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Abstract— The authors face the problem of designing good
LDPC codes for applications requiring variable, that is adaptive,
rates. More precisely, the object of the paper is twofold. On
one hand, we propose a deterministic (not random) procedure
to construct good LDPC codes without constraints on the code
dimension and rate. The method is based on the analysis and
optimization of the local cycles length in the Tanner graph
and gives the designer the chance to control complexity of the
designed codes. On the other hand, we present a novel puncturing
strategy which acts directly on the parity check matrix of the
code, starting from the lowest rate needed, in order to allow the
design of higher rate codes avoiding additional complexity of the
co/decoding hardware. The efficiency of the proposed solution is
tested through a number of numerical simulations. In particular,
the puncturing strategy is applied for designing codes with rate
variable between 0.715 and 0.906. The designed codes are used
in conjunction with M -QAM constellations through a pragmatic
approach that, however, yields very promising results.

Index Terms— LDPC codes, variable rate systems, puncturing,
error rate performance

I. I NTRODUCTION

Low Density Parity Check (LDPC) Codes are the “state-
of-the art” in the current scenario of error correcting codes.
They have been introduced by Gallager in the sixties [1],
but for a long period they suffered scarce interest. In recent
years, however, many authors have shown how these codes
can outperform other solutions in approaching the Shannon
limit [2], when combined with efficient decoding algorithms
based on ‘belief propagation’. Since then, several methods
have been proposed in the literature for the design of LDPC
codes. At the same time, these codes have begun to appear in
important telecommunication standards: a relevant example, in
this sense, is provided by the proposal to include an LDPC
code in the DVB (Digital Video Broadcasting) standard [3].
LDPC codes are currently under investigation also by CCSDS
(Consultative Committee for Space Data Systems) for future
space missions [4].

For a given code lengthn and rateR, it is not so difficult to
design an LDPC code with good performance: it should have
BER/FER (Bit Error Rate/Frame Error Rate) curves character-
ized by sudden “waterfall” (i.e. starting at small signal-to-noise
ratios) and no error floor (or, at least, very low error floor,
which means “negligible” for the application of interest). The
point is that such a result could need rather complex solutions,
often unpractical to implement. Thus, the goal is to design

Manuscript received June 01, 2005; revised November 07, 2005 and January
09, 2006. The paper was presented in part at the Conference on Software,
Telecommunications and Computer Networks (SoftCOM) 2005.

Authors are with the Dipartimento di Elettronica, Intelligenza Artificiale e
Telecomunicazioni (DEIT), Università Politecnica delle Marche, via Brecce
Bianche, 60131 Ancona, Italy, email: {m.baldi, f.chiaraluce}@univpm.it

LDPC codes with (sometimes sub-)optimal performance but
with limited complexity. The situation becomes more involved
in those applications that require variable rate codes; this is
typical, for example, in radio links, where the system through-
put can be related to the channel conditions: less redundancy
added when the channel is good, more redundancy added
when the channel is bad. Radio links generally adoptM -
ary modulation schemes, with the aim to limit the bandwidth
occupancy, i.e., to have high spectral efficiency; then the code
rate is adjusted in conjunction with the spectral features of the
modulation adopted, in such a way as to satisfy the constraints
on the bandwidth.

In a variable rate system using LDPC codes, a straightfor-
ward but inefficient solution may consist in using a different
code for each required rate. This way, each code can be
optimized, thus providing very good performance in any
operational condition. As a drawback, however, a solution
of this kind implies the need for a complete change of the
co/decoding system any time updating the rate is requested.
This, in turn, yields a proliferation of components, that is
complex hardware and redundant processing time. Therefore,
from this point of view, such a solution is quite unpractical.

