice, hundreds or 
thousands of binary values combined with as many noise 
levels, no rigorous method seems conceivable and only partial 
and/or approximate tools are available for analysis or 
evaluation. 
 

Two distinct types of behaviours, corresponding to small 
and to large signal-to-noise ratios (SNR) respectively, have to 
be considered in a turbo process. In the low SNR region, 
performance depends on many parameters, the main one most 
certainly being the existence of impassable theoretical limits. 
These limits were defined and calculated by Shannon [26] 
assuming a certain number of hypotheses (random coding, 
Gaussian channel with continuous input, infinite block size, 
etc.) which are more or less valid in practice. It is often 
difficult, even impossible, to know accurately the true limits 
which depend on the type of channel, the modulation scheme, 
the spectral efficiency, the block size and the target error rate. 
Therefore, it is not easy to judge whether a coding/decoding 
scheme is close to the optimum or largely sub-optimal. 
Moreover, if there is some difference between the practical 
performance and the supposed theoretical limit, the question 
arises whether to attribute it to the imperfectness of the code 
or to the flaws of the decoder, and the answer is not 
straightforward. 
 

As for the large SNRs, the performance is mainly guided by 
just two parameters: the minimum Hamming distance dmin and 
the multiplicity N(dmin) which is the number of codewords that 
differ from the transmitted one by dmin symbols. The frame 
error rate (FER) that maximum likelihood (ML) decoding 
could achieve is then well approximated by the following 
formula: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

0
minmin erfc)(

2
1FER

N
E

RddN b   (1) 

 
where R is the coding rate and erfc() is the complementary 
error function. Thus, for large SNRs and if dmin and N(dmin) are 
known, it is easy to make one's mind about the quality of the 
decoder from the real performance it achieves. 
 

We are now going to describe a very simple method which 
apparently gives a tight lower bound of ML performance in 
the context of iteratively decodable codes. This method is just 
a tool to gauge the quality of coding/decoding schemes and 
has no application in real systems. 
 

Let us consider an iterative error-correcting decoder which is 
able to receive two kinds of data: uncorrupted codewords and 
the same codewords but stemming from a real channel with 
noise and fading. Suppose that the decoder works first on the 

uncorrupted version of a codeword, during a certain number 
nit,1 of iterations (stage 1). Of course, the decoder does not 
produce any errors in this ideal configuration. Then, without 
changing anything in the state of the decoder, that is, without 
altering the pieces of extrinsic information that have stabilized 
after nit,1 iterations, the corresponding corrupted codeword 
comes to replace the true one at the decoder input. The 
decoder works again during nit,2 iterations (stage 2). 
 

Amazingly (at least for the person who conducted this 
experiment for the first time), the error rate is no longer 0 at 
the end of the process. Though extrinsic pieces of information 
have reached their full level at the end of the first stage and 
thus can act as strong correct a priori inputs to the component 
decoders, this is not sufficient to prevent the decoder from 
drifting to a bad decision during the second stage in the case 
of strong corruption. In fact, stage 1 constitutes a perfect 
initialisation process towards the classical iterative decoding 
performed in stage 2. This perfect initialisation actually 
appears to give the decoding the ability to achieve 
performance close to that of ML decoding. More precisely, 
this technique that we have called genie-initialised iterative 
processing (GIIP), produces a result that can be considered as 
a lower bound of the ML decoding performance, according to 
the following rationale. 
 

As explained in [27], turbo and LDPC decoding, when 
referred to as Pearl's belief propagation (BP) algorithm, are 
optimal when the graph of the coding structure is free of any 
cycle. If cycles exist, and there are cycles in any finite-length 
turbo or LDPC code, the iterative decoding suffers from 
correlation effects in the message passing between component 
decoders. So let us assume that the difference in performance 
between ML decoding and turbo or LDPC decoding comes 
solely from correlation effects. These may be either 
favourable or unfavourable, the average leading to a 
worsening of the performance. The favourable correlation 
effects concern extrinsic pieces of information that are correct, 
while unfavourable effects are related to erroneous pieces of 
information. When stage 1 is performed in the GIIP process, 
all correlation effects are favourable because all data are 
correct. Then, when stage 2 begins with strong (and over-
estimated owing to correlation) correct a priori inputs to the 
component decoders, all the correlation effects are still 
exclusively favourable and the result of the GIIP decoding is 
better than that given by decoding without correlation, that is, 
ML decoding according to [27]. 

