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Some Extended Results on the Design of Punctured
Serially Concatenated Convolutional Codes

Massimiliano Laddomada and Bartolo Scanavino

Abstract— The aim of this paper is twofold. On one hand, it
presents the results of the search for good punctured systematic
recursive convolutional encoders suitable for application in seri-
ally concatenated convolutional codes (SCCCs) operating in two
different target regions: at low-to-moderate signal-to-noise ratios
(SNRs), i.e., in the so-called waterfall region, and at high SNRs.
On the other hand, it provides some useful design guidelines for
choosing the constituent encoders in an SCCC.

The results of the search for good SCCCs operating in the
waterfall region rely upon an effective algorithm, based on
density evolution technique, first proposed in a companion paper.
Good punctured SCCCs were obtained through considerations
deduced by the behaviour of the bit error probability of an SCCC
for high values of both SNR and interleaver length, i.e., through
asymptotic considerations.

The mother codes in the serial concatenation are rate 1
2

recursive convolutional encoders (RCC) found by an exhaustive
search for encoders tailored to SCCC schemes, using two differ-
ent selection criteria. Extensive tables of optimized puncturing
patterns for various mother codes and SCCCs are presented
along with sample simulation results.

Index Terms— Convolutional codes, high rate, punctured, se-
rially concatenated convolutional codes, turbo codes.

I. INTRODUCTION

THE idea of serial concatenation of interleaved codes
dates back to 1966 upon a seminal work of Forney [1].

Such codes have been in use for a while in many different
applications from deep space to compact discs for the music
industry. The recent explosion of research activities has largely
surrounded Parallel Concatenated Convolutional Codes (PC-
CCs) and SCCCs [2]-[4] and iterative soft decoding. A block
diagram of a typical SCCC with some useful notation that will
be used throughout the paper is depicted in Fig. 1.

In wireless band-limited channels spectral efficiency calls
for high-rate channel codes with rate k

k+s to limit the band-
width expansion inherent in channel coding. Cain et al. in
[5] first suggested puncturing a mother code of lower rate for
obtaining higher rate codes with simplified Viterbi decoding.
Since then, many papers have addressed the problem of
obtaining optimal punctured convolutional codes, but most of
the literature has been devoted to finding optimal puncturing
patterns (PPs) for non-recursive convolutional encoders. The
recent research activities related to Turbo codes suggest that
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there is a great need for suitable high-rate recursive convo-
lutional encoders to be used in such applications. Among
the various papers in this field, several are of relevance in
connection with the current work. The survey of the literature
we present in the following is by no means exhaustive and is
meant to simply provide a sampling of the literature in this
fertile area.

Classical papers [6]-[17] deal with the problem of obtaining
optimal PPs for non-recursive convolutional encoders. An-
other interesting approach to puncturing was introduced by
Hagenauer in 1988. In detail, in [18] Hagenauer introduced
the so called Rate-Compatible Punctured Convolutional Codes
(RCPCCs). In RCPCC, a low rate 1/n mother convolutional
code is punctured periodically with period P. RCPCCs are
essentially a class of punctured convolutional codes (CCs) with
rate k

k+s , whereby the obtained puncturing table is such that
all code bits of higher rate codes are used by the lower rate
codes. The concept of RCPCC has been extended in [19]-[21]
to both PCCCs and SCCCs. Papers [21]-[25] deal with the
design of high-rate SCCCs, while articles [26]-[28] address the
design of good constituent codes for turbo codes applications.
In particular, in [23] the authors proposed a design algorithm
for SCCCs aiming at minimizing the effects of both weigth-2
and weigth-3 input error events on the SCCC distance spectra.
Also related to the current work are papers [29]-[31], in which
the authors proposed techniques to analyze the convergence
behavior of parallel and serially concatenated convolutional
codes.

This paper presents the results of an extensive search for
SCCC schemes constituted by punctured encoders optimized
for two different SCCC target SNR operating regions, i.e., at
low-to-moderate SNRs and at high SNRs.

Before proceeding, let us review the mathematical notation
on punctured CCs used throughout the paper. Puncturing is
obtained by regularly deleting some output bits of a mother
code with rate 1/n. As a result of puncturing, the trellis
of the punctured code becomes periodically time-varying.
In the case of concatenated schemes, there is no loss of
generality if we consider a rate 1/2 systematic mother encoder,
specified by a 1 × 2 generator matrix G(D) =

[
1, g1(D)

g0(D)

]

composed of two polynomials g1(D) and g0(D) specifying
the connections of the finite state encoder. In this formula,
gi(D) = gi

o + gi
1D + . . . + gi

νDν , where i = 0, 1, gi
l ∈ {0, 1}

and l = 0, . . . , ν. The variable ν specifies the memory of the
convolutional encoder (the encoder constraint length is 1+ν).
The form of the generator matrix G(D) expresses the fact that
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Fig. 1. Block diagrams of the encoder and iterative decoder for SCCCs.

the considered encoders are recursive (i.e., we have ratio of
polynomials).

The rest of the paper is organized as follows. Section II is
devoted to the formulation of the problem and presents the
code search technique we have employed for the design of
asymptotically good punctured SCCCs composed by punc-
tured constituent encoders of rate k

k+s , for k = 2, . . . , 8 and
s = 1, . . . , k−1. In section III, we deal with the technique for
the design of good SCCCs, operating in the low-to-moderate
SNR region, designed through an effective algorithm first
proposed in a companion paper [32]. In section IV, we present
the results of our code search and propose their potential
applications to SCCCs. Conclusions are drawn in section V.

II. PROBLEM FORMULATION AND CODE SEARCH
TECHNIQUE FOR ASYMPTOTICALLY GOOD SCCCS

This section deals with the design techniques adopted in
our search for punctured encoders to be used as outer and
inner encoders for asymptotically good SCCCs. For clarity of
exposition, we consider the design of good constituent codes
for SCCCs separately from the design of the related puncturing
patterns.

A. Design of Constituent Encoders for Asymptotically Good
SCCCs

In this section, the emphasis is on the design of the
constituent encoders in SCCCs.

Based on the asymptotic analysis accomplished in [4], we
can state that the inner encoder in an SCCC should be a
recursive convolutional encoder (no matter it is systematic
or not) in order for the interleaver to yield a coding gain,
while the outer encoder is only required to have maximum
free distance, regardless of whether it is recursive or not.

The design approach pursued in this work is strictly related
to the average asymptotic bit error probability of SCCCs, that,
for interleaver sizes N very large and for high values of Eb

No
,

are given by [4]:

PbSCCC <̃CeN
−

do
f
2 Q

(√
do

fd2Rs
Eb

No

)
(1)

for even values of do
f , and

PbSCCC <̃CoN
−

do
f
+1

2 Q

(√[(
do

f − 3
)

d2 + 2d3

]
Rs

Eb

No

)

(2)

for odd values of do
f . In both equations, Ce and Co are two

terms which do not depend on the interleaver length N , do
f is

the free distance of the outer encoder, d2 is the effective free
distance of the inner encoder (i.e., the minimum weight of the
inner codewords generated by weight-2 input sequences), Rs

is the rate of the SCCC, d3 is the minimum weight of the
inner code codewords generated by weight-3 input sequences,
and Q(.) is the Gaussian integral function defined by Q(to) =

1√
2π
· ∫∞

to
e−

t2
2 dt.

Equations (1) and (2) suggest that the outer encoder should
be a convolutional encoder with maximum free distance: the
interleaver gain goes asymptotically as N−

do
f
+1

2 for odd values

of do
f , and as N−

do
f
2 for even values of do

f . In particular,
compatibly with the desired rate Rs of the SCCC, it is better
to choose outer encoders with odd values of do

f . It is not
necessary for the outer encoder to be neither recursive, nor
systematic. Since a large body of literature has addressed the
design of good non-recursive convolutional encoders, in this
paper we only focus on good punctured codes obtained from
recursive, systematic convolutional encoders.