A much more practical approach consists in using punc-
turing to adapt the rate. In this case only one (or a limited
number of) code(s) is included in the system, with parameters
suitable to ensure the lowest rate; the higher rates are then
obtained by adopting a proper puncturing strategy. In its classic
implementation, puncturing selectively eliminates a number of
bits in the codewords produced by the code with the lowest rate
(mother code). A puncturer device is added, for such purpose,
at the encoder output: the value ofn is reduced and the value
of R is increased accordingly. The problem of puncturing is
that it may require optimization and this is not, in general,
a simple task, due to the number of degrees of freedom in
the choice of the puncturing pattern. Moreover, again thinking
in terms of classic implementation, the belief propagation
algorithm, that operates on the Tanner graph representing the
code, must be adapted to manage the missing bits at the
receiver; this is usually done by assigning a null value to the
Log-Likelihood Ratio (LLR) of these bits. Consequently, a
significant performance degradation often results.

In this paper, we propose a different puncturing strategy
where, instead of erasing bits, we eliminate rows and columns
from the parity check matrix of the mother code; this permits
to associate a reduced graph to the code with higher rate;
such a graph is a subset of the original graph, and there is
no need to force “artificial” values for the LLRs of the not
transmitted bits. The resulting co/decoding system remains
nearly as simple as that involved in classic puncturing, only
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requiring the “switch-off” of some routing paths.
Performance evaluation of a number of codes with variable

rate designed through this new puncturing strategy (called
pseudo-puncturing in the following) is one of the targets of
the present paper. As another target, however, we propose
a new procedure, named Local Cycles Optimization (LCO),
to design good LDPC codes without constraints on the code
size and rate. As mentioned above, the design of good LDPC
codes is an involved and, in some respects, still open problem.
The “goodness” of a code is related to a number of aspects,
often contrasting one each other, like encoding and decoding
complexity, and error rate performance. Our design method,
which is deterministic (not random), relies on the analysisand
optimization of the local cycles length in the Tanner graph and
gives the designer the chance to control complexity. Actually,
the LCO algorithm will be presented in the first part of the
paper, as it will be used in the second part, together with
other well-known techniques like the Progressive Edge Growth
(PEG) algorithm, to design variable rate codes.

The organization of the paper is as follows. In Section II we
describe the LCO algorithm with examples of application. In
Section III we discuss the way to match binary codes with
M -ary modulations. Section IV introduces the question of
variable rate codes design and its possible approaches, fixing
attention, in Section V, on the pseudo-puncturing mechanism.
Section VI deals with an explicit example of application, while
section VII outlines other solutions found in the literature,
that are compared with the proposed one. Finally, section VIII
concludes the paper.

II. T HE LCO ALGORITHM FOR THE DESIGN OFLDPC
CODES

A. General design issues

The design of an LDPC code consists in a suitable choice
of its parity-check matrix. A designed parity-check matrixH
is efficient if it is able to ensure good performance, yielding
BER/FER curves characterized by sudden waterfall and very
low error floor. Unfortunately, these two requirements are
often contrasting. On one hand, it is known that the minimum
distance of a code specified by its parity-check matrix corre-
sponds to the smallest number of columns ofH that sum to
the null vector, i.e. the kernel rank, and this number generally
increases when the column weight increases or, that is the
same, when the matrix sparseness is reduced1. On the other
hand, in most cases, a sudden start of the waterfall region
would benefit by a more sparse matrix [5]. Searching for the
best compromise is not simple, even because performance is
determined by the whole degree distribution in the Tanner
graph representing the code.

It is qualitatively reasonable that to have a small overlapping
factor between the columns ofH can help to increase the
kernel rank. In this sense, there is a strict relationship with
the need to avoid short length cycles in the Tanner graph of
the code, that requires small overlapping as well, since short

1This holds on condition that the number of symbols ‘1’ in each column
of the parity-check matrix remains less than the number of symbols ‘0’, but
this is certainly true for LDPC codes

length cycles damage the efficiency of the ‘belief propagation’
decoding method. Moreover, it is well known that the local
cycles minimum length determines a lower bound on the
minimum distance [6]. All these aspects provide useful infor-
mation, and should be taken into account in the arrangement
of the parity check matrix.