To illustrate the GIIP assessment technique, we consider the 
example of the double-binary turbo code used in the DVB-
RCS [28] and WiMax [15] with k =1504 (188 bytes), R = ½ 
and QPSK modulation on a Gaussian channel. The component 
decoding algorithm is the Max-Log-MAP algorithm and 30 
iterations are performed for both the classical and the GIIP 
simulations (nit,1 = 10, nit,2 = 30). Figure 4 gives the result of 
these simulations in terms of FER, along with the theoretical 
limit obtained with the sphere-packing approach. 
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Figure 4. Comparison of real and GIIP decoding performance of a 
double-binary turbo code with k =1504 information bits, R = ½ and 

QPSK modulation on a Gaussian channel. 
 
 

Several observations can be made from the curves of Fig. 4. 
First, the GIIP decoding result seems compatible with the 
sphere-packing limit whose upper part (for large FER) is not 
represented for lack of accuracy. If the minimum Hamming 
distance of the code considered were much larger than the real 
one, we could imagine that the GIIP decoding curve would 
fall steeply to values close to the theoretical limit curve. 
Second, for large SNR, real decoding offers performance that 
asymptotically catches up the GIIP performance, which we 
recall is considered as a lower bound of ML decoding. 
Another observation concerns the small gap (less than 0.6 dB 
for practical values of FER) lying between the real and genie-
initialised simulation results, clearly indicating that the 
correlation effects are not of very great importance in turbo 
decoding, at least for this particular case of the double-binary 
turbo code, with k = 1504 and R = ½. 
 

The GIIP technique will be used in chapter IV to assess the 
performance of two other systems with iterative receivers. 
Generally speaking, this new method for the evaluation of 
iteratively decodable schemes could bring precious 
information about: 
- the potential quality of a transmitter design, regardless of the 
receiver sub-optimality, 
- the quality or the weakness of an iterative receiver, 
compared to ML processing, 
- the theoretical limits "in practice". If we assume that the ML 
decoding of a random-like code, such as turbo or LDPC, is 
able to reach the capacity limits (at least for medium error 
rates), then the GIIP technique could provide lower bounds of 
these limits in an experimental way. This can be done without 
any mathematical development which generally turns out to be 
very intricate for real situations, especially for short or 
medium block sizes. On the contrary, the GIIP method does 
not require any assumptions to be made. 

IV. THE TURBO PRINCIPLE COMES INTO WIDE USE 
Information feeding a receiver undergoes several successive 

processing steps. These steps can be roughly classified into 
three categories: detection, estimation and decoding. In 
conventional representation, only unidirectional processing is 
performed. Detection and estimation ignore the decoding step. 
As largely commented on in the previous sections, this leads 
to a sub-optimal process. In the sequel we focus on the 
detection step in order to present two significant applications 
of the turbo principle other than mere channel decoding. 
 

IV.1 MIMO iterative detection 
 

Since the next-generation wireless communications are 
driving the demand for increased system capacity, data rates 
and multimedia services, the multiple-in/multiple-out (MIMO) 
channel has recently emerged as one of the most significant 
technical breakthroughs in modern digital communications. 
Perhaps even more surprising is that just a few years after its 
invention, the technology seems poised to penetrate large-
scale standards-driven commercial wireless products and 
networks such as broadband wireless access systems, wireless 
LANs (e.g. WiMax), third-generation (3G) networks and 
beyond [29]. A key idea in MIMO systems is the space-time 
signal processing in which the time is complemented with the 
spatial dimension inherent in the use of multiple spatially 
distributed antennas. Several coding techniques have been 
proposed with multiple transmit and/or receive antennas in 
various fading channels to achieve transmit diversity and 
spatial diversity such as space-time block codes (STBC) [30] 
and Bell Laboratories layered space-time (BLAST) codes 
[31]. To obtain the additional diversity gain, numerical 
methods were developed for MIMO systems. These could be 
broadly categorized into two techniques: one is the open-loop 
scheme such as the optimum constellation rotation [32] and 
the other is the closed-loop scheme that is based on channel 
state information (CSI) sent from the receiver to the 
transmitter through an independent feedback channel. 
 