Based on observations deduced above, the code search
strategy adopted for obtaining good outer encoders consists
in minimizing the required SNR for an appropriately chosen
target bit error rate (BER). In fact, as suggested by Lee in [14]-
[16], the criteria to only maximize the minimum distance of
a code may be valuable if the target BER is extremely small.
When on the other hand the target BER is in the moderate
range, it is insufficient to only consider the first distance terms
of the code’s distance spectrum. Furthermore, minimization
of the BER based on the first few terms of the distance
spectrum would require the knowledge of the CC operating
SNR, which is not always given or known specially if the CC
must be embedded in a PCCC or SCCC scheme. Given these
considerations, it is preferable to minimize the required SNR
for a given target BER. This is indeed the strategy adopted
for the code search presented in this paper. Notice that, from
a practical point of view, the minimization of the required
SNR for a small value of the target BER often yields codes
which give distance spectra with maximum free distance. This
is essentially due to the fact that the codeword distances appear
in the Q (·) function defining the BER probability as shown
in (3). The main difference between our approach and that
of maximizing only the minimum distance, is that in our
approach the codeword multiplicities and the distance profile
has a major impact on the choice of the codes.

As a cost function for BER minimization, we employed the
upper-bound on the performance of a convolutional code of
rate Rc = k

n under soft-decision maximum likelihood Viterbi
decoding, defined as follows:

Pb ≤ 1
k

∞∑

d=dfree

wdQ

(√
2

Eb

No
Rcd

)
(3)

where dfree is the minimum distance of the CC, also called
free distance, wd is the cumulative input Hamming weight
associated with all the incorrect paths (also so-called error
events) in the trellis departing from the correct path at a given
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node and merging with the correct path later, whose Hamming
weight of the coded sequence is d, and Q(.) is the Gaussian
integral function defined above.

Recursive mother encoders selected as constituent encoders
in the serial concatenation have been obtained through a
search for good constituent recursive, systematic, rate 1/2
convolutional encoders by minimizing the SNR for a given
target BER [14]-[16]. In order to resolve potential ties, in
a second phase, between all the encoders yielding similar
performances we have chosen the encoder with the best d2,
and, subsequently, the best d3.

The mother encoders obtained by minimization of the SNR
can be used as outer codes in SCCC schemes, since the
optimization approach has the goal to maximize the minimum
distance of the punctured code and minimize the overall
weight associated with the input patterns yielding the min-
imum distance, followed by maximization of the successive
low distance terms and minimization of their corresponding
input weights for the first six minimum distance terms used in
the formulation of the cost function in (3). Extensive analysis
suggested us the use of the target BER=10−6: such a small
target value makes low-weight codewords to dominate the cost
function in (3). In the following, we will identify this criterion
with the acronym C1.

In connection with the design of inner encoders, we used
as objective function the maximization of the effective free
distance d2. In a second phase, among the encoders yielding
the same d2 (if several), we have chosen the one requiring
the minimum SNR for achieving a predefined target BER,
and then the one with maximum d3. In the following, we will
identify this criterion with the acronym C2.

The results of this search are shown in Table I: the table
contains the best rate 1/2, systematic, recursive constituent
encoders with memory ν equal to 2, 3, 4 and 5. Each row
presents the optimization results for a given memory ν. In
any given row, we show two encoders found using the two
different objective functions presented above. In particular,
in the first line of a given row we present the best encoder
found maximizing d2, while in the second line we present
the best encoder found by minimizing the required SNR
for achieving a predefined target BER. The second column
shows the generator matrices of the optimal encoders, the third
column lists the first few terms of the code distance spectra
(each triplet represents the Hamming weight of the codewords
di, the multiplicity mi of all the input patterns with overall
weight wi leading to codewords with weight di, and the overall
input weight wi) and the last column shows the effective free
distance d2 and the distance generated by weight-3 sequences
denoted d3 (the entry d3 = ∞ is used to signify the fact that
there are no weight-3 input patterns leading to error events in
the trellis of the examined encoder).

The results obtained for the 32-state, systematic, recursive
encoders are slightly different. During our search, we found an
encoder satisfying both objective functions mentioned above
(listed in the lower line of Table I for ν = 5 encoders). For
this reason, in the upper line of the same row we show the best
encoder having maximum d3 while simultaneously satisfying
the minimum SNR requirement and achieving maximum d2.

This encoder can be useful as inner code in an SCCC when
the outer code is punctured so that its minimum distance is
equal to 3 or lower. In this case, because of the absence of
inner code codewords generated by weight-3 input patterns,
the overall SCCC could yield better performance.

For the sake of clarity, we show an example of how the
generator matrices in Table I have to be interpreted. For
example, the 16-state systematic encoder whose generator
matrix expressed in octal form in Table I is G(D) =

[
1, 23

35

]

has the equivalent representation G(D) =
[
1, 1+D3+D4

1+D+D2+D4

]
.

In relation to the values achievable by the effective free dis-
tance, d2, in [27] it is shown that the maximum d2 achievable
with a recursive, systematic, rate 1/2 encoder with generator
matrix G(D) =

[
1, g1(D)

go(D)

]
is defined by:

d2 ≤ 4 + 2ν−1. (4)

In particular, equality is achieved when the denominator poly-
nomial go(D) is primitive and under two additional conditions
which require that go(D) 6= g1(D) and that deg [gi(D)] ≤ ν
for i = 0, 1.

B. Design of Punctured Outer Encoders for Asymptotically
Good SCCCs

In this section, the emphasis is on the design of punctured
convolutional encoders suitable as outer encoders in asymp-
totically good SCCCs.

The design criteria relies upon the considerations deduced
above from Equ.s (1) and (2). Indeed, the code search strategy
adopted for obtaining good PPs for outer encoders consists in
minimizing the required SNR for the target BER=10−6. We
searched for the best PPs with this criterion, by using the
BER upper bound as expressed in (3), but, for complexity
reasons, based on the first four dominant terms of the distance
spectrum. Furthermore, we have verified experimentally that
the minimization of the required SNR for this target BER prac-
tically yields PPs which give distance spectra with maximum
free distance. The main difference between our approach and
that of maximizing only the minimum distance, is that in our
approach the codeword multiplicities and the distance profile
has a major impact on the choice of the PPs. In order to resolve
potential ties, in a second phase, between all the PPs yielding
similar performances we have chosen the PP with the best d2

and subsequently the best d3. In the following, we will identify
this criterion with the acronym C1 when applied to PPs.

The mother encoders to which puncturing is applied are
the best codes found under criterion C1 discussed in the
previous section. We have used these codes as mother codes by
following the generally accepted rule that good mother codes
lead to good punctured codes. Indeed, practical documented
results show that PPs with maximum possible dfree are
derived from mother encoders having maximum dfree [24],
[25].

C. Design of Punctured Inner Encoders for Asymptotically
Good SCCCs

In this section, the emphasis is on the design of punctured
convolutional encoders suitable as inner encoders in asymp-
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totically good SCCCs.
Equations (1) and (2) suggest that good punctured inner

encoders in an SCCC are the ones which maximize the
effective free distance d2. In other words, the effective free
distance d2 of the inner encoder acts as the free distance of the
outer encoder, do

f , in the case in which do
f is even. In the case

in which do
f is odd, we should also maximize the d3 in (2) (d3

is the minimum weight of the inner code codewords generated
by weight-3 input sequences). Note that these considerations
are valid for the design of both mother encoders and related
PPs.

Furthermore, the mother encoders designed by maximizing
the effective free distance can also be used as constituent en-
coders in parallel concatenated convolutional codes (PCCCs),
since it is known that, asymptotically, the upper-bound on the
BER of a PCCC can be expressed as:

PbP CCC
≤ 1

N
Q

(√
2

Eb

No
Rcd2

)
(5)

where Rc is the code rate of the PCCC, and N is the
interleaver length. Since this paper is devoted to the design
of good punctured encoders for SCCC schemes, we will not
mention PCCCs any further in what follows. The interested
readers can refer to [27], [33] for details on this topic.

The search for good PPs for inner encoders has been accom-
plished by choosing the PP with the best d2, and, subsequently,
the best d3. In order to resolve potential ties, in a second
phase, between all the PPs yielding similar performances in
terms of d2 and d3, we have chosen the PP that minimizes
the SNR to achieve the target BER= 10−6 as expressed in
(3), but based on the first four dominant terms of the distance
spectrum. Obviously, this approach yields asymptotically good
PPs for inner codes in SCCCs operating at high SNRs. In the
following, we will identify this criterion with the acronym C2.

The mother encoders to which puncturing is applied are the
best codes found under criterion C2 discussed above. Practical
documented results show that PPs with maximum possible d2

are derived from mother encoders having maximum d2 [24],
[25].