Besides performance issues, the design of an LDPC code
has to take into account the requirement to have limited
encoding and decoding complexity. As an example, one of
the most popular methods for LDPC encoding, which is
based on Gaussian elimination followed by back-substitution,
exhibits a complexity sometimes increasing as the square of
the code size. This is due to the fact that Gaussian elimination,
involving processing of the matrix rows and columns (instead
of simple permutations) may be responsible for the reduction
of the sparse character of matrixH. As a consequence, if
encoding complexity must be a premium, encoding should
be realized by avoiding Gaussian elimination, but using algo-
rithms based only on rows and columns permutations which
preserve the sparse character of the parity-check matrix [7].
In some cases, these techniques lead to a complexity that
increases linearly with the code dimension. Further results in
the same direction have been obtained by introducing the so-
called LU factorization technique to increase the efficiency of
the encoding stage [8].

An approach that surely leads to an encoding complexity
linearly increasing with the code dimension consists in design-
ing directly lower triangular matrices: in this case the sparse
character is always preserved in the encoding stage too. A
way of pursuing this aim is to divide the parity-check matrix
in two blocks, one random and one deterministic, the latter
having lower triangular form. Such an approach has been first
introduced with the so-called ‘semi-random codes’ [9].

Based on these premises, in the next subsection we present
a ‘fully’ deterministic technique to construct LDPC matrices,
which is able to consider all the needs described above.
The proposed algorithm permits to design codes without
constraints on the dimension or the rate.

B. The LCO algorithm

The core of the LCO algorithm is a set of procedures which
serve to compute the local cycles length in the Tanner graph
of a code. This knowledge is necessary to estimate the length
of the shortest cycle for each variable node, also known as the
local ‘girth’.

It can be noticed that, whilst in the PEG algorithm, de-
scribed in [6], edges are inserted in the Tanner graph through
a ‘best effort’ approach, the LCO method uses a ‘brute
force’ procedure, more similar to the one presented in the
‘look-ahead-enhanced version’ of the PEG algorithm, recently
proposed [10]. In spite of this, however, the code construction
always employs reasonable computation time, even for code-
word lengths as large as 10k bits. Furthermore, employing
such a technique, the code design is straightforward: in most
cases only one attempt is needed to design a good code, so the
computation overload due to the brute-force approach can be
justified considering that the algorithm is executed only once.
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Algorithm 1 Local Cycles Optimization

initialize the parity check matrix with all symbols ‘0’
do the first matching by inserting multiple diagonals
for (k = 1; k < dvmax; k + +)

for (i = 1; i ≤ n; i + +)
if (dv[i] < dvtarget[i])

set the value ofjmin to consider the
possible constraint on the
lower triangular form for the
generated matrix

for (j = jmin; j ≤ r; j + +)
if (6 ∃ edge(i, j)) and (dc[j] < dctarget[j])

simulate edge(i, j)
end if

end for
if ∃ j that satisfies the girth length constraint

find jbest andassignedge(i, jbest)
end if

end if
end for

end for

The deterministic approach, here adopted, permits to main-
tain a complete control on the girths, contrary to what may
happen when using a random approach. A routine implement-
ing the LCO is represented by Algorithm 1.

The notation used needs explanation:dvmax is the variable
nodes maximum degree,n is the number of columns in the
parity check matrix,dv[1 . . . n] is the current column weights
vector,dvtarget[1 . . . n] is the target column weights vector,r
is the number of rows in the matrix,dc[1 . . . r] is the current
row weights vector,dctarget[1 . . . r] is the target row weights
vector, edge(i, j) represents an edge connecting the variable
node i with the check nodej (i.e. setting to 1 the(j, i)-th
symbol in the matrix).dvtarget[1 . . . n] anddctarget[1 . . . r] are
fixed in advance, according with the total edge number to be
inserted or with specific degree distributions the code designer
would like to impose.

When the algorithm starts, the graph is initialized with the
insertion of an edge for each variable node, which is equivalent
to put multiple diagonals in the matrix. This task is performed
in such a way that a whole diagonal is positioned in the right
part of the matrix, to ensure the lower triangular form. As an
option, the last diagonal can be doubled, to increase the initial
column degree of the right square block, similarly to what
done in [9].