In order to exploit the available capacity of MIMO systems, 
recent attention has turned to iterative detection and decoding 
at the receiver side. It is well known that bit-interleaved coded 
modulation (BICM) is a power and bandwidth efficient coded 
modulation scheme. Inspired by turbo decoding, iterative 
decoding between a demapper and a decoder can be applied to 
BICM. It is demonstrated that BICM with iterative decoding 
(BICM-ID) outperforms trellis-coded modulation (TCM) in 
different channel models when the constellation labelling is 
properly designed [33]. Motivated by the above advantages, 
this technique has been extended to the MIMO channel in 
order to achieve a significant coding gain. Two concatenation 
structures were designed for multiple transmit and receive 
antenna systems. In [34], Tonello proposed BICM-ID 
combined with a vertical-BLAST (V-BLAST) scheme, which 
can be termed as space-time bit-interleaved coded modulation 
with iterative decoding (ST-BICM-ID). The other efficient 
structure based on the concatenation between BICM-ID and a 
STBC was called bit-interleaved space-time coded modulation 
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with iterative decoding (BI-STCM-ID) [35]. Since V-BLAST 
offers high spectral efficiencies by dividing the incoming data 
into multiple sub-streams and sending each sub-stream to a 
dedicated antenna, ST-BICM-ID can achieve a desired high 
transmission rate at the expense of loosing some degrees of 
diversity and increasing the decoding complexity. For BI-
STCM-ID, STBC provides the highest diversity advantage for 
MIMO systems with a low complexity decoding algorithm. 
Although its association with a powerful channel code can 
improve both diversity gain and coding gains, this scheme 
suffers from the transmission rate. The transmitters of these 
two iteratively decoded MIMO systems are depicted in Fig. 5 
(a) and (b). 
 

The main difference between these two transmitters is the 
selected space-time mapping scheme before the transmit 
antennas. As shown in Fig.5 (a), the serial to parallel (S/P) 
component is used to spatially distribute the modulated signals 
to multiple antennas. As for the BI-STCM-ID transmitter, the 
STBC encoder maps the same signals in a permuted order to 
transmitting antennas during different time durations. At the 
output of the MIMO channel we receive the observation 

NHXY += , where X  is a vector of the transmitted signals 
that are made up of the modulated symbols, H  is an 
equivalent channel matrix in which the channel coefficients 
are modelled as independent and identically distributed (i.i.d) 
complex Gaussian random variables with zero mean and unit 
variance, and N  is a zero-mean complex Gaussian noise 
vector with variance 2

nσ . 
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Figure 5. Two transmitters of the turbo-MIMO family, 
(a) ST-BICM-ID and (b) BI-STCM-ID. 

 
 
 

The receiver is assumed to have the perfect channel 
knowledge and consists of a MIMO detector and an a 
posteriori probability (APP) decoder. Both are SISO devices 
and exchange iteratively soft information about the encoded 
bits according to the turbo principle[3]. The general iterative 
receiver model for both systems is shown in Fig. 6. 
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Figure 6. The general iterative receiver model for turbo-MIMO 
systems. 

 
 

Consider the ML receiver for which the MIMO demapping 
algorithm exploits the equivalent channel matrix H. The log 
likelihood ratio (LLR) of the bit ic , mNi t ⋅= ,...,1  (where tN  
and m represent the number of transmit antennas and the 
number of bits included in one constellation point, 
respectively), conditioned on Y and H, is 
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where i

1Ψ  (or i
0Ψ ) is a set of mNt ⋅2  bit vectors X with the 

binary bit 1 (or 0) at labelling position i, jc  is the jth bit in 

each vector associated with X, jAL ,  denotes the jth a priori 

information AL  and )( HX,|YP  is the conditioned 
probability density function (pdf), which is given by: 
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Further simplifications are possible by using the Max-Log 

approximation which transforms the LLR-valued extrinsic 
information )( iE cL  into: 
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It is worth pointing out that the number bN  of computations 
required to obtain the LLR for each bit in ST-BICM-ID 
systems grows exponentially with the constellation size m2  
( tNm

bN ×= 2 ). On the other hand, for BI-STCM-ID systems, 

bN  grows linearly ( m
bN 2= ) instead of exponentially. For 

example, if 16-QAM is adopted for the two systems with two 
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transmit antennas, 256 comparisons have to be performed for 
the ST-BICM-ID system when the ML rule is considered, 
while only 16 comparisons are needed for the BI-STCM-ID 
system. This significant hardware reduction is very attractive 
for VLSI implementations. To alleviate the drawback of the 
receiver complexity in ST-BICM-ID systems, several efficient 
algorithms such as sphere decoding [36] can be used to further 
reduce decoding complexity. 
 