III. DESIGN OF GOOD SCCCS THROUGH DENSITY
EVOLUTION CODE MATCHING

The design of good SCCCs operating in the low-to-
moderate SNR range (i.e., in the waterfall region before
the error floor shows its effects) cannot be based on the
asymptotic considerations deduced by (1) and (2). During
the search for good SCCCs, we recognized that an effective
design algorithm for punctured inner encoders in SCCCs
operating in the low-to-moderate SNR range could be based on
the density evolution technique [29], [30], [34], whose main
merit is to highlight the convergence behavior of the iterative
decoder. In a companion paper [32], we proposed an effective
algorithm for matching both outer and inner encoders in an
SCCC scheme in such a way as to obtain good punctured
SCCCs operating in the so-called waterfall region. In order to
understand the rationales beyond the proposed algorithm, we
will briefly recall some results presented in [32]. In particular,
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Fig. 2. Simulation results for various punctured SCCCs constituted by
different puncturing patterns for the inner encoder G(D) = [1, 5/7]. All
SCCCs have the same spread-36 interleaver of size 1,344. The legend shows,
for each SCCC, the PP of the inner encoder and the SNRO provided by the
proposed algorithm after 10 iterations. The title of the figure shows the rate
Ro of the outer code, the rate Ri of the inner encoder, the interleaver size,
and the generator matrices of both outer and inner encoders.

first we will describe a reasonable model for characterizing
the extrinsic information exchanged during iterative decoding
of SCCCs, and, then, we will discuss a nonlinear model for
describing the behaviour of the iterative decoder.

Consider the iterative decoder scheme of an SCCC shown in
Fig. 1, whereby the extrinsic information, denoted by Π(·), is
passed from one Soft-In Soft-Out (SISO) decoder to the other.
Under the assumption of using large, random interleavers,
the extrinsic information messages Π(·) can be considered
as statistically independent and identically distributed random
variables approaching Gaussian-like distributions pΠ(ξ) with
increasing number of iterations of the iterative decoder. As
shown in [31], the probability density function pΠ(ξ) is
symmetric and, as a consequence, the statistical mean µΠ =
E(Π) represents the discrimination between the two proba-
bility density functions pΠ(ξ) and pΠ(−ξ). Based on these
assumptions, the logarithmic version of the SISO input/output
can be modelled as [29]:

Π = log
P (·|1)
P (·|0)

= µΠ · a + n (6)

where a is a binary antipodal symbol (±1), n is a Gaussian
noise with zero mean and variance σ2

Π, and µΠ = σ2
Π
2 is the

mean of Π.
The random variable Π can be analyzed by specifying

a signal-to-noise ratio defined as SNR = µ2
Π

σ2
Π

. The latter
approach was first proposed in [30]. Under the assumption that
pΠ(ξ) is both Gaussian and symmetric, it is possible to observe
that σ2

Π = 2 ·µΠ. The previous relation yields SNR = µΠ/2.
The iterative decoder shown in Fig. 1 can be described by

a nonlinear dynamical feedback system, involving two SISO
decoders whose behaviour is described by two nonlinear func-
tions defined as follows. The nonlinear function accomplished
by the inner decoder on its input variables, namely SNRIi
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TABLE I
OPTIMIZED RATE 1

2
, RECURSIVE CONSTITUENT ENCODERS FOR CONCATENATED CHANNEL CODES.

R = 1
2 G(D) =

[
1,

g1
go

]
Distance Spectra–di, mi, wi d2 , d3

ν = 2, d2 G(D) =
[
1, 5

7

]
5, 1, 3 − 6, 2, 6 − 7, 4, 14 − 8, 8, 32 − 9, 16, 72 d2 = 6, d3 = 5

ν = 2, snr G(D) =
[
1, 7

5

]
5, 1, 2 − 6, 2, 6 − 7, 4, 14 − 8, 8, 32 − 9, 16, 72 d2 = 5, d3 = ∞

ν = 3, d2 G(D) =
[
1, 17

13

]
6, 1, 4 − 7, 3, 9 − 8, 5, 20 − 9, 11, 51 − 10, 25, 124 d2 = 8, d3 = 7

ν = 3, snr G(D) =
[
1, 15

17

]
6, 1, 2 − 7, 3, 12 − 8, 5, 20 − 9, 11, 48 − 10, 25, 126 d2 = 6, d3 = ∞

ν = 4, d2 G(D) =
[
1, 35

23

]
7, 2, 8 − 8, 3, 12 − 9, 4, 16 − 10, 16, 84 − 11, 37, 213 d2 = 12, d3 = 7

ν = 4, snr G(D) =
[
1, 23

35

]
7, 2, 6 − 8, 3, 12 − 9, 4, 20 − 10, 16, 76 − 11, 37, 194 d2 = 7, d3 = ∞

ν = 5, d3 G(D) =
[
1, 71

53

]
8, 3, 12 − 10, 16, 84 − 12, 68, 406 − 14, 860, 6516 − 16, 3812, 30620 d2 = 12, d3 = ∞

ν = 5, snr, d2 G(D) =
[
1, 67

51

]
8, 2, 7 − 10, 20, 110 − 12, 68, 398 − 14, 469, 3364 − 16, 2560, 20864 d2 = 20, d3 = 8

TABLE II
PUNCTURING TABLE FOR 4-STATE RECURSIVE CONSTITUENT ENCODERS.

G(D) =
[
1, 5

7

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.13, (3,1,3) p.56, (3,4,10) p.253, (2,1,2) p.1253, (2,2,4) p.3253, (2,4,10) p.25253, (2,7,14) p.125253, (2,9,18)

d2 = 4, d3 = 3 d2 = 3, d3 = 3 d2 = 2, d3 = 3 d2 = 2, d3 = 3 d2 = 2, d3 = 3 d2 = 2, d3 = 3 d2 = 2, d3 = 3
d2,BER,opt p.7, (3, 1, 3) p.27, (2, 1, 4) p.067, (2, 4, 13) p.527, (2, 6,26) p.3525, (2, 84,2693) p.12527, (2, 15,74) p.72525, (2, 153,5216)

d2 = 5, d3 = 3 d2 = 4, d3 = 3 d2 = 4, d3 = 2 d2 = 4, d3 = 2 d2 = 4, d3 = 2 d2 = 4, d3 = 2 d2 = 4, d3 = 2

G(D) =
[
1, 5

7

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.57, (4,3,8) p.257, (4,23,66) p.277, (4,3,10) p.1273, (3,4,10) p.1277, (4,11,30) p.1377, (4,2,6) p.5656, (3,4,10)

d2 = 4, d3 = 4 d2 = 4, d3 = 4 d2 = 5, d3 = 4 d2 = 3, d3 = 3 d2 = 4, d3 = 4 d2 = 5, d3 = 4 d2 = 3, d3 = 3
d2,BER,opt p.57, (4,3,8) p.167, (3,1,3) p.277, (4,3,10) p.573, (3,7,23) p.577, (3,3,11) p.1377, (4,2,6) p.3173, (3,12,42)

d2 = 4, d3 = 4 d2 = 5, d3 = 3 d2 = 5, d3 = 4 d2 = 4, d3 = 3 d2 = 5, d3 = 3 d2 = 5, d3 = 4 d2 = 4, d3 = 3

G(D) =
[
1, 5

7

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.5673, (3,1,3) p.5757, (4,3,8) p.5777, (4,2,6) p.25273, (2,1,2) p.25657, (3,4,10) p.25757, (4,18,52) p.27677, (4,6,18)

d2 = 4, d3 = 3 d2 = 4, d3 = 4 d2 = 5, d3 = 4 d2 = 2, d3 = 3 d2 = 3, d3 = 3 d2 = 4, d3 = 4 d2 = 4, d3 = 4
d2,BER,opt p.3567, (3,1,3) p.3577, (3,1,3) p.5777, (4,2,6) p.12573, (2,2,6) p.14757, (3,7,23) p.12777, (2,1,3) p.16777, (3,1,3)

d2 = 5, d3 = 3 d2 = 5, d3 = 3 d2 = 5, d3 = 4 d2 = 4, d3 = 2 d2 = 4, d3 = 3 d2 = 5, d3 = 2 d2 = 5, d3 = 3

G(D) =
[
1, 5

7

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.27777, (4,2,6) p.125273, (2,1,2) p.127273, (3,8,20) p.127657, (4,23,66) p.127677, (4,15,43) p.137677, (4,3,10) p.137777, (4,2,6)

d2 = 5, d3 = 4 d2 = 2, d3 = 3 d2 = 3, d3 = 3 d2 = 4, d3 = 4 d2 = 4, d3 = 4 d2 = 5, d3 = 4 d2 = 5, d3 = 4
d2,BER,opt p.27777, (4,2,6) p.52573, (2,4,13) p.63673, (3,11,35) p.73567, (3,1,3) p.73577, (3,2,6) p.137677, (4,3,10) p.137777, (4,2,6)

d2 = 5, d3 = 4 d2 = 4, d3 = 2 d2 = 4, d3 = 2 d2 = 5, d3 = 3 d2 = 5, d3 = 3 d2 = 5, d3 = 4 d2 = 5, d3 = 4