Actually, for increasing flexibility, the choice to have a lower
triangular form is not obliged: by a suitable choice of the
parameterjmin, one can decide to insert symbols ‘1’ above the
rightmost diagonal, or not. For the former case, in particular,
it is sufficient to setjmin = 1; otherwise,jmin is properly
calculated by the algorithm.

A key point concerns findingjbest, that is the index of the
most suitable control node to connect with the variable node
vi. This is done through the Algorithm 2.

The algorithm has to establish if the girth length constraint is

Algorithm 2 Evaluation ofjbest

given i as the variable node under analysis
considering j ∈ [jmin, r]
find (j : edge(i, j) does not create a local cycle) and

(dc[j] is minimum)
if found

jbest = j
else

find j : edge(i, j) creates the longest local cycle
if edge(i, j) creates a local cycle that

satisfies the girth length constraint
jbest = j

else
jbest = 0

end if
end if

satisfied or not. For this purpose, a scanning procedure is used
which recursively runs through the Tanner graph and reports
the length of the local cycles. The local girth length found
must be higher than a threshold, imposed by the designer, for
the constraint to be satisfied, otherwise the edge is not inserted.

C. Code Examples

Nine LDPC codes, withn = 2640 and R = 1/2, have
been designed by using the LCO technique with different
initial settings; four of them have full (in the sense of non-
triangular) parity-check matrices and the other five have lower
triangular parity-check matrices. For the sake of comparison,
two further codes, designed by using different techniques but
with the same parameters, have been considered: the first one
was obtained by using the PEG algorithm [6], while the second
one is a Margulis code [11], well recognized as a valuable
benchmark in the literature. The number of edges and the local
cycles length distribution, for each code considered, are shown
in Table I where, for subsequent discussion, the codes have
been properly numbered, and LCO codes with lower triangular
parity-check matrices (LT) are distinguished from those with
full matrices (F).

The performance of the whole set of codes has been com-
pared according with the criteria explained in the following
subsection. Some results of this comparison are then reported
and discussed in subsection II-E.

D. Comparison Criteria

Three parameters will be evaluated for each considered
code: encoding complexity, decoding complexity and error
rate performance. Based on these parameters the choice of
a code should be always made, however, safeguarding the
peculiarities of any specific application.

1) Encoding Complexity: Encoding complexity obviously
depends on the encoding technique adopted. Since none of
the codes considered allows particular encoding procedures (as
quasi cyclic codes do, for example), we will refer to the com-
mon ‘back substitution’ technique, together with ‘Gaussian
elimination’, if necessary.

90 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 1, NO. 2, DECEMBER 2005



TABLE I

COMPARISON OFLDPC CODES WITHn = 2640 AND R = 1/2

No. of Number of Local Cycles with Length:
Code Design edges 8 10 12 14 ≥ 16
C1 LCO (LT) 7061 0 0 2639 0 1
C2 LCO (LT) 7127 0 0 2627 0 13
C3 LCO (F) 7141 0 0 2627 0 13
C4 LCO (F) 7220 0 0 2640 0 0
C5 LCO (F) 7229 0 0 2640 0 0
C6 LCO (LT) 7480 0 2218 421 0 1
C7 LCO (F) 7920 0 2640 0 0 0
C8 LCO (LT) 13005 2639 0 0 0 1
C9 LCO (LT) 13534 2639 0 0 0 1
C10 PEG 7899 0 2631 0 0 9
C11 Margulis 7920 2640 0 0 0 0

In this case, there is a considerable difference between the
encoding stage of a code characterized by a full parity check
matrix and that of a code with a lower triangular matrix:
the former requires Gaussian elimination to be performed
on its parity check matrix, that usually implies the loss of
the sparseness character of the matrix itself, while the latter
permits to bypass this process thus preserving the matrix
sparseness.