In the following, we apply the GIIP technique, as introduced 
in chapter III, to a particular turbo-MIMO system in 
uncorrelated block fading channels. The (2 Tx, 1 Rx) 
Alamouti code and a (37, 21) CRSC code of 1/2 coding rate 
are considered as the inner and outer code, respectively. 
Moreover, we use an anti-Gray mapping scheme for the 
QPSK constellation. nit,1 = 10, nit,2 = 8 for GIIP decoding, and 
8 iterations for real decoding are considered in this system. As 
Fig. 7 shows, there is almost no difference between the GIIP 
and real decoding. This is mainly explained by the property of 
the detector which delivers symbols that are not much 
correlated. Actually the Alamouti code links the data in 
independent pairs and the correlation effects are limited within 
these couples of symbols. Therefore, the classical iterative 
processing without GIIP is already close to ML processing. 
However this experiment was useful to demonstrate that the 
GIIP technique provides a tight lower bound to ML 
performance. 
 
 

 
Figure 7. Comparison between GIIP and real decoding for the turbo-

MIMO system. 
 

IV.2 Linear Precoding  
 

In this section we concentrate on the application of the turbo 
principle to a specific diversity technique called linear 
precoding. Unfortunately, this term can be related to several 
very different communication techniques. So before delving 
into the details of the turbo receiver, we briefly review the 
principle of this diversity technique. 

Linear Precoding technique as a diversity technique 
 

Diversity techniques are efficient for improving the 
performance, in terms of error rates, of communication 
systems on the Rayleigh fading channel. On such a channel, 
information theory tells us that the Bit Error Probability 
decreases only linearly with the Signal to Noise Ratio (SNR). 
Suppose that one bit is sent through the channel. If at that 
time, the fading is deep, the received signal power is so weak 
that no reliable detection can be carried out. Now, the bit is 
sent twice at two different time slots. If these two time slots 
correspond to two independent channel realizations, the 
probability that the two fadings are deep is lower than the 
probability that only one fading is deep. The detection of the 
transmitted bit involves the combination of the two received 
signals such as the selection of the strongest signal or the 
linear combination of both. The BER performance of this 
system based on repetition coding is improved compared with 
the conventional system. In this example, the channel 
variations in the time domain provide time diversity that can 
be exploited by a properly designed transmitter/receiver 
couple. In the same way, in the case of a multi-path 
propagation channel, frequency diversity techniques can be 
carried out to take advantage of the channel variations in the 
frequency domain due to frequency selectivity. The final BER 
performance depends on the degree of diversity provided by 
the channel, which can be infinite in the case of white 
Rayleigh fading, and the degree of diversity that can be 
exploited by the transmitter/receiver couple. 