G(D) =
[
1, 7

5

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.15, (3,1,2) p.33, (3,6,18) p.147, (2,1,2) p.647, (2,2,4) p.3247, (2,4,8) p.15247, (2,6,12) p.65247, (2,9,18)

d2 = 3 d2 = 3 d2 = 2 d2 = 2 d2 = 2 d2 = 2 d2 = 2
d2,BER,opt p.15, (3,1,2) p.33, (3,6,18) p.133, (2,1,4) p.527, (2,2,10) p.2533, (2,4,18) p.12533, (2,7,36) p.52527, (2,9,54)

d2 = 3 d2 = 3 d2 = 3 d2 = 3 d2 = 3 d2 = 3 d2 = 3

G(D) =
[
1, 7

5

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.37, (4,3,8) p.137, (4,23,92) p.177, (4,3,6) p.765, (3,4,12) p.775, (4,11,36) p.777, (4,2,4) p.3333, (3,6,18)

d2 = 4 d2 = 4 d2 = 4 d2 = 3 d2 = 4 d2 = 4 d2 = 3
d2,BER,opt p.37, (4,3,8) p.137, (4,23,92) p.177, (4,3,6) p.765, (3,4,12) p.775, (4,11,36) p.777, (4,2,4) p.3333, (3,6,18)

d2 = 4 d2 = 4 d2 = 4 d2 = 3 d2 = 4 d2 = 4 d2 = 3

G(D) =
[
1, 7

5

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.6735, (3,1,2) p.3737, (4,3,8) p.3777, (4,2,4) p.15333, (2,1,2) p.13567, (3,5,14) p.13737, (4,18,56) p.17577, (4,6,14)

d2 = 3 d2 = 4 d2 = 4 d2 = 2 d2 = 3 d2 = 4 d2 = 4
d2,BER,opt p.6735, (3,1,2) p.3737, (4,3,8) p.3777, (4,2,4) p.13336, (2,1,4) p.13567, (3,5,14) p.13737, (4,18,56) p.17577, (4,6,14)

d2 = 3 d2 = 4 d2 = 4 d2 = 3 d2 = 3 d2 = 4 d2 = 4

G(D) =
[
1, 7

5

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.17777, (4,2,4) p.65553, (2,1,2) p.56567, (3,8,26) p.57537, (4,23,92) p.57577, (4,15,44) p.77577, (4,3,6) p.77777, (4,2,4)

d2 = 4 d2 = 2 d2 = 3 d2 = 4 d2 = 4 d2 = 4 d2 = 4
d2,BER,opt p.17777, (4,2,4) p.55533, (2,1,4) p.56567, (3,8,26) p.57537, (4,23,92) p.57577, (4,15,44) p.77577, (4,3,6) p.77777, (4,2,4)

d2 = 4 d2 = 3 d2 = 3 d2 = 4 d2 = 4 d2 = 4 d2 = 4

and Eb/No, can be described as:

SNRIo = Ginn

(
SNRIi,

Eb

No

)
(7)

whereby SNRIi measures the quality of the extrinsic in-
formation exchanged between the two SISO decoders during
the iterative decoding algorithm, while Eb/No measures the
quality of the channel symbols normalized per information bit.

In the same manner, we can identify the input-output
relation for the outer SISO decoder by the following equation:

SNROo = Gout (SNROi) , (8)

and the input-output relation between the input variable
SNROi and the SNRO evaluated on the soft output,
Πo(u;O), of the information bits, as follows:

SNRO = Gdec(SNROi). (9)

Since mathematical expressions for characterizing the func-
tions Ginn(·), Gout(·), and Gdec(·) are very hard to define,
in the proposed algorithm these functions are empirically
evaluated by Monte Carlo simulation.

Starting from the nonlinear model of the iterative decoder,
the design of good SCCCs operating in the waterfall region



240 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

TABLE III
PUNCTURING TABLE FOR 8-STATE RECURSIVE CONSTITUENT ENCODERS.

G(D) =
[
1, 17

13

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.13, (4,3,10) p.33, (4,29,128) p.172, (3,5,18) p.1253, (3,15,40) p.5253, (2,1,2) p.15256, (2,2,6) p.125253, (2,4,8)

d2 = 4, d3 = 5 d2 = 4, d3 = 4 d2 = 4, d3 = 3 d2 = 3, d3 = 3 d2 = 2, d3 = 3 d2 = 3, d3 = 2 d2 = 2, d3 = 3
d2,BER,opt p.7, (3, 1, 4) p.27, (3, 3, 14) p.135, (2, 23,598) p.527, (2, 3,18) p.2527, (2, 4,20) p.12527, (2, 7,42) p.56525, (2, 83,2892)

d2 = 7, d3 = 4 d2 = 6, d3 = 4 d2 = 6, d3 = 4 d2 = 6, d3 = 4 d2 = 6, d3 = 4 d2 = 6, d3 = 4 d2 = 6, d3 = 4

G(D) =
[
1, 17

13

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.57, (4,1,3) p.257, (4,3,10) p.277, (4,1,4) p.1257, (4,19,59) p.1277, (4,2,7) p.1377, (5,4,14) p.3333, (4,29,128)

d2 = 5, d3 = 4 d2 = 4, d3 = 5 d2 = 6, d3 = 6 d2 = 4, d3 = 4 d2 = 5, d3 = 4 d2 = 6, d3 = 5 d2 = 4, d3 = 4
d2,BER,opt p.37, (4,1,4) p.167, (3,1,4) p.177, (4,1,4) p.557, (3,2,6) p.577, (4,5,21) p.777, (5,5,19) p.2727, (3,3,14)

d2 = 7, d3 = 5 d2 = 7, d3 = 4 d2 = 7, d3 = 5 d2 = 6, d3 = 3 d2 = 7, d3 = 4 d2 = 7, d3 = 5 d2 = 6, d3 = 4

G(D) =
[
1, 17

13

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.5673, (4,3,10) p.5377, (4,1,3) p.5777, (5,3,11) p.15273, (3,7,20) p.15557, (4,20,70) p.25377, (4,3,9) p.27377, (5,12,39)

d2 = 4, d3 = 5 d2 = 5, d3 = 4 d2 = 6, d3 = 5 d2 = 3, d3 = 3 d2 = 4, d3 = 4 d2 = 5, d3 = 4 d2 = 5, d3 = 5
d2,BER,opt p.3567, (3,1,4) p.3737, (4,1,4) p.3777, (5,5,19) p.12567, (2,1,4) p.13567, (3,3,12) p.17177, (4,8,31) p.17776, (4,1,4)

d2 = 7, d3 = 4 d2 = 7, d3 = 5 d2 = 7, d3 = 5 d2 = 6, d3 = 4 d2 = 6, d3 = 4 d2 = 6, d3 = 4 d2 = 6, d3 = 5

G(D) =
[
1, 17

13

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.27777, (5,2,8) p.75172, (3,5,18) p.125657, (3,2,4) p.135673, (4,3,10) p.125777, (4,2,6) p.135777, (5,10,34) p.137777, (5,2,8)

d2 = 6, d3 = 6 d2 = 4, d3 = 3 d2 = 3, d3 = 4 d2 = 4, d3 = 4 d2 = 5, d3 = 4 d2 = 6, d3 = 5 d2 = 7, d3 = 6
d2,BER,opt p.27777, (5,2,8) p.52567, (2,2,8) p.57167, (3,6,25) p.73567, (3,1,4) p.73737, (4,6,26) p.76777, (4,1,4) p.137777, (5,2,8)

d2 = 6, d3 = 6 d2 = 6, d3 = 4 d2 = 6, d3 = 3 d2 = 7, d3 = 4 d2 = 7, d3 = 5 d2 = 7, d3 = 5 d2 = 7, d3 = 6

