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Summary 

Production system engineering is strongly relied on mathematical models of systems 

under consideration and analytical solution of the problem has an important role in 

development and validation of more complex numerical tools. Analytical solution of steady-

state behavior of serial Bernoulli production line with three machines and two buffers is 

considered in this paper based on Markov chain approach. Transition matrices in general case, 

including three machines with different probabilities of failure and arbitrary occupancy of two 

buffers, are formulated along with equations for performance measures. The developed theory 

is illustrated using four different serial Bernoulli lines and the obtained results are compared 

to those determined using semi-analytical approach via aggregation procedure. Finally, the 

existing discrepancies are analyzed and pointed out for five different levels of buffers 

occupancy. From general perspective, good agreement has been found for most of the results 

within the examined space of system states. 

Key words: Production system engineering; Bernoulli reliability model; Steady-state 

response; Analytical solution 

1 Introduction 

1.1 Problem addressed and main results 

Production system engineering (PSE), an emerging scientific and engineering branch, is 

an important component of production system analysis, design, utilization, monitoring and 

maintenance with fundamental intention of gaining continuous and additional profit to 

production companies while minimizing production losses obtained during technological and 

transportation operations in workshops. It can be successfully applied in a number of 

industries, such as automotive, chemical, lumber, household appliances, pharmaceutical, 

shipbuilding, etc. Moreover, its application range is not restricted by the system scale as it can 

be applied at single machine level or even be generalized to a level of value chains used for 

purposes of macroeconomic evaluations, [1]. 
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Generally, mathematical models used within PSE can be classified in three basic types, 

i.e. analytical, semi-analytical and numerical. Unfortunately, due to complexity, exact 

solutions of PSE problems are known only for narrow band of problems, e.g. Bernoulli serial 

lines with one buffer, [2]. Since such solutions were not sufficient for actual industrial 

problems semi-analytical models based on the aggregation principle were developed, [1], [3-

7]. Once formulated, analytical and semi-analytical models can be efficiently applied (within 

given assumptions) at low computational costs in order to determine properties of the 

considered production system. Such approach is particularly suitable for the design purposes. 

On the other hand, numerical or simulation models, e.g. discrete event simulation, offer a 

wide range of abilities and modelling of complex production system relationships while 

requiring a significant computational costs as compared to the analytical and semi-analytical 

ones. Therefore, they are suitable for final analyses of production systems, [8] and [9]. 

Nevertheless, all three model types should be developed and investigated simultaneously in 

order to ensure reliable benchmarking and evaluation. 

In this context, the present paper is focused on analytical modeling of production 

system and on the exact solution of steady state behavior of serial Bernoulli production line 

with three machines and two buffers with finite capacities in particular. First, an exact 

solution of the simplest case, i.e. Bernoulli line with two machines and one buffer is 

reconsidered, and the obtained solutions are further expanded to Bernoulli line with three 

machines and two buffers with finite capacity using Markov chain approach, [1] and [10].  

In such a way, analytical solution of the steady sate behavior of serial Bernoulli 

production line with three machines and two finite buffers is developed and presented for the 

first time. It can be considered as the first step towards analytical solution of the steady state 

response of serial Bernoulli line with arbitrary number of machines and buffers of arbitrary 

capacity. In that respect, new transition matrix and performance measures are derived. 

Application of the developed theory is demonstrated using four different serial Bernoulli lines 

and the obtained results are compared to those determined using semi-analytical approach via 

aggregation procedure, [1]. Finally, the existing discrepancies are analyzed and pointed out 

for five different levels of buffers occupancy. In general terms, the compared results agree 

very well, except in some special cases that are discussed in more details. The presented 

validation of the aggregation procedure using analytical solution of the problem is quite 

important, as to the present it was benchmarked only using extensive simulations, [1]. 

1.2 Brief literature review 

The problem of analytical solution of serial Bernoulli production line with two 

machines and one buffer has been addressed in many research papers, starting with a 

pioneering work of Sevast’yanov, [2] where an exact solution of the problem is developed 

using integral equations. However, such approach led to quite complex system in case of line 

consisting of three machines and two buffers that could not be solved. Therefore, an 

approximate method was developed, [11], using analysis of internal and boundary system 

states. Unfortunately, according to [12], the application of the state based method did not 

result with general expressions in case of more complex production lines. Further attempts to 

solve complex production lines problems analytically are reported in [12] in more details, 

while some authors, e.g. [3], point out the inability of analytical investigation of larger 

production systems, both directly and recursively. 