 
In the previous example, the technique of repetition coding 

was carried out to exploit the time diversity provided by the 
channel. However, more rate efficient techniques exist such as 
linear precoding. Chronologically, linear precoding was first 
applied to a multi-carrier transmission called Orthogonal 
Frequency Division Multiplex - Code Division Multiplexing 
(OFDM-CDM) [37]. This technique was presented as a 
generalised case of the Multi Carrier – Code Division Multiple 
Access (MC-CDMA) system that combines advantages from 
OFDM and CDMA. Before the Inverse Fast Fourier 
Transform, the complex symbols are spread according to a 
user-specific spreading code. The orthogonality of the 
spreading codes enables the efficient separation of the users' 
signals at the receiver. Unfortunately, if the transmitted signal 
experiences channel fading, orthogonality is lost and Multiple 
Access Interference (MAI) appears, degrading the BER 
performance. Nevertheless, the spreading code, acting as a 
repetition code, can be used to offer frequency diversity. Now, 
if all spreading codes are allocated to one single user, no loss 
in data rate is experienced and the system retains its capacity 
to exploit frequency diversity. Obviously, MAI is converted 
into Self Interference (SI). Depending on the designed 
detector at the receiver part, the diversity gain is not able to 
compensate for the BER degradation due to SI. This diversity 
technique has also been explored independently from another 
point of view by [38]. It was then generalised by [39] under 
the name of Linear Precoding (LP).  
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The baseband equivalent model of an LP-OFDM system is 
depicted in Fig. 8. Data are encoded using a BICM scheme 
with a rate R convolutional encoder. Coded bits are mapped 
onto complex symbols (si) chosen in the constellation χ 
(BPSK, QPSK, 2q-QAM…) using Gray mapping. Linear 
precoding involves spreading each information symbol over 
several time intervals or subcarriers. Each vector of symbols s 
= (s0, …,sM-1) of size M is multiplied by an MxM unitary 
precoding matrix  DM = (di,j), i,j = 1,..,M. This operation can 
be viewed as a block coding of size M with rate equal to 1. 
The OFDM channel includes a symbol interleaver Π2, the 
OFDM modulation/demodulation and the multipath 
frequency-selective channel. OFDM operations such as the 
cyclic prefix insertion prevent Inter Symbol Interference (ISI) 
and Inter Carrier Interference (ICI). As a consequence, the 
relationship between the transmit symbols s and the output r 
of the OFDM channel can be written as 
 

wsHDr += M   (4) 
 

where H = diag(h0,…,hM-1) is the MxM diagonal complex 
matrix, bearing the frequency channel gains on its diagonal, 
and w = ( w0,…,wM-1) an additive white Gaussian noise such 
that MwIww 2H )E( σ= . 
 

 
Figure 8. Transmission scheme for linear precoding (LP) 

communication systems. 
 

The interleaver Π2 maps precoded symbols onto different 
sub-carriers and OFDM symbols. Thus, the LP scheme can 
take advantage of both time and frequency diversity. Each 
information complex symbol sees different M frequency 
channel gains. Assuming perfect frequency interleaving, the 
frequency channel gains can be modelled as Rayleigh 
distributed random variables. So, the maximal diversity order 
D that LP could provide is intuitively equal to M. A lower 
bound of the coded LP-OFDM system could coincide with the 
union bound of a coded system over M diversity branches 
assuming a Maximum Ratio Combining (MRC) receiver. At 
high SNR this bound is given by 
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where the couples ( )],[, min
)( ∞∈ …ddA b

d  are the components 
of the distance spectrum of the channel code. Only the 
computation of the Maximum Likelihood decoding bound 
could acknowledge this intuition. This bound could 
particularly help us in the design of the LP matrix and provide 
an estimation of the achievable diversity order of the coded 
LP-OFDM system. Unfortunately, the mathematical 
development of this bound does not exist. At the end of this 
section, we will see how the GIIP method can be applied to 
solve this problem. 
 

The achievement of the potential diversity order is also 
contingent upon a properly designed receiver. If we consider 
channel coding and LP as separate tasks, the optimal detector 
for the LP task is based on ML decoding. This decoding 
involves an exhaustive search for the most reliable complex 
symbol vector among the set of all possible complex symbol 
vectors. Nevertheless the cardinality of this set, equal to 2qM, 
leads to prohibitive complexity for q > 2. Moreover the 
performance depends on the matrix design. In [39], specific 
matrices for M = 2 and M = 4 have been designed achieving 
the maximal diversity order. 
 

To reduce the receiver complexity, Minimum Mean Square 
Error (MMSE) and Zero Forcing (ZF) detectors inspired by 
single user linear detectors can be implemented. However they 
have been rapidly replaced by more powerful detectors such 
as Soft Interference Cancellers (SIC) because of their low 
performance, far from the performance of the M-branch 
diversity system. 
 

Considering channel coding and LP as separate tasks is sub-
optimal from the information theory point of view. The 
intuitive understanding of this sub-optimality relies on the 
following observation. Since the LP detector has no 
knowledge of the channel code constraints and is performed at 
the receiver front end, it cannot take advantage of the channel 
decoder work. The sub-optimality of this receiver design 
exists even if matrices optimised for maximal diversity order 
associated with ML detector are used [40]. In fact, the 
accumulated result of optimal partial operations may not be 
optimal because the processing stream is unidirectional. 
 