G(D) =
[
1, 15

17

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.7, (4,3,12) p.33, (4,29,126) p.136, (3,5,16) p.656, (3,15,50) p.3256, (2,1,2) p.15652, (2,2,4) p.65256, (2,3,6)

d2 = 4 d2 = 4 d2 = 3 d2 = 3 d2 = 2 d2 = 2 d2 = 2
d2,BER,opt p.7, (4,3,12) p.33, (4,29,126) p.127, (2,1,6) p.527, (3,15,92) p.2527, (2,1,6) p.12565, (2,37,1518) p.52527, (2,4,36)

d2 = 4 d2 = 4 d2 = 4 d2 = 4 d2 = 4 d2 = 4 d2 = 4

G(D) =
[
1, 15

17

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.57, (4,1,2) p.167, (4,3,12) p.177, (4,1,2) p.537, (4,19,98) p.677, (4,2,6) p.1377, (5,5,12) p.3333, (4,29,126)

d2 = 4 d2 = 4 d2 = 4 d2 = 4 d2 = 4 d2 = 5 d2 = 4
d2,BER,opt p.37, (4,1,4) p.167, (4,3,12) p.177, (4,1,2) p.537, (4,19,98) p.737, (4,3,12) p.1377, (5,5,12) p.3333, (4,29,126)

d2 = 5 d2 = 4 d2 = 4 d2 = 4 d2 = 5 d2 = 5 d2 = 4

G(D) =
[
1, 15

17

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.3567, (4,3,12) p.3776, (4,1,2) p.3777, (5,3,8) p.15656, (3,8,22) p.15557, (4,20,78) p.15776, (4,5,12) p.15777, (5,13,42)

d2 = 4 d2 = 4 d2 = 5 d2 = 3 d2 = 4 d2 = 4 d2 = 5
d2,BER,opt p.3567, (4,3,12) p.3377, (4,1,4) p.3777, (5,3,8) p.12766, (3,7,34) p.15557, (4,20,78) p.12777, (4,3,12) p.15777, (5,13,42)

d2 = 4 d2 = 5 d2 = 5 d2 = 4 d2 = 4 d2 = 5 d2 = 5

G(D) =
[
1, 15

17

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.17777, (5,2,4) p.57136, (3,5,16) p.57656, (3,3,6) p.73567, (4,3,12) p.57737, (4,2,4) p.67777, (5,11,32) p.77777, (5,2,4)

d2 = 5 d2 = 3 d2 = 3 d2 = 4 d2 = 4 d2 = 5 d2 = 5
d2,BER,opt p.17777, (5,2,4) p.52733, (3,14,78) p.55733, (3,2,8) p.52777, (3,1,4) p.53777, (4,2,8) p.67777, (5,11,32) p.77777, (5,2,4)

d2 = 5 d2 = 4 d2 = 4 d2 = 5 d2 = 5 d2 = 5 d2 = 5

can be accomplished in two steps. The first step consists
in choosing a punctured outer encoder which maximizes the
SCCC interleaver gain: the constituent outer encoder and the
related PP for achieving a specific code rate, both of them
satisfying the criterion C1, suit well this purpose. The second
step aims at matching the outer and the inner encoders (the
latter ones belonging to the codes found by applying criterion
C2) by choosing the PP for the inner encoder which minimizes
the BER after a target number of iterations Nit. The choice of
the inner encoder PP is done by tracing for each PP (belonging
to the set of candidate PPs guaranteeing the desired inner
code rate) the SNR exit-charts described by (7) and (8), and,
then, by choosing the PP yielding the maximum value of
SNRO(Nit) after Nit = 10 iterations. A key observation
here is the fact that maximizing the SNRO(Nit) after an
arbitrary number of iterations Nit of the iterative decoding
algorithm is such that the probability density function pΠ(ξ)
can be easily discriminated from pΠ(−ξ), potentially yielding
lower bit error probabilities after the iterative decoding [30].
Consider the block diagram of the iterative decoder shown in
Fig. 1. The soft output Πo(u; O) on the source bits at the
output of the outer decoder can be expressed as follows:

Πo(u; O) = Π̃o(c; I) + Π̃o(c; O) (10)

for systematic outer encoders (the subscript Π̃ indicates that
the considered Π take into account only the systematic bits).

For non-systematic outer encoders, we can only state that
Πo(u;O) is a function, say f(·), of Πo(c; I) + Πo(c;O).

Based on the assumptions deduced above, both soft infor-
mation Π̃o(c; I) and Π̃o(c; O) are Gaussian distributed. As
a consequence, the outer decoder soft output Πo(u; O) is
supposed to be Gaussian distributed with variance σ2

Πo(u;O)

and mean value µΠo(u;O) =
σ2
Πo(u;O)

2 . The bit error probability
Pb can then be evaluated as follows:

Pb ≈ 1
2erfc

(
1√
2

µΠo(u;O)

σΠo(u;O)

)
= 1

2erfc
(√

µΠo(u;O)

2

)
=

= 1
2erfc

(√
SNRO

2

)
.

(11)
This equation shows that the SNRO(Nit) can be used as a
cost function the maximization of which can lead to lower
BER.

Punctured SCCCs designed with this technique, present a
low error-floor due to the good distance spectra of the outer
encoders embedded in the serial concatenation, supported by
early converging punctured inner encoders.

Before concluding the section, let us discuss the parameters
employed for the proposed coding search technique. The block
size used for tracing exit-charts was set to 200.000: such a
high value is needed for guaranteeing the hypotheses discussed
above on the statistical behaviour of the extrinsic messages
Π(·). Notice that such values of block size have been also
proposed by ten Brink [29] in relation to the density evolution
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TABLE IV
PUNCTURING TABLE FOR THE 16-STATE RECURSIVE CONSTITUENT ENCODERS.

G(D) =
[
1, 23

35

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.13, (4,1,2) p.17, (4,29,150) p.156, (3,3,12) p.636, (3,5,20 ) p.2746, (3,6,26 ) p.13632, (3,13,52 ) p.65166, (3,24,114)

d2 = 4 d2 = 4 d2 = 3 d2 = 3 d2 = 3 d2 = 3 d2 = 3
d2,BER,opt p.7, (4,1,4) p.27, (3,1,6) p.127, (3,4,26) p.725, (3,2,10) p.6525, (3,12,94) p.12527, (2,1,10) p.52527, (2,1,10)

d2 = 6 d2 = 5 d2 = 5 d2 = 5 d2 = 5 d2 = 5 d2 = 5

G(D) =
[
1, 23

35

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.37, (5,1,4) p.273, (4,1,2) p.177, (5,1,4) p.736, (4,4,14) p.757, (5,9,30) p.777, (5,1,4) p.3347, (4,18,80)

d2 = 6 d2 = 4 d2 = 6 d2 = 4 d2 = 5 d2 = 6 d2 = 4
d2,BER,opt p.37, (5,1,4) p.167, (4,1,4) p.177, (5,1,4) p.537, (4,6,26) p.577, (4,1,4) p.777, (5,1,4) p.2537, (4,19,110)

d2 = 6 d2 = 6 d2 = 6 d2 = 5 d2 = 6 d2 = 6 d2 = 5

G(D) =
[
1, 23

35

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.5673, (4,1,2) p.3737, (5,1,4) p.3777, (6,8,28) p.13746, (3,1,2) p.16736, (4,4,14) p.17357, (4,1,2) p.16777, (5,4,12)

d2 = 4 d2 = 6 d2 = 6 d2 = 3 d2 = 4 d2 = 4 d2 = 5
d2,BER,opt p.3567, (4,1,4) p.3737, (5,1,4) p.3777, (6,8,28) p.12766, (3,1,4) p.13567, (4,5,22) p.16737, (4,1,4) p.16777, (5,4,12)

d2 = 6 d2 = 6 d2 = 6 d2 = 5 d2 = 5 d2 = 5 d2 = 5

G(D) =
[
1, 23

35

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.27777, (5,1,2) p.53746, (4,96,622) p.73572, (4,12,46) p.135673, (4,1,2) p.75677, (5,10,32) p.76777, (5,1,4) p.77777, (6,7,24)

d2 = 5 d2 = 4 d2 = 4 d2 = 4 d2 = 5 d2 = 6 d2 = 6
d2,BER,opt p.27777, (5,1,2) p.52747, (3,2,8) p.56747, (4,11,58) p.73567, (4,1,4) p.73737, (5,9,40) p.76777, (5,1,4) p.77777, (6,7,24)

d2 = 5 d2 = 5 d2 = 5 d2 = 6 d2 = 6 d2 = 6 d2 = 6

G(D) =
[
1, 35

23

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.13, (4,1,3) p.17, (4,29,152) p.266, (3,2,6) p.1352, (3,2,6) p.5346, (3,7,24) p.13266, (3,13,59) p.53346, (3,24,129)

d2 = 6, d3 = 4 d2 = 6, d3 = 4 d2 = 5, d3 = 3 d2 = 4, d3 = 3 d2 = 4, d3 = 3 d2 = 5, d3 = 3 d2 = 6, d3 = 3
d2,BER,opt p.7, (4,1,5) p.27, (3,1,5) p.325, (2,1,8) p.1525, (2,2,10) p.6525, (2,6,42) p.16525, (2,56,1765) p.152525, (2,7,50)

d2 = 11, d3 = 5 d2 = 10, d3 = 4 d2 = 10, d3 = 4 d2 = 10, d3 = 4 d2 = 10, d3 = 4 d2 = 10, d3 = 4 d2 = 10, d3 = 4