Further research of Bernoulli production lines was focused on development of semi-

analytical model, its theoretical properties and application within different case studies. Thus 

an asymptotic analysis technique for modified model of serial production line, also known as 

the aggregation procedure was developed in [3]. Investigation of a system-theoretic properties 

of serial production lines in order to enhance the operability of the designed systems was 
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performed in [4], while bottlenecks identification, as one of the most important industrial 

plant indicators, was considered in [5]. Some of the performance measures are reconsidered 

and reported in [7]. Apart from the steady-state analysis, transient behavior of Bernoulli serial 

lines based on the second largest transition matrix eigenvalue was studied in [6]. Along with 

that, analysis of two unreliable batch machines with a finite buffer between them is reported 

in [13], while recently a discrete-time model and analytical expressions for performance 

measures of a single buffer line with two capacity levels was developed in [14]. 

1.3 Paper outline 

The reminder of the paper is structured as follows: mathematical modelling applied in 

cases of lines with one and two buffers and derivation of the analytical solution are presented 

in Section 2. Application of the developed theory is presented in Section 3 using examples of 

four different serial Bernoulli lines. Finally, discussion, main conclusions and 

recommendations for further research are given within Sections 4 and 5. 

2 Mathematical modelling 

Consider a serial Bernoulli production line, Fig. 1, where each machine 
im  , 1,...i M  is 

up with probability 
ip  and down with probability 1 ip . Buffers 

ib , 1,... 1i M   of capacity 

iN  are placed between two adjacent machines in order to provide storage for parts that are 

being processed by the production line. Apart from the standard set of assumptions, [1]: 
1. the machines have identical cycle time, 

CT , the time axis is slotted and machines begin 

operation at the beginning of each time slot, 

2. the system is blocked before service, 

3. the first machine is never starved and the last machine is never blocked, 

4. the machine and buffer status is determined at the beginning of each time slot, 

5. each machine status is determined independently from the other, 

additional one should be introduced, i.e. the production process that is carried out has to 

satisfy the law of conservation of mass. Therefore, material can enter the process only through 

1m  and exit the process only through 
Mm , i.e. by no means can material neither enter or exit 

the process through buffers. Although this assumption may seem quite straight forward, its 

introduction clarifies the derivation process. 

 

Fig. 1  Serial Bernoulli production line 

Given the assumptions, the serial Bernoulli production line can be mathematically 

formulated as an ergodic Markov chain with the buffer occupancy defining the states of the 

system. Steady state probabilities of each of these states are determined using balance 

equations, [15] and [1], 

1

,  1,2,..., ,
S

i ij j

j

P P P i S


    (1) 

1

1,
S

i

i

P


    (2) 
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where 
iP  and 

jP  is steady state probability of state i , respectively j , S  is the total number of 

states and 
ijP  is the transition or stochastic matrix. Its important property is that a sum of 

matrix elements in a column has to be equal to 1, i.e. 

1

1.
S

ij

i

P


  (3) 

Moreover, analytic solution of the problem is strongly relied on the stochastic matrix 

properties, since, according to [15] and [16], in case of homogenous and regular process, its 

largest eigenvalue is equal to 1 with the associated eigenvector composed of the steady state 

probabilities, 
iP . Therefore, a system of linear equations (1) can be considered as an 

eigenvalue problem with unknown eigenvalues and eigenvectors. Once eigenvalues are 

determined associated eigenvectors can be formulated in a relative, i.e. normalized form. 

Absolute eigenvectors can easily be obtained afterwards using constraint (2). Such approach 

is widely used in analysis of the dynamic behavior of systems with two or more degrees of 

freedom, e.g. [17]. Thus, similarly to vibration analysis, a system (1) has S  degrees of 

freedom, eigenvalues and associated eigenvectors describing “natural response” of the 

system. Accordingly, the unknown eigenvalues can be determined using expression 

    det 0,P Ω I    (4) 

where  P  is transition matrix, Ω  is eigenvalue and  I  unit matrix, while a solution of linear 

system of equations 

       0 ,k k
P Ω I P   (5) 

gives unknown eigenvectors,  
k

P , normalized to arbitrary vector component and associated 

to k-th eigenvalue, 
kΩ . Since the analysis of steady state behavior of serial Bernoulli 

production line is in focus of this paper, only the first eigenvalue, 
1Ω , and its associated 

eigenvector,  
1

P , will be considered further on and, due to simplicity, will be denoted 

without lower indices. In such a way an exact solution can be derived in a simple and straight 

forward manner. This is first illustrated in a simple case of serial Bernoulli line with two 

machines and one buffer and extended further on to a more general case. 