In the worst cases, that however are not so rare, we can pre-
sume that, after application of the Gaussian elimination, matrix
H becomes dense. This has implications on the complexity, as
explained below.

To estimate the encoding complexity, we can consider the
total number of sums needed to solve the linear system of
parity check equations. In evaluating this quantity, we refer
to lower triangular matrices, either those designed just inthis
form or those obtained by Gaussian elimination. It can be
easily verified that, in both cases, the total number of sums
equals the number of symbols ‘1’ in the matrix minus its rows
number, each parity equation providing one redundancy bit.

For dense lower triangular matrices, we can consider that,
except for the rightmost all-zero triangle, they have approxi-
mately half the symbols equal to ‘1’ and half equal to ‘0’; in
this case, we denote byECD the encoding complexity (EC)
of a codeword given by

ECD =
1

2

(n + k) · r

2
− r =

=
n2

4

(

1 − R2
)

− n (1 − R) (1)

where the relationshipsr = n · (1 − R) and k = n · R have
been used to express the information sizek and the redundancy
size r in terms of the codeword sizen and the code rateR.
It follows immediately that the encoding complexity, in this
case, increases asO

(

n2
)

.
For sparse lower triangular matrices, the number of symbols

‘1’ in the matrix simply coincides with the number of edgesE
in the Tanner graph; so the following equation results, where
ECS is the encoding complexity for the sparse case:

ECS = E − r =

= n · dvaverage − n (1 − R) =

= n (dvaverage + R − 1) (2)

In Eq. (2), we have considered thatE = n·dvaverage, where
dvaverage represents the average number of symbols ‘1’ in
each column of the matrix.dvaverage is always low (typically
less than 6, for the code length here considered) and does not
depend onn or, more precisely, depends onn in a sub-linear
way; so we can say that the encoding complexity, in this case,
increases asO (n).

2) Decoding Complexity: Although exact evaluation of
hardware/software decoding complexity for LDPC implemen-
tation strongly depends on advanced design issues like the
parallelization degree, the routing strategies and the memory
requirements, a complexity measure which is independent
of the final implementation and significant enough for fair
comparison between different codes is needed.

It can be proved that some important features, like the
memory requirements, the number of elementary operations
at each variable node for each iteration and the number of
elementary operations at each check node for each iteration,
are all proportional to the number of edgesE in the Tanner
graph. Moreover, complexity should be referred to each de-
coded information bit; this implies thatE is multiplied by the
number of iterations and then divided byk, the information
bits per decoded codeword.

In conclusion, we can express the decoding complexity per
information bit as follows

DC =
IMAX · E

k
(3)

where IMAX represents the maximum number of iterations
scheduled for decoding.

3) Error Rate Performance: A further criterion we have
considered is the code performance over the AWGN (Additive
White Gaussian Noise) channel. For this purpose, all codes
have been simulated by means of a software written in C++
language and their performance has been analyzed in terms
of Bit Error Rate (BER) and Frame Error Rate (FER) curves.
The modulation scheme adopted is Binary Phase Shift Keying.

Figs. 1 and 2 show the performance of LCO codes with a
full parity-check matrix, whilst Figs. 3 and 4 show the per-
formance of LCO codes with a lower triangular parity check
matrix. All figures also report, for the sake of comparison, the
performance of the PEG code and the Margulis code.

For an immediate comparison, we can fix (at least) one
target FER value and consider the signal-to-noise ratio it
requires for different codes. A typical working point is FER

= 10−4, so that we have compared the values of̃Eb/N0 =
(

Eb/N0 at FER = 10−4
)

Some applications may require to work at lower FER values,
so a lower target should be chosen as well. Some codes could
require too high signal levels for reaching the target, because
of the appearance of an error floor. For the specific application,
the use of these codes should be obviously avoided.