G(D) =
[
1, 35

23

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.56, (5,1,3) p.273, (4,1,3) p.277, (5,1,3) p.637, (4,4,15) p.1357, (5,8,30) p.1377, (5,1,4) p.5257, (4,19,63)

d2 = 8, d3 = 5 d2 = 6, d3 = 4 d2 = 8, d3 = 5 d2 = 6, d3 = 4 d2 = 8, d3 = 5 d2 = 10, d3 = 6 d2 = 4, d3 = 4
d2,BER,opt p.37, (5,4,17) p.167, (4,1,5) p.177, (5,2,8) p.567, (3,1,5) p.737, (4,1,5) p.1377, (5,1,4) p.2727, (3,1,5)

d2 = 10, d3 = 5 d2 = 11, d3 = 5 d2 = 11, d3 = 5 d2 = 10, d3 = 5 d2 = 10, d3 = 5 d2 = 10, d3 = 6 d2 = 10, d3 = 4

G(D) =
[
1, 35

23

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.3673, (4,2,6) p.5656, (5,1,3) p.5777, (6,8,30) p.25273, (3,1,3) p.15673, (4,4,14) p.27357, (4,1,3) p.27677, (5,4,16)

d2 = 7, d3 = 4 d2 = 8, d3 = 5 d2 = 9, d3 = 6 d2 = 4, d3 = 3 d2 = 6, d3 = 4 d2 = 7, d3 = 4 d2 = 7, d3 = 5
d2,BER,opt p.7653, (4,1,5) p.3577, (4,1,5) p.3777, (5,2,10) p.13535, (3,4,20) p.13537, (3,1,5) p.16737, (4,2,10) p.16777, (4,1,5)

d2 = 11, d3 = 5 d2 = 11, d3 = 5 d2 = 11, d3 = 6 d2 = 10, d3 = 4 d2 = 10, d3 = 4 d2 = 11, d3 = 5 d2 = 11, d3 = 6

G(D) =
[
1, 35

23

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.27777, (5,1,5) p.63257, (4,96,475) p.67267, (4,10,38) p.67373, (4,1,3) p.135757, (5,9,31) p.137377, (5,1,3) p.137777, (6,7,26)

d2 = 9, d3 = 6 d2 = 4, d3 = 4 d2 = 6, d3 = 4 d2 = 7, d3 = 4 d2 = 7, d3 = 5 d2 = 8, d3 = 5 d2 = 10, d3 = 6
d2,BER,opt p.17777, (5,1,5) p.52567, (2,1,5) p.52767, (3,4,23) p.156735, (4,1,5) p.73577, (4,1,5) p.77577, (5,2,8) p.77777, (6,10,42)

d2 = 11, d3 = 6 d2 = 10, d3 = 4 d2 = 10, d3 = 4 d2 = 11, d3 = 5 d2 = 11, d3 = 5 d2 = 11, d3 = 5 d2 = 11, d3 = 6

technique applied to the analysis of the iterative decoder of
PCCCs. In a practical setting, the decorrelation between the
extrinsic messages is guaranteed by the interleaver in the serial
concatenation. The value of Eb/No used for code design was
set to 0.5dB from the Shannon channel capacity assuming
BPSK modulation and AWGN channel. This value was chosen
based on extensive tests. Suffice to say that it guarantees early
converging SCCCs. We invite the interested reader to refer
to [32] for the details of the algorithm along with the set of
parameters used for code search.

In the following, the results obtained by applying this
algorithm will be denoted by criterion C3.

IV. CODE SEARCH RESULTS AND APPLICATIONS

The results of the search for good PPs are presented in Ta-
bles II-IX. In particular, Tables II-V contain the PPs obtained
by applying the criteria C1 and C2. Each table collects the
results related to encoders with the same number of states.
Generator matrices are specified in the upper leftmost corner
of each table. For any encoder, we show the best PPs specified
in the appropriate column yielding a punctured encoder with
rate k

k+s (with k ∈ {2, . . . , 8} and s ∈ {1, . . . , k − 1})
satisfying the design criteria C1 and C2 discussed above. In
particular, the upper row specifies the best PPs obtained with
the criterion C1. The lower row, identified by d2,BER,opt,
specifies the best PP obtained with the criterion C2. Next to

each PP listed, we show the minimum distance dm, the number
of nearest neighbors Mm yielding the minimum distance dm,
and the total weight Wm of these input patterns as the triplet
(dm, Mm,Wm). In the lower part of any given row, we specify
the effective free distance d2, and the weight-3 distance d3, of
the punctured encoders. Where d3 is not specified, it means
that there are no weight-3 input patterns leading to error events
of the punctured encoder.

As an example of how to read the table entries, consider the
rate 2/3 PP 13 shown in Table II satisfying the criterion C1

obtained by using the 4-state mother encoder with generator
matrix G(D) = [1, 5

7 ]. This PP leads to a encoder whose
minimum distance 3 is due to one input pattern with weight
3. The effective free distance d2 of the encoder is 4 and the
distance d3 is 3.

The PPs are represented in octal notation. A given PP
should be read from right to left by collecting k-pairs of
systematic-parity bits. As an example, the PP in Table II which
yields a code with rate 2/3 for the 4-state encoder, should be
interpreted as follows: p = 138 = 10112 =< x1, y1, x2, y2 >
(the subscript denotes the base of the numbers). In this case
the PP leaves the encoder systematic and deletes the first parity
bit associated with every two input bits.

Tables VI-IX show the best PPs for inner encoders obtained
by density evolution (criterion C3) as explained in section III.
The tables are organized as follows. In the first column, we
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TABLE V
PUNCTURING TABLE FOR 32-STATE RECURSIVE CONSTITUENT ENCODERS.

G(D) =
[
1, 71

53

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.13, (6,15,60) p.36, (4,1,4) p.133, (4,28,192) p.1272, (4, 108,406) p.5253, (3,3,6) p.13172, (3,4,18) p.64752, (3,11,50)

d2 = 6 d2 = 8 d2 = 8 d2 = 4 d2 = 3 d2 = 5 d2 = 4
d2,BER,opt p.7, (5,3,16) p.65, (4,2,12) p.325, (2,1,8) p.1525, (3,3,30) p.6525, (2,2,16) p.32525, (2,27,864) p.152525, (2,6,42)

d2 = 11 d2 = 10 d2 = 10 d2 = 10 d2 = 10 d2 = 10 d2 = 10

G(D) =
[
1, 71

53

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.57, (6,3,12) p.273, (6,15,60) p.277, (6,2,8) p.756, (4,1,4) p.757, (5,3,12) p.777, (6,3,12) p.3636, (4,1,4)

d2 = 8 d2 = 6 d2 = 8 d2 = 6 d2 = 8 d2 = 10 d2 = 8
d2,BER,opt p.37, (5,1,4) p.167, (5,3,16) p.177, (6,3,12) p.1565, (4,6,34) p.737, (5,4,16) p.777, (6,3,12) p.6565, (4,2,12)

d2 = 10 d2 = 11 d2 = 11 d2 = 10 d2 = 10 d2 = 10 d2 = 10

G(D) =
[
1, 71

53

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.5673, (6,15,60) p.5757, (6,3,12) p.3777, (6,1,4) p.25273, (4,10,36) p.17356, (5,17,72) p.27357, (5,2,8) p.27677, (6,8,32)

d2 = 6 d2 = 8 d2 = 11 d2 = 4 d2 = 6 d2 = 7 d2 = 7
d2,BER,opt p.3567, (5,3,16) p.7765, (5,1,8) p.3777, (6,1,4) p.12727, (4,116,4788) p.13567, (4,12,362) p.33735, (5,5,22) p.17767, (6,10,50)