 

2.1 Bernoulli line with two machine and one buffer 

Let us first briefly revisit a serial Bernoulli line with two machines and one buffer, Fig. 

2. Machines 
1m , respectively 

2m , are up with probability 
1p , respectively 

2p  and down with 

probability 
11 p , respectively 

21 p . Let us further suppose, for simplicity reasons, that the 

buffer, b , occupancy is equal to 2N  . Since in case of Bernoulli production line the states 

of the system are equal to the buffer occupancy, the state space consists of three points as 

shown at pertaining transition diagram, Fig. 2. 

Unknown transition probabilities, 
ijP , can be determined using total probability 

theorem, conditional probability, [1], defined assumptions and the law of conservation of 

mass as 

 
 

    

   

1 1 2

1 1 2 1 2 1 2

1 2 1 2 2

1 1 0

1 1 1 .

0 1 1

p p p

P p p p p p p p

p p p p p

  
 

     
    

 (6) 
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Fig. 2  Serial Bernoulli production line with two machines and one buffer with transition diagram 

where  P  is transition matrix. Inserting Eq. (6) in Eq. (4) and solving the eigenvalue problem 

yields the unknown eigenvector 

2

22

2

1
1 ,  ,  ,

1
 

 
P p

p
 

  
 (7) 

where 

 

 
1 2

2 1

1
.

1


p p

p p





 (8) 

In more general case of buffer, b , with capacity N n  an eigenvector with 1n  components 

is obtained, [1], i.e. 

2

22

2

1
1 ,  ,  , ,  .

1
  

  

n

n
P p

p
 

    
 (9) 

Based on the determined steady state probabilities equations for performance measures 

involving production rate, PR , work-in-process, WIP , probabilities of blockage, BL , and 

starvation, ST , can be formulated, [1]. Production rate, PR , is defined as the average number 

of parts processed by the last machine of the production line in steady-state performance. 

Therefore, in case of one buffer line, it is represented as the intersection of events  2  upm  

and   not emptyb , i.e. 

     2 2 0 up  not empty 1 .PR P m b p P       (10) 

Average number of parts contained in buffer, b , during steady state operation reflects average 

value of steady-state probabilities and is defined by work-in-process, WIP , that in case of one 

buffer line takes the form 

1

,
N

i

i

WIP iP


  (11) 

while probabilities of blockage and starvation, BL , respectively, ST , represent intersections 

of events  1  upm ,   fullb  and  2  downm , respectively   emptyb  and  2  upm , i.e. 
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       

   

1 2 1 2

2 0 2

 up  full  down 1 ,

 empty  up .

NBL P m b m p P p

ST P b m P p

      

    

 (12) 

Detailed derivation procedure in the considered case is presented in [1]. 

Using the same approach, an exact solution and performance measures of more complex 

problems involving two buffers with arbitrary capacities can be developed, as presented 

further on in the paper. 

 

2.2 Bernoulli line with three machines and two buffers 

Consider a Bernoulli production line with three machines and two buffers, Fig. 3. 

Machines 
1m , 

2m  and 
3m  are up with probabilities 

1p , 
2p  and 

3p , and down with 

probabilities 
11 p , 

21 p  and 
31 p . Similarly to the one buffer case, let us further suppose, 

that occupancy of buffers 
1b  and 

2b  is equal to 
1 2 2N N  . Consequently, according to all 

possible combinations, the state space consists of nine points as shown at transition diagram, 

Fig. 3. Since in this case a composition of state space involves double-digit number, transition 

probabilities involve four indices and are denoted as 
ijklP  where i , respectively j , denote 

occupancy of buffer 
1b , respectively 

2b , in cycle 1n  and k , respectively l , denote 

occupancy of buffer 
1b , respectively 

2b , in cycle n . Due to simplicity, connections between 

different states are represented at Fig. 3 below and above them, were former represent 

connections to lower order, and later to higher order states. Self-loops are represented by 

transition probabilities immediately above states. 