E. Codes Comparison

The comparison criteria defined in the previous subsection
have been applied to the considered codes, and the results
obtained are summarized in Table II. For the Margulis code,
the value ofIMAX is not available.
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Fig. 1. BER curves for the codes generated with a full parity-check matrix
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Fig. 2. FER curves for the codes generated with a full parity-check matrix

TABLE II

CONSIDERED CODES COMPARISON

Code Design EC IMAX DC Ẽb/N0

C1 LCO (LT) 5741 30 160.5 2.35 dB
C2 LCO (LT) 5807 30 162.0 2.50 dB
C3 LCO (F) 1305480 30 162.3 2.35 dB
C4 LCO (F) 1305480 30 164.1 2.25 dB
C5 LCO (F) 1305480 30 164.3 2.25 dB
C6 LCO (LT) 6160 30 170.0 2.60 dB
C7 LCO (F) 1305480 30 180.0 2.30 dB
C8 LCO (LT) 11685 30 295.6 2.85 dB
C9 LCO (LT) 12214 30 307.6 2.95 dB
C10 PEG 1305480 30 179.5 2.20 dB
C11 Margulis 1305480 - - 2.05 dB

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 C
1

 C
2

 C
6

 C
8

 C
9

 C
10

 C
11

B
it

 E
rr

o
r 

R
at

e
 

Eb/N0 [dB]

Fig. 3. BER curves for the codes generated with a lower triangular parity-
check matrix
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Fig. 4. FER curves for the codes generated with a lower triangular parity-
check matrix

As probably expected, the results demonstrate that none of
the codes can be considered “the best” in absolute terms. For
the sake of clarity, the results of Table II are also reportedin
pictorial form, in the histograms of Fig. 5 (each expressed as
a percentage of the corresponding maximum value).

The minimum signal-to-noise ratio is ensured by the Mar-
gulis code that, however, has the maximum encoding com-
plexity (together with other codes). On the other hand, the
superiority of the Margulis code may become questionable
for lower error rates because of the appearance of an error
floor (see Figs. 2 and 4).

The codes designed with the LCO method exhibit a rather
low decoding complexity (with the exception of codes 8 and 9)
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Fig. 5. Codes comparison

and a low encoding complexity when the parity-check matrix
is designed directly in the lower triangular form.

This is probably one of the main advantages of the LCO
method: the possibility to design a code with a parity-check
matrix suitable for easy encoding and with acceptable, though
non-optimum, error rate performance. CodeC1, in particular,
seems a good result: it has the minimum value ofEC andDC,
but remains at 0.3 dB from the minimumEb/N0 found for
the Margulis code.

III. A PPLICATION TO M-ARY MODULATION SCHEMES

The LCO algorithm presented in the previous section has
been used to design binary codes, which are “naturally”
suited for binary modulation schemes. On the other hand,
in many important applications,M -ary modulation schemes
are preferred to increase the spectral efficiency. Consequently,
in these schemes, there is the need to match encoding and
modulation. In principle, this problem is conceptually not
simple as one should take into account that performance, in
an M -ary scheme, is dominated by the Euclidean distances,
which may not be proportional to the Hamming distances.
As a consequence, the best binary code could not lead to the
best code over theM -ary constellation, and code optimization
should be done directly in the multilevel domain [12]. In
[13], for example, an interesting method has been proposed to
design codes, directly over the group of integers modulo 8, that
is Z8, suitable for applications to 8-PSK constellations. In this
paper, however, we consider higher order modulations, suitable
for applications requiring very large spectral efficiency.For
high order modulations, it is known thatM -QAM is generally
preferred toM -PSK because of its more favorable error rate
performance.M -QAM is different from M -PSK: for both
constellations the Euclidean distance is not proportionalto the
Hamming distance but, whilst forM -PSK, with M > 4, the
constellation is not matched to a binary group, forM -QAM

Fig. 6. Block diagram of the LDPC-coded scheme adopted in conjunction
with M−QAM constellation

the constellation is matched to a binary group, at least up tothe
boundary effects. This has implications on the design, where
the impact of the more rigorous approach is expected to be
lower (for example there is no need to build a group code
over ZM , the binary LDPC code generating a geometrically
uniform Euclidean space code by itself). Moreover, decoding
complexity in the multilevel domain is higher than for binary
codes.