d2 = 11 d2 = 11 d2 = 11 d2 = 10 d2 = 10 d2 = 11 d2 = 11

G(D) =
[
1, 71

53

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.17777, (6,1,4) p.75256, (4,17,68) p.74756, (4,2,8) p.135673, (6,15,60) p.135677, (6,18,74) p.137677, (6,2,8) p.137777, (6,1,4)

d2 = 11 d2 = 4 d2 = 7 d2 = 6 d2 = 7 d2 = 8 d2 = 10
d2,BER,opt p.17777, (6,1,4) p.52567, (3,3,24) p.52737, (4,8,48) p.73567, (5,3,16) p.73577, (5,4,20) p.77577, (6,3,12) p.77777, (6,2,8)

d2 = 11 d2 = 10 d2 = 10 d2 = 11 d2 = 11 d2 = 11 d2 = 11

G(D) =
[
1, 67

51

]
R = 2

3 R = 3
4 R = 4

5 R = 5
6 R = 6

7 R = 7
8 R = 8

9
BER p.13, (5,2,7) p.53, (4,2,7) p.127, (4,22,191) p.536, (4,31,446) p.3352, (3,6,21) p.12672, (3,5,22) p.124672, (3,11,36)

d2 = 9, d3 = 5 d2 = 7, d3 = 4 d2 = 18, d3 = 5 d2 = 13, d3 = 4 d2 = 4, d3 = 3 d2 = 9, d3 = 3 d2 = 5, d3 = 3
d2,BER,opt p.7, (5,2,10) p.65, (4,7,51) p.325, (4,22,191) p.1525, (3,3,21) p.6525, (3, 4,34) p.32525, (3, 14,135) p.152525, (3, 23,299)

d2 = 19, d3 = 6 d2 = 18, d3 = 5 d2 = 18, d3 = 5 d2 = 18, d3 = 5 d2 = 18, d3 = 5 d2 = 18, d3 = 5 d2 = 18, d3 = 5

G(D) =
[
1, 67

51

]
R = 3

5 R = 4
6 R = 4

7 R = 5
7 R = 5

8 R = 5
9 R = 6

8
BER p.57, (6,6,24) p.273, (5,2,7) p.177, (6,1,4) p.747, (4,1,3) p.737, (5,1,3) p.1377, (6,2,7) p.5353, (4,2,7)

d2 = 12, d3 = 6 d2 = 9, d3 = 5 d2 = 19, d3 = 7 d2 = 14, d3 = 4 d2 = 19, d3 = 5 d2 = 15, d3 = 6 d2 = 7, d3 = 4
d2,BER,opt p.75, (5,1,4) p.167, (5,2,10) p.177, (6,1,4) p.537, (4,2,11) p.737, (5,1,3) p.1737, (6,2,7) p.2537, (4,5,32)

d2 = 19, d3 = 6 d2 = 19, d3 = 6 d2 = 19, d3 = 7 d2 = 18, d3 = 5 d2 = 19, d3 = 5 d2 = 19, d3 = 6 d2 = 18, d3 = 5

G(D) =
[
1, 67

51

]
R = 6

9 R = 6
10 R = 6

11 R = 7
9 R = 7

10 R = 7
11 R = 7

12
BER p.5673, (5,2,7) p.5757, (6,6,24) p.5777, (7,10,36) p.17256, (4,10,39) p.16756, (5,10,47) p.17357, (5,1,4) p.17757, (6,3,11)

d2 = 9, d3 = 5 d2 = 12, d3 = 6 d2 = 15, d3 = 7 d2 = 7, d3 = 4 d2 = 11, d3 = 5 d2 = 12, d3 = 6 d2 = 15, d3 = 6
d2,BER,opt p.3567, (5,2,10) p.3577, (5,1,4) p.3777, (6,1,4) p.12735, (4,14,108) p.13765, (4,1,7) p.12777, (5,3,19) p.32777, (6,5,26)

d2 = 19, d3 = 6 d2 = 19, d3 = 6 d2 = 19, d3 = 7 d2 = 18, d3 = 5 d2 = 18, d3 = 6 d2 = 19, d3 = 6 d2 = 19, d3 = 7

G(D) =
[
1, 67

51

]
R = 7

13 R = 8
10 R = 8

11 R = 8
12 R = 8

13 R = 8
14 R = 8

15
BER p.27777, (7,9,31) p.67652, (4,23,85) p.127273, (4,2,6) p.135673, (5,2,7) p.73757, (5,1,3) p.77577, (6,1,4) p.77777, (7,7,25)

d2 = 16, d3 = 7 d2 = 6, d3 = 4 d2 = 7, d3 = 4 d2 = 9, d3 = 5 d2 = 16, d3 = 5 d2 = 19, d3 = 7 d2 = 19, d3 = 7
d2,BER,opt p.32777, (7,7,25) p.53527, (4,22,191) p.52577, (3,1,7) p.73567, (5,2,10) p.73577, (5,1,4) p.77577, (6,1,4) p.77777, (7,7,25)

d2 = 19, d3 = 7 d2 = 18, d3 = 5 d2 = 18, d3 = 6 d2 = 19, d3 = 6 d2 = 19, d3 = 6 d2 = 19, d3 = 7 d2 = 19, d3 = 7

show the rate Ro = kO

kO+1 of the punctured outer encoder along
with the respective PP, both of them obtained upon application
of criterion C1. The intersection between a given row indexed
by the value of the rate of the punctured outer encoder
(i.e. kO

kO+1 where kO ∈ {1, . . . , 8}), and a column, indexed by
the value Ri = kI

kI+1 , indicates the optimal PP which yields an
inner encoder with rate kI

kI+1 where kI ∈ {2, . . . , 8}. In this
case, by neglecting the effects of the encoder terminations, the
overall SCCC presents a rate Rs = kO

kO+1 · kI

kI+1 .

Simulation results of the optimized punctured codes have
been obtained for various SCCCs with the coding structure
depicted in Fig. 1. The proposed scheme is composed of a
serial concatenation of two rate 1/2 recursive mother encoders
that are punctured in order to achieve a encoder with rate Rs =
RoRi. The encoders are separated by a spread-36 interleaver
πN of length N = 1, 344 designed in according to [35]. This
interleaver size has been chosen in order to accommodate
various rates for both codes. Puncturing is performed at the
output of the outer and the inner codes in the SCCC (see
Fig. 1). All simulations have been conducted by counting 100
erroneous frames employing 10 iterations of the MAX∗-Log-
MAP algorithm with 3-bit quantization as specified in [36].
The assumed modulation format is BPSK.

Consider the simulation results shown in Fig. 2 for the ten
rate-1/2 SCCCs obtained by concatenating a rate-2/3 outer
encoder (with generator matrix G(D) = [1, 7/5] and PP

15) with ten rate-3/4 inner encoders (with generator matrix
G(D) = [1, 5/7]). Table VI shows that the best PP for the
rate-3/4 inner encoder concatenated with the rate-2/3 outer
encoder punctured with the PP 15, is 56. Simulation results
shown in Fig. 2 where the best PP found by criterion C3

is compared to other candidate PPs yielding a rate-3/4 inner
encoder, confirm the effectiveness of the design approach C3.
In the legend we show the SNRO obtained after 10 iterations
for each PP examined. We invite the interested reader to refer
to [32] for further simulation results on SCCCs designed with
the criterion C3.

V. CONCLUSIONS

In this paper we presented extensive optimized puncturing
pattern tables for designing serially concatenated convolutional
codes (SCCCs) operating in two different objective regions: in
the waterfall region and in the so-called error-floor region.

The optimization has been conducted using three different
techniques each one of which is suited to a certain application
in connection with the design of SCCCs.

We have further conducted exhaustive search for mother
encoders of rate 1/2 to be used for puncturing using two
different selection criteria. These encoders have then been used
as mother encoders to which puncturing is applied.