 
Turbo detection for LP systems 
 

The optimal receiver in terms of BER performance is 
obviously the ML receiver operating on the joint channel 
coder, interleaving and LP process. However, this receiver is 
completely intractable, not only for hardware implementation 
but also for performance evaluation through Monte-Carlo 
simulations. 
 

So since the sub-optimality comes from the unidirectional 
stream, the turbo principle will help us to overcome the 
intractability of the joint ML receiver. This principle is carried 
out in introducing a bi-directional stream between the LP 
detector and the channel decoder. 
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As the LP detector does not take into account any soft a 
priori information, a new detector has to be designed. Let us 
have a look on equation (4) and consider HDM as an 
equivalent channel matrix. Consequently the LP system 
equation is a more general system equation since it can 
represent any system with interference such as ISI, MAI, and 
Spatial Interference in the case of MIMO channels. 
 

The first solution based on the turbo principle was initially 
proposed for the ISI problem in the context of frequency 
selective channels [2]. It involves a SOVA detector taking into 
account a priori information unlike the ML detector. This 
SOVA was rapidly replaced by a MAP detector. Another 
solution based on the MMSE criterion with a priori 
information has already been proved to be competitive with 
the MAP turbo-equaliser in the context of frequency-selective 
channels [41], [42]. In the sequel we focus on the MMSE 
detector with a priori information applied to the LP scheme. 
 

Fig. 9 depicts the MMSE turbo-detector. The detector is 
constrained to a classical Interference Canceller (IC) structure. 
Thanks to the unitary property of the LP matrix  and to the 
diagonal property of the channel matrix H, the equalisation 
matrix P is also diagonal P = diag(p0,…,pM-1). Let’s 
define ( )jiMM g ,

1 == − PHDDG . The output of the MMSE 

detector is~  is given by: 
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Figure 9. LP detector with a priori information. 
 

Deriving the MMSE criterion with a priori information 

leads to minimise ⎥⎦
⎤

⎢⎣
⎡ − ŝ~E 2

ii ss . The equalisation 

coefficients can be written as in [43]: 
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Equation (7) provides an easy way to evaluate the 

equalisation coefficients, but it requires the knowledge of 2
ŝσ . 

This variance is estimated over a decoded block after the soft 

mapper for each iteration using the following approximation 
[41]: 
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where N is the block size. In the previous notations, the index 
l of the current iteration has been omitted. Actually as nŝ  and 

2
ŝσ  are updated every iteration, the equalisation matrix )(lP  is 

computed once per iteration in the case of a slow fading 
channel (H constant over one block). The detector complexity 
is consequently reduced. 
 

Two particular cases can be emphasized: the first iteration, 
where no a priori information is available, and the genie aided 
case, where ŝ  is equal to s . At the first iteration, as 2

ŝσ  is 

equal to zero, it results in a classical MMSE equalization 
without interference cancellation. In the genie aided case, the 
equalization coefficients become: 
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corresponding to the coefficients of the channel matched filter. 
The new expression for the estimated symbols is then: 
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As the noise term is a linear combination of independent 

Gaussian noise realizations, it keeps its Gaussian distribution 
whatever the LP matrix type. Consequently the output of the 
genie aided detector does not depend on the LP matrix type. 
The derivation of the union bound of the genie aided scheme 
is performed in the same way as for the coded system over M 
diversity branches assuming a MRC receiver. This results in 
equation (5) [40]. Therefore if the iterative process converges 
towards its genie aided scheme, the system is able to exploit 
the maximum diversity order M, whatever the LP matrix type. 
In practice, the genie aided case does not occur since this 
assumes noise-free symbol estimates. Nevertheless, at high 
SNR and for a sufficiently large number of iterations, the 
iterative process has to converge towards it. The genie aided 
performance is consequently a lower bound for the iterative 
process. 
 