For these reasons, we have adopted a more pragmatic
approach, based on the scheme shown in Fig. 6. Looking
at the figure, we can say that, whilst the transmitter blocks
are rather obvious, with the mapper and modulator block
that maps groups ofm = log

2
M code bits into a symbol

of the bi-dimensional constellation (more will be said in
the following as regards the labeling strategy adopted), a
fundamental element at the receiving side is the symbol-to-
bit metric calculator that computes the LLRs according witha
maximum a posteriori (MAP) criterion. The LLR of the coded
bit xi, given the received sampley, is given by [14]:

L(xi) = ln

[
∑

vǫχi

0

exp
(

− 1

2σ2 ‖y − v‖2
)

∑

wǫχi

1

exp
(

− 1

2σ2 ‖y − w‖2
)

]

(4)

wherev andw are two complex symbols of the constellation
(i.e. bi-dimensional vectors),σ2 is the variance of the thermal
noise, andχi

b is the subset of signals whose label has the
valueb ǫ {0, 1} at thei-th position. Starting from (4), decoding
proceeds, in the LDPC decoder, through an iterative exchange
of messages between the variable and check nodes of the
Tanner graph representing the code (belief propagation).

The efficiency of this LDPC coded modulation scheme has
been already tested in previous literature, in conjunctionwith
Gray labeling. Labeling is the rule by which sequences of
bits are univocally assigned to the symbols. Gray labeling
is asymptotically optimal in bit-interleaved coded-modulation
[15]. It can be used also for the present system where, as
we have verified through simulation, it permits to achieve
performance better than that obtained by using other labelings,
like rotationally invariant labelings. On the other hand, it
is well known that Gray labeling is not possible when the
number of symbols in the constellation is an odd power of
two. This occurs, for example, in the 32-QAM and 128-
QAM. In this case we have adopted a quasi-Gray labeling,
actually derived through the more general theory of quasi
symmetric ultracomposite (SU) labeling [16]. An example of
SU labeling for the case of 32-QAM is reported in Fig. 7: it
shows minimum deviation from the Gray labeling (limited to
the corners for the considered example).
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10100 10110 11110 11100

00111 00110 01110 0111110111 11111

10100

00001 00000 01000 0100110001 11001

00011 00010 01010 0101110011 11011

00101 00100 01100 0110110101 11101

10010 11010 1100010000

I

Q

Fig. 7. Example of Quasi SU labeling for the 32-QAM constellation

An example of the performance achievable by using the
considered scheme, for an LDPC code withk = 9720 andn =
13600, matched with a 16-QAM Gray labeled constellation, is
shown in Fig. 8. The Tanner graph of the code hasE = 39911
edges, almost regularly distributed, and a symbols ‘1’ density,
defined as the ratio between the number of symbols ‘1’ and
the overall number of symbols in the parity check matrix of
the code,d = 3 ·10−4. As well known, the value of the matrix
densityd plays a crucial role in fixing the performance of an
LDPC code: on one hand, it should be high to have low error
floor; on the other hand, it should be low to have sudden water-
fall and good performance for small signal-to-noise ratios[5].

The simulated curves have been obtained by assuming a
maximum number of iterationsIMAX = 30 in the decoding
process, while reliability of the results has been ensured by
the simulation of at least 100 wrong frames as a stop criterion
for each point estimation. The same assumptions hold for the
results presented in the subsequent sections. To have an idea of
the goodness of the results reported in Fig. 8, one should note
that a competitor Trellis Code Modulation + Reed Solomon
(TCM+RS) system, characterized by the same rate (though
with codewords five times shorter) requires a signal-to-noise
ratio more than 1.5 dB larger at BER =10−6.

IV. D ESIGN OF CODES WITH DIFFERENT RATES

Let us suppose that the system must operate with different
rates in such a way as to adapt the code and the modulation
scheme to the transmission conditions. In this paper we con-
sider code rates ranging betweenRmin = 0.715, for a system
operating with 16-QAM, andRmax = 0.906, for a system
operating with 128-QAM, and assume several intermediate
values. The corresponding spectral efficiency ranges between
ηmin = 2.860 and ηmax = 6.342. Thus, a non trivial
problem concerns the choice of the strategy of managing such
a widespread range of possibilities.