Using the same approach as in one buffer line, unknown transition probabilities can be 

determined based on the defined assumptions using total probability and conditional 

probability theorems. For clarity purposes, only the case 1k l   is presented, i.e. 

 

Fig. 3  Serial Bernoulli production line with three machines and two buffers with transition diagram 
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       

               

                 

 

0011 1 2 1 2

0111 1 2 1 2 1 2 3 1 2 3

0211 1 2 1 2 1 2 3 1 2 3

1011 1

1 0, 1 0 1, 1 0,

1 0, 1 1 1, 1  down  up  up 1 ,

1 0, 1 2 1, 1  down  up  down 1 1 ,

1

P P h n h n h n h n

P P h n h n h n h n P m m m p p p

P P h n h n h n h n P m m m p p p

P P h n

         

               

                

                

             

2 1 2 1 2 3 1 2 3

1111 1 2 1 2 1 2 3

1

1, 1 0 1, 1  down  down  up 1 1 ,

1 1, 1 1 1, 1  up  up  up

                                                                         do

h n h n h n P m m m p p p

P P h n h n h n h n P m m m

m

              

           

         

               

               

 

2 3 1 2 3 1 2 3

1211 1 2 1 2 1 2 3 1 2 3

2011 1 2 1 2 1 2 3 1 2 3

2111 1

wn  down  down 1 1 1 ,

1 1, 1 2 1, 1  up  up  down 1 ,

1 2, 1 0 1, 1  up  down  up 1 ,

1 2,

m m p p p p p p

P P h n h n h n h n P m m m p p p

P P h n h n h n h n P m m m p p p

P P h n

       

               

               

                 

       

2 1 2 1 2 3 1 2 3

2211 1 2 1 2

1 1 1, 1  up  down  down 1 1 ,

1 2, 1 2 1, 1 0,

h n h n h n P m m m p p p

P P h n h n h n h n

             

         

 (13) 

where  1h n  and  2h n  represent the state of the first and the second buffer in the n-th cycle. 

Once formulated, transient probabilities can be presented in a form of transition matrix  P  

  

 

         

         

       

               

       

1 1 3

1 3 1 3 1 2 1 2 3

1 3 1 2 3 1 2 3

1 1 3 1 2 1 2 3

1 3 1 3 1 2 1 2 3 1 2 3 1 2 3 1 2 1 2 3

1 3 1 2 3 1 3 1

1 1 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 0 0

0 0 1 1 0 1 1 1 0 0 0

0 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 1 0

0 0 1 0 1 1 1

p p p

p p p p p p p p p

p p p p p p p p

p p p p p p p p

P p p p p p p p p p p p p p p p p p p p p

p p p p p p p p

 

    

    

   

         

          

       

           

     

2 3 1 2 3 1 2 3

1 2 1 2 3 2 2 3

1 2 3 1 2 3 1 2 2 3 1 2 3 2 3

1 3 1 2 3 3 1 2 3

.

0 1 1 1

0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 0 1 1

p p p p p p p p

p p p p p p p p

p p p p p p p p p p p p p p p

p p p p p p p p p

 
 
 
 
 
 
 
 
   
 
    
 

       
     

 (14) 

In case of equal probabilities for each machine, i.e. 
1 2 3p p p  , Eq. (14) is equal to 

the one presented by [6]. 

In general case when 
1 2 3p p p   and when capacity of buffers is arbitrary integer 

number, transition matrix elements, 
ijklP , take the form depending on combination of indexes 

i, j, k and l. Therefore, in case when 0k   and 0l   

1

1

1  for ,  ,

 for 1,  ,
ijkl

p i k j l
P

p i k j l

  
 

  

 (15) 

for 0k   and 
21,2,...l N  

 

  

 

1 3

1 3

1 3

1 3

1  for ,  1,

1 1  for ,  ,

 for 1,  1,

1  for 1,  ,

ijkl

p p i k j l

p p i k j l
P

p p i k j l

p p i k j l

   


   
 

   
    

 (16) 

and for 
11,2,... 1k N   and 0l   

 

  

 

1 2

1 2

1 2

1 2

1  for 1,  1,

1 1  for ,  ,

 for ,  1,

1  for 1,  .

ijkl

p p i k j l

p p i k j l
P

p p i k j l

p p i k j l

    