Sample simulation results were conducted to verify the
functionality of the designed encoders in the concatenated
coding context.
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TABLE VI
PUNCTURING TABLES FOR SCCC SCHEMES COMPOSED BY 4-STATE

RECURSIVE CONSTITUENT ENCODERS.
Gi(D) = [1, 5

7 ] 2
3

3
4

4
5

5
6

6
7

7
8

8
9

Go(D) = [1, 5
7 ]

1
2 ,− 15 65 325 535 4565 25253 152525
d2 = 6, d3 = 5
2
3 , p.13, (3, 1, 3) 15 47 67 1721 4467 23466 110575
d2 = 4, d3 = 3
3
4 , p.56, (3, 4, 10) 15 27 135 175 2627 32427 72165
d2 = 3, d3 = 3
4
5 , p.253, (2, 1, 2) 7 33 332 671 4635 24467 55227
d2 = 2, d3 = 3
5
6 , p.1253, (2, 2, 4) 7 47 266 671 2653 23546 116331
d2 = 2, d3 = 3
6
7 , p.3253, (2, 4, 10) 7 33 332 1332 3632 16646 164631
d2 = 2, d3 = 3
7
8 , p.25253, (2, 7, 14) 7 47 351 1236 3632 14647 117231
d2 = 2, d3 = 3
8
9 , p.125253, (2, 9, 18) 7 47 153 1172 7232 14647 133146
d2 = 2, d3 = 3

Gi(D) = [1, 5
7 ] 2

3
3
4

4
5

5
6

6
7

7
8

8
9

Go(D) = [1, 7
5 ]

1
2 ,− 13 53 253 1352 5351 25652 125253
d2 = 5, d3 = ∞
2
3 , p.15, (3, 1, 2) 13 56 354 1057 7311 7236 164233
d2 = 3
3
4 , p.33, (3, 6, 18) 13 66 73 1271 4754 7233 164532
d2 = 3
4
5 , p.147, (2, 1, 2) 13 72 272 1253 7232 7253 127056
d2 = 2
5
6 , p.647, (2, 2, 4) 13 72 256 1253 7232 7253 127056
d2 = 2
6
7 , p.3247, (2, 4, 8) 13 72 256 1253 7232 7253 127056
d2 = 2
7
8 , p.15247, (2, 6, 12) 16 56 253 1253 7232 25352 125253
d2 = 2
8
9 , p.65247, (2, 9, 18) 13 72 253 1272 7252 25352 125253
d2 = 2

Gi(D) = [1, 7
5 ] 2

3
3
4

4
5

5
6

6
7

7
8

8
9

Go(D) = [1, 7
5 ]

1
2 13 56 346 1370 3346 25263 163146
d2 = 5, d3 = ∞
2
3 , p.15, (3, 1, 2) 16 17 266 276 6172 15274 64770
d2 = 3
3
4 , p.33, (3, 6, 18) 15 17 247 663 7234 6633 163432
d2 = 3
4
5 , p.147, (2, 1, 2) 16 72 156 1256 5631 25256 114671
d2 = 2
5
6 , p.647, (2, 2, 4) 13 72 156 1256 4671 25256 114671
d2 = 2
6
7 , p.3247, (2, 4, 8) 13 72 156 1253 5631 25352 114671
d2 = 2
7
8 , p.15247, (2, 6, 12) 13 72 156 1272 4671 25352 114671
d2 = 2
8
9 , p.65247, (2, 9, 18) 13 56 256 1256 5631 35252 114633
d2 = 2

TABLE VII
PUNCTURING TABLE FOR THE 32-STATE RECURSIVE CONSTITUENT INNER

ENCODER WITH GENERATOR MATRIX G(D) = [1, 67
51

]. THE OUTER

ENCODER IN THE SCCC HAS GENERATOR MATRIX G(D) = [1, 67
51

].

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
2 ,− 13 56 256 1316 5253 25256 127252
d2 = 20, d3 = 8
2
3 , p.13, (5, 2, 7) 7 27 37 137 5272 27252 127252
d2 = 9, d3 = 5
3
4 , p.53, (4, 2, 7) 6 56 272 1274 7252 21276 25672
d2 = 7, d3 = 4
4
5 , p.127, (4, 22, 191) 6 56 272 1073 1257 5273 21676
d2 = 18, d3 = 5
5
6 , p.536, (4, 31, 446) 6 72 272 1073 7252 27252 121276
d2 = 13, d3 = 4
6
7 , p.3352, (3, 6, 21) 6 53 253 1073 1257 5656 125546
d2 = 4, d3 = 3
7
8 , p.12672, (3, 5, 22) 6 72 253 1073 5253 5656 37342
d2 = 9, d3 = 3
8
9 , p.124672, (3, 11, 36) 13 72 272 1073 6272 5656 114656
d2 = 5, d3 = 3

TABLE VIII
PUNCTURING TABLES FOR SCCC SCHEMES COMPOSED BY 8-STATE

RECURSIVE CONSTITUENT ENCODERS.

Gi(D) = [1, 15
17 ] 2

3
3
4

4
5

5
6

6
7

7
8

8
9

Go(D) = [1, 15
17 ]

1
2 ,− 13 56 352 1352 1273 27252 65352
d2 = 6, d3 = ∞
2
3 , p.7, (4, 3, 12) 16 72 247 1316 7312 27416 123236
d2 = 4
3
4 , p.33, (4, 29, 126) 16 72 172 353 673 1357 5357
d2 = 4
4
5 , p.136, (3, 5, 16) 16 72 247 1456 3354 15670 26356
d2 = 3
5
6 , p.656, (3, 15, 50) 16 56 156 273 6172 3356 23273
d2 = 3
6
7 , p.3256, (2, 1, 2) 16 36 227 1631 7151 17226 134436
d2 = 2
7
8 , p.15652, (2, 2, 4) 16 36 227 1227 7151 27231 127107
d2 = 2
8
9 , p.65256, (2, 3, 6) 13 36 227 1631 7131 35131 74433
d2 = 2

Gi(D) = [1, 17
13 ] 2

3
3
4

4
5

5
6

6
7

7
8

8
9

Go(D) = [1, 15
17 ]

1
2 ,− 13 72 272 1272 5253 21653 127252
d2 = 6, d3 = ∞
2
3 , p.7, (4, 3, 12) 16 72 362 1313 1752 5333 27233
d2 = 4
3
4 , p.33, (4, 29, 126) 13 56 274 273 1273 1373 23372
d2 = 4
4
5 , p.136, (3, 5, 16) 13 72 274 372 1273 3353 22747
d2 = 3
5
6 , p.656, (3, 15, 50) 13 72 153 276 277 3353 22753
d2 = 3
6
7 , p.3256, (2, 1, 2) 13 55 351 1331 3332 35132 115456
d2 = 2
7
8 , p.15652, (2, 2, 4) 16 33 153 1233 6651 17270 164662
d2 = 2
8
9 , p.65256, (2, 3, 6) 13 55 172 1331 6646 33151 153162
d2 = 2

TABLE IX
PUNCTURING TABLES FOR SCCC SCHEMES COMPOSED BY 16-STATE

RECURSIVE CONSTITUENT ENCODERS.

Gi(D) = [1, 35
23 ] 2

3
3
4

4
5

5
6

6
7

7
8

8
9

Go(D) = [1, 23
35 ]

1
2 ,− 13 72 272 1253 5272 27252 125256
d2 = 7, d3 = ∞
2
3 , p.13, (4, 1, 2) 13 72 256 1272 7612 5257 25276
d2 = 4
3
4 , p.17, (4, 29, 150) 13 72 274 1370 1257 5276 104747
d2 = 4
4
5 , p.156, (3, 3, 12) 16 72 272 1370 1257 5273 5357
d2 = 3
5
6 , p.636, (3, 5, 20) 13 72 272 276 1273 1657 5357
d2 = 3
6
7 , p.2746, (3, 6, 26) 16 72 253 1346 6352 7253 104567
d2 = 3
7
8 , p.13632, (3, 13, 52) 13 72 352 1172 6352 1357 77142
d2 = 3
8
9 , p.65166, (3, 24, 114) 13 72 316 1346 6352 7253 21373
d2 = 3

Gi(D) = [1, 23
35 ] 2

3
3
4

4
5

5
6

6
7

7
8

8
9

Go(D) = [1, 23
35 ]

1
2 ,− 13 56 256 1352 5272 25156 125652
d2 = 7, d3 = ∞
2
3 , p.13, (4, 1, 2) 13 56 256 1253 5712 3276 127213
d2 = 4
3
4 , p.17, (4, 29, 150) 13 72 352 1057 1656 15370 167054
d2 = 4
4
5 , p.156, (3, 3, 12) 13 72 352 1272 4173 33606 167054
d2 = 3
5
6 , p.636, (3, 5, 20) 13 72 354 1351 1273 2376 15273
d2 = 3
6
7 , p.2746, (3, 6, 26) 13 72 316 1351 5616 7741 164266
d2 = 3
7
8 , p.13632, (3, 13, 52) 15 71 331 745 7145 13171 62556
d2 = 3
8
9 , p.65166, (3, 24, 114) 13 72 346 1271 5616 3176 143256
d2 = 3
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