Except for the genie aided case, the coefficients of the LP 
detector depend on the matrix type. Consequently, at the first 
iterations the performance of the iterative process is driven by 
the local performance of the LP detector and the channel 
decoder. In particular, the position of the trigger point can be 
shifted towards higher SNR when using a non optimal matrix 
according to the ML criterion. 
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So far, the genie aided bound was the only means to assess 
the performance of turbo-detectors or turbo-equalizers. We 
propose to apply the GIIP method to the particular case of the 
turbo-detector for the LP scheme. 
 
Application of the GIIP technique 
 
The channel code considered here is a simple convolutional 
code and the channel decoder processes only the LLRs 
derived from the detected symbols supplied by the LP 
detector. The GIIP assessment technique as described in 
section III is applied to the turbo-detector. During stage 1, 
uncorrupted channel complex symbols are provided to the LP 
detector. Moreover, the LP detector benefits from the channel 
decoder output through the soft complex mapper. During stage 
2, the LP detector receives noisy channel complex symbols 
and the turbo-detector works again during nit,2 iterations. 
 

The LP scheme is performed for two kinds of matrices of 
size 4: Hadamard and complex matrices as defined in [44]. 
The Hadamard matrices are recursively defined for each M 
power of two by: 
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The complex matrix has been devised to be optimal under 

the ML criterion for the LP detector alone. The matrix of size 
4x4 is given by  
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The performance of the turbo-detector for the LP scheme 

regarding the BER is given for the 16-QAM modulation and a 
CRSC code with constraint length K = 7. A puncturing pattern 
is applied to obtain a rate equal to 2/3. The channel decoder 
uses the Max-Log MAP algorithm and the turbo-detector 
performs 8 iterations. These parameters for the channel code 
and modulation have been chosen in order to obtain different 
simulation results for the Hadamard and the complex matrices. 
The combination of a high rate code and high order 
modulation is less favourable to the Hadamard matrix [43].  
 

With perfect time and frequency interleaving, the OFDM 
modulation, the frequency selective channel and the OFDM 
demodulation can be represented by the flat fading Rayleigh 
channel. Fig. 10 and 11 present the performance results of the 
turbo-detector over this channel, for the Hadamard matrix and 
the complex matrix respectively. The convergence is slightly 
faster with the complex matrix than with the Hadamard one, 
as expected.  Moreover, the LP scheme with the Hadamard 

matrix exhibits a flaw of convergence. The genie and GIIP 
performance is not reached. For both cases, the performance 
of the turbo-detector approaches the GIIP curve without 
crossing it.  
 

 
Figure 10. BER results of the turbo-detector for the LP complex 

matrix with 512 information bytes. 
 

 
 

Figure 11. BER results of the turbo-detector for the LP Hadamard 
matrix with 512 information bytes. 

 
The genie aided performance and the GIIP performance 

merge at high SNR. The difference observed at low SNR can 
be intuitively explained as follows. Consider that the ML 
decoding corresponds to a perfect bi-directional exchange 
(without correlation) between the LP detector and the channel 
decoder. At low SNR, the information provided by the 
channel decoder to the LP detector cannot be perfect because 
of the additive noise. Therefore the ML decoding is not as 
efficient as the genie aided receiver could let us suppose. If we 
consider the GIIP performance as a lower bound for the ML 
decoding performance, this explains the difference at low 
SNR. On the other hand, at high SNR, the assumption of 
noise-free symbol estimates becomes realistic and the 
performance curves merge. As well as the genie aided 
performance, the GIIP performance for the Hadamard and the 
complex matrices match perfectly.  
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V. CONCLUSION 
With the development of turbo and LDPC codes and the 
extension of the turbo principle, the performance of 
communication systems, as sophisticated as they may be, can 
be obtained very close to the optimum. This paper was 
organized as a kind of journey beginning in the early 90's and 
highlighting the key features of this new way of thinking 
information processing in receivers. Two examples of turbo 
processing: MIMO and linear precoding iterative detection 
have been detailed to illustrate the gains that bi-directional 
message passing can offer. An original method, called genie-
initialised iterative processing (GIIP) has been proposed to 
evaluate the performance of iterative processing. This method 
appears to give a tight lower bound of the maximum 
likelihood performance for any signal to noise ratio and thus 
can be viewed as a powerful tool to assess the quality of 
communication systems involving iterative receivers. 
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