   
 

  
    

 (17) 

The internal states, i.e. when 
11,2,... 1k N   and 

21,2,... 1l N   are defined as 
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ijkl

p p p i k j l

p p p i k j l
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P p p p p p p i k j l

p p p i k j l

p p p i k j l

p p p i k j l

   


     
     


      

   

    

    






 (18) 

Finally, the remaining boundary states are equal to: for 
11,2,... 1k N   and 

2l N  

 

  

  

 

 

1 2 3

1 2 3

1 3 1 2 3

1 2 3

1 3

1  for 1,  ,

1 1  for ,  1,

1 1  for ,  ,

1  for 1,  1

1  for 1,  ,

ijkl

p p p i k j l

p p p i k j l

P p p p p p i k j l

p p p i k j l

p p i k j l

   


    


     
     


   

 (19) 

for 
1k N  and 0l   

 1 2

2

1 2

1  for 1,  1,

1  for ,  1,

 for ,  1,

ijkl

p p i k j l

P p i k j l

p p i k j l

    


    
   

 (20) 

for 
1k N  and 

21,2,... 1l N   

 

   

 

  

 

1 2 3

1 2 3

2 3

2 3 1 2 3

1 2 3

1  for 1,  ,

1 1  for 1,  1,

1 p  for ,  1,

1 1  for ,  

1  for ,  1,

ijkl

p p p i k j l

p p p i k j l

P p i k j l

p p p p p i k j l

p p p i k j l

   


     


    
     


   

 (21) 

and for 
1k N  and 

2l N  

 

 

 

1 2 3

2 3

3 1 2 3

1  for 1,  ,

1  for ,  1,

1  for ,  .

ijkl

p p p i k j l

P p p i k j l

p p p p i k j l

   


    
    

 (22) 

Inserting Eq. (14) into Eq. (4) and solving the eigenvalue problem gives a set of 

eigenvalues with the first one equal to unit value, i.e. 1Ω  . Therefore, a set of equations can 

be formulated using Eq. (5) for 1Ω   and solved in terms of 
00P . After some algebraic 

manipulations solution of the linear system of equations gives the unknown eigenvector 

00 01 02 10 11 12 20 21 22, , , , , , , ,P P P P P P P P P P  in normalized form. Since in general case, when 

1 2 3p p p  , the resulting eigenvector takes quite bearish form, only two eigenvectors in 

case of equal and symmetric probability distribution are presented. In the former case, when 

1 2 3p p p p   , the eigenvector  P  reads 
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 
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2 2
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2 212

20
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2 2
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1

2 3

,2 5 6

3 4

2 5 10

2 5
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P p p

P

P

P PP p p

P
p p

P
p p

P

p pP










 

 



 



 
 

   
    
   
   

   
      

      
   
    
   
    
   
     

 
  

 (23) 

where 

 
2

1
,  

1

1
.

2

p

p











  (24) 

In the latter case the probabilities are distributed symmetrically, i.e. 

1 3 1 2 1,  p p p p p   , and the resulting eigenvector takes more complex form 

 

 

 

 

 

 

00

01

02 02 1 2

10 10 1 2
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12 12 1 2

3 2

20 20 1 2
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21 21 1 2

2
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,

,,
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,

,

P

P

P Φ p p

P Φ p p

P PP Φ p p

P Φ p p

P Φ p p

P Φ p p

P







 



 

 



   
   
   
   
   
   
   

    
   
   
   
   
   
     

 (25) 

where 

   

   

 

1

3 3 2 2

1 1 2 1 1 2 1 1 2 1 2 2

2 2

02 1 2 1 2 1 1 2 1 2

2 2 3 3 2 2 2

10 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2

2 2 3 3 2 2 2

11 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1

1 1
,  ,  ,

1 2 3 3 3

, 2 ,

, 4 4 5 4 ,

, 4 2 4 6 4

p

p p p p p p p p p p p p

Φ p p p p p p p p p

Φ p p p p p p p p p p p p p p p p

Φ p p p p p p p p p p p p p p p

    
       

    

         

         

   

   

   

2

2 2

12 1 2 1 2 1 1 2 1 2

4 3 2 4 3 2 2 3 2 2 2 2

20 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2

3 3 2 2

21 1 2 1 2 1 1 2 1 1 2 1 2

2 ,

, 2 3 ,

, 6 2 6 13 3 12 12 8 2 ,

, 3 2 4 3 4 .

p

Φ p p p p p p p p p

Φ p p p p p p p p p p p p p p p p p p p p p p

Φ p p p p p p p p p p p p

    

            

       

 (26) 

It can easily be checked that Eqs. (25) and (26) are reduced to Eq. (23) if 
1 2p p p  . 

As mentioned earlier, symbolic representation of analytic expressions in general case of 
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1 2 3p p p   and arbitrary buffer capacity is rather cumbersome and will be considered 

further in the paper in numerical form. 

Based on the determined steady state probabilities, equations for performance measures 

can be formulated in the similar way as in one buffer case. In case of two buffer line, 

production rate, PR , is defined as the intersection of events  3  upm  and  2  not emptyb , i.e. 

   
1

3 2 3 0

0

 up  not empty 1 .
N

k

k

PR P m b p P


 
       

 
  (27) 

Furthermore, a formulation of work-in-process, WIP , has to be provided for each buffer 

separately as well as cumulative definition valid for the entire line. Therefore, in case of the 

first and the second buffer, work-in-process, 
1WIP , respectively 

2WIP , are defined as 

2 1

1 2

1

0 1

2

0 1

,

,

N N

kl

l k

N N

kl

k l

WIP kP

WIP lP

 

 









 (28) 

and the resulting work-in-process, WIP , is equal to the sum 

1 2.WIP WIP WIP   (29) 

Finally, probabilities of blockage 
1BL  and 

2BL  for machines 
1m  and 

2m  as well as 

probabilities of starvation 
2ST  and 

3ST  for machines 
2m  and 

3m  have to be determined. They 

are resented as intersections of different combinations of events, i.e. 

       

       

 

   

2 2

1 1

1 1 1 2 1

1 2 2 3

1 2 1 2

0 0

2 2 2 3

 up  full  down  up

                       full  up  full  down

                                                      1 ,

 up  full  do

N N

N l N l

l l

BL P m b m m

b m b m

p P p p P BL

BL P m b m

 

    

     

 

  

 

   

   

   

1

2

2

1

2 3

0

2 1 2 0 2

0

3 2 3 0 3

0

wn 1 ,

 empty  up ,

 empty  up .

N

kN

k

N

l

l

N

k

k

p P p

ST P b m P p

ST P b m P p







    

     

     







 (30) 

In such a way, application of Eqs. (13) – (30) results with an exact solution of the steady-state 

performance measures in case of production line with three machines and two buffers of 

arbitrary occupancies. 

3 Numerical examples 

Application of the developed analytical solution is demonstrated in cases of four 

production lines with three machines and two buffers. In the first case line 
1L  is composed of 

three identical machines with equal probabilities 
1 2 3 0.8p p p    and equal buffer 

capacities 
1 2 2N N  . Line 

2L  is composed of three machines with symmetric distribution 

of probabilities 
1 3 20.8,  0.9p p p    and equal buffer capacities 

1 2 2N N  , while non-

identical machines with probabilities 
1 2 30.8,  0.9,  0.7p p p    and buffers with capacities 

1 2 2N N   are placed within line 
3L . Line 

4L  is a reverse of line 
3L  with non-identical 
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machines and probabilities of failure 
1 0.7p  , 

2 0.9p  , 
3 0.8p  . A summary of the lines 

composition is given in Table 1.  

Table 1  Properties of lines 
1L , 

2L , 
3L  and 

4L  

Line 1p  
2p  

3p  
1N  

2N  

1L  0.8 0.8 0.8 2 2 

2L  0.8 0.9 0.8 2 2 

3L  0.8 0.9 0.7 2 2 

4L  0.7 0.9 0.8 2 2 

 

Steady state probabilities determined in cases of lines 
1L , 

2L , 
3L  and 

4L  are presented in 

form of probability mass functions, Figs. 4-5, similarly to spectral decomposition of periodic 

functions commonly used in vibration analysis, [17]. Based on steady state probabilities 

performance measures, i.e. production rate, work-in-process and probabilities of blockage and 

starvation can be calculated using Eqs. (27) – (30). The obtained results are compared to those 

determined using the aggregation procedure, [1], using PSEToolbox software, [18]. 

Aggregation procedure consists of backward and forward iterations with cumulative 

calculation of the line performance measures resulting with an approximate solution of the 

problem in case of lines with two or more buffers. The results obtained using the developed 

analytical solution (AS) and aggregation procedure (AP) are compared in Tables 2 and 3 in 

case of lines 
1L , 

2L , 
3L  and 

4L , where relative error is defined as 

AP AS
100%

AS



  . (31) 

Table 2  Comparison of production rate and work in process determined using analytic and approximate 

procedure 

Line 
PR  1WIP  2WIP  WIP  

AS AP ,  %  AS AP ,  %  AS AP ,  %  AS AP ,  %  

1L  0.6888 0.6888 0.00 1.481 1.47 -0.74 1.232 1.22 -0.97 2.713 2.69 -0.85 

2L  0.7293 0.7356 0.86 1.344 1.34 -0.30 1.419 1.40 -1.34 2.763 2.74 -0.83 

3L  0.6670 0.6727 0.85 1.491 1.50 0.63 1.627 1.63 0.18 3.118 3.13 0.38 

4L  0.6622 0.6727 1.58 1.089 1.05 -2.15 1.228 1.17 -4.72 2.317 2.22 -4.18 

Table 3  Comparison of probabilities of blockage and starvation determined using analytic and approximate 

procedure 

Line 
1BL  2BL  2ST  3ST  

AS AP ,  %  AS AP ,  %  AS AP ,  %  AS AP ,  %  

1L  0.1125 0.1112 -1.15 0.0580 0.0577 -0.65 0.0576 0.0577 0.17 0.1112 0.1112 0.00 

2L  0.0652 0.0644 -1.23 0.0891 0.0864 -3.03 0.0889 0.0864 -2.81 0.0702 0.0644 -8.26 

3L  0.1247 0.1273 2.08 0.1806 0.1799 -0.39 0.0628 0.0592 -5.73 0.0328 0.0273 -16.77 

4L  0.0298 0.0273 -8.34 0.0651 0.0592 -9.06 0.1863 0.1799 -3.43 0.1376 0.1273 -7.48 
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Fig. 4  Stationary probability mass function in case of lines (a) 1L  and (b) 2L  

 

Fig. 5  Stationary probability mass function in case of lines (a) 3L  and (b) 4L  

A comparison of analytical solution (AS) with results obtained using aggregation 

procedure (AP) shows that in some cases performance measures are estimated within 

acceptable limits applicable for engineering purposes, particularly in case of line 
1L  with 

identical machines. However, significant discrepancies can be noticed in cases of lines with 

non-identical machines, especially for estimates of probabilities of blockage and starvation 

where absolute value of relative error reaches up to 16.77% in case of line 
3L . A reason for 

such large discrepancies is related to the aggregation procedure algorithm which is based on 

the equality of production rate of virtual two machine line and the probability of failure of the 

aggregated machine, [1]. In such a way, due to loss of generality, aggregation procedure does 

not take into account all of the steady state probabilities influencing performance measures 

which in turn results with lower accuracy of the estimates, especially in cases of lines 
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composed of non-identical machines. This issue could jeopardize aggregation procedure 

based bottleneck analysis, as it is based on probabilities of blockage and starvation, [1]. 

Apart from probabilities of failure, an important parameter influencing the complexity 

of the problem and accuracy of the results is buffer capacity. In order to investigate influence 

of capacities of buffers 
1b  and 

2b  on results of the analysis, a series of calculations for all 

considered lines was performed using the same approach, i.e. applying the analytical solution 

(AS) and the aggregation procedure (AP) for capacities between 1 and 5. A comparison of the 

results is shown at Figures 6-12. 

 

Fig. 6  Influence of capacity of buffers on production rate for line a) L1, b) L2, c) L3, d) L4 

 

Fig. 7  Influence of capacity of buffers on the 1st machine work-in-process for line a) L1, b) L2, c) L3, d) L4 
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Fig. 8  Influence of capacity of buffers on the 2nd machine work-in-process for line a) L1, b) L2, c) L3, d) L4 

 

Fig. 9  Influence of capacity of buffers on the probability of blockage of the 1st machine for line a) L1, b) L2, c) 

L3, d) L4 
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Fig. 10  Influence of capacity of buffers on the probability of blockage of the 2nd machine for line a) L1, b) L2, c) 

L3, d) L4 

 

Fig. 11  Influence of capacity of buffers on the probability of starvation of the 2nd machine for line a) L1, b) L2, 

c) L3, d) L4 
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Fig. 12  Influence of capacity of buffers on the probability of starvation of the 3rd machine for line a) L1, b) L2, c) 

L3, d) L4 

Comparison of influence of buffer capacity on production rate and work-in-process of 

the 1st and the 2nd machine shows good agreement between the results obtained applying 

analytical and approximated solution. Larger discrepancies can be noticed in cases of line L3 

( 1WIP ), Fig. 7 and lines L2 and L3 ( 2WIP ), Fig. 8, particularly for 5N  . Global trend remains 

the same, and some useful asymptotic properties can be noticed, following [1]. When N  

tends to infinity, production rate asymptotically approaches to the minimum of probabilities 

ip . Also, work-in-process curves increase almost linearly with gradient depending on 

properties of machines. Lager discrepancies can be found in cases of blockage and starvation 

probabilities, Figs. 9 – 12, however global behavior of curves remains the same except in 

cases of L3 ( 1BL ), Fig. 9 and L3 ( 2BL ), Fig. 10 where significantly lower probability in cases 

when 5N   can be found using analytical approach. 

4 Discussion 

Application of the presented research, as well as of the existing PSE research body 

within real manufacturing surrounding and particularly ship production process is a complex 

task. Different aspects of the problem have to be taken into account in order to address the 

problem effectively. The first question that is naturally imposed is related to modelling 

complexity. On one hand, a number of 3D simulation tools with amazing graphical 

representation of the processes are available at the market, however due to long term 

modelling requirements they may not be useful for production system design purposes. On the 

other hand, semi-analytical and analytical methods enable fast modelling and analysis with 

appreciable results, yet they involve rather complex theoretical background complicating their 

development. This point indicates critical necessity for further research on this topic, 

particularly regarding harsh industrial surroundings of the ship production process. 

Reliability of modelling and input data is the second most important issue related to the 

production process analysis and mathematical modelling. In fact, there is no purpose of 

sophisticated analytical stochastic models development that would in turn use deterministic 

input data. It is therefore inevitable to invest further effort to investigate the nature of ship 

production surroundings, especially related to machine reliability models as well as properties 
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of buffers. Even more importantly, to take into account probability and occupancy as 

functions of time leading towards dynamic or real life response of production lines. 

Given such circumstances, the developed analytical solution of steady state behaviour of 

Bernoulli serial production line represents the first step towards general solution of the 

problem capable of realistic and simple production process modelling with output result that 

are easily interpreted and validated using measurements on shipyard floor. 

5 Conclusion 

Production system engineering, in order to fulfill its purpose, is strongly relied on 

mathematical models of systems under consideration. Three types of models were identified, 

i.e. analytical, semi-analytical and numerical, while particularly emphasizing the complexity 

of the model and its solution. Analytical solution of steady-state behavior of serial Bernoulli 

production line with three machines and two buffers is developed based on Markov chain 

approach and using eigenvalue and eigenvector analysis. Transition matrices in general case 

including three machines with different probabilities of failure and arbitrary occupancy of two 

buffers were formulated along with equations for performance measures, i.e. production rate, 

work-in-process and probabilities of blockage and failure. In such a way, analytical solution 

of the steady sate behavior of serial Bernoulli production line with three machines and two 

finite buffers is developed and presented for the first time. 

The developed theory was illustrated using four different serial Bernoulli lines and the 

obtained results are compared to those determined using semi-analytical approach via 

aggregation procedure. Finally, the existing discrepancies are analyzed and pointed out for 

five different levels of buffers occupancy. From general perspective, good agreement has 

been found for most of the results within the examined space of system states with some 

exceptions related to probabilities of blockage and starvation that could influence bottleneck 

analysis. The developed analytical solution of steady state response of Bernoulli serial line 

with two buffers enabled further validation of aggregation procedure as to the present it was 

benchmarked only using extensive simulations. 

As the developed theory is not restricted to considered cases, more general analytical 

solution of steady-state behavior of serial and assembly Bernoulli lines with arbitrary number 

of machines will be considered in further research. Along with that, transient behavior of 

Bernoulli lines can be investigated analytically in the same manner. In order to improve 

modelling reliability and enhance the applicability of the considered theory shipyard floor 

uncertainties should be taken into account in a sophisticated way. 
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