The most “obvious” solution should consist in designing as
many LDPC codes as the number of rates of interest. This way,
an optimum code could be found for any operation condition.
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Fig. 8. Example of BER/FER performance for an LDPC code with rate
0.715 matched with the 16-QAM constellation

Such “ad hoc” design strategy, however, is quite unpractical:
it requires to change the code any time the rate changes, with
a questionable excess of memory occupancy and processing
time.

On the contrary, one could aim at using a single co/decoding
scheme that adapts itself to the variable operation condition
with minimum software/hardware requirements. This appar-
ently ambitious result can been achieved by puncturing. In
its classic form, puncturing consists in using only one parity
check matrix to produce codewords for all rates of interest.
This matrix, denoted asHm in the following, hasnm columns
and rm = nm − km rows, wherekm/nm = Rmin; therefore
it is designed for the code with the lowest rate in the specified
range: we call this code “mother code” for the considered
set. Typically, in the variable rate scheme, the value ofk
is fixed (that is,k = km for all rates); we increase the
rate by puncturing a prefixed number of bits (usually, though
not necessarily, in the parity check part) of the codewords
produced by the mother code. Therefore, the peculiarity of this
scheme is that it does not require any architectural updating at
the encoder, to face the variable rate, except for the addition
of a simple puncturer before the mapper and modulator. At
the decoding side, the Tanner graph of the punctured code
can be assumed to be identical to that of the mother code; the
LLRs of the punctured bits are conventionally set to 0 and,
after such initial assignment, decoding proceeds exactly in the
same way, independently of the rate value.

Puncturing has been extensively studied in conjunction with
many iteratively decoded concatenated codes [17] and it is
known it often yields remarkable performance worsening.
The main difficulty of puncturing is the huge number of
degrees of freedom it implies, for example in regard to the
possible puncturing pattern configurations (which is huge as
well for non trivial codes). Therefore, classic puncturingof
LDPC codes requires optimization, and the development of
suitable techniques, for example based on the density evolution
method, which permits to avoid testing of all (or a significant
proportion of all) possible patterns [18].

In this paper, however, we have considered a modified form
of puncturing that has shown much less dependence on the
chosen pattern; this modified form has been called “pseudo-
puncturing” and is presented in the next section. In SectionVI,
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instead, some examples are given of codes designed according
with this strategy.

V. THE PSEUDO-PUNCTURING MECHANISM

Pseudo-puncturing consists in eliminating a number of
columns, in the right (rm×rm) part of the parity check matrix
Hm of the mother code, and a number of rows, both equal to
the difference between the codeword length of the mother code
and that of the pseudo-punctured one. Columns elimination
is equivalent to scale the number of parity bits, whilst rows
elimination corresponds to discard parity check equations.

The parity check matrix of the mother code is preferably
designed in a lower triangular form: this choice simplifies
encoding, which can be done by means of a back substitution
procedure. Wishing to have a lower triangular form for the
punctured matrix too, one can choose to eliminate pairs of
rows and columns that intersect along the rightmost diagonal.

At the decoder side, the Tanner graph of the pseudo-
punctured code, compared with that of the mother code, has
less variable nodes and less check nodes. This, however, does
not imply any architectural modification, but only a “switch-
off” of the edges in the Tanner graph connecting punctured
nodes. In practice, some messages exchanged between the
nodes of the mother code are no longer present while, contrary
to the case of classic puncturing, there is no need to force an
artificial value for the missing log-likelihood ratios. Moreover,
the decoder has to know only the position of the missing
edges (that is an information which can be easily derived from
the knowledge of the Tanner graph and the pseudo-puncturing
pattern).

For better understanding the proposed procedure, let us
consider a very simple example: the following matrix (5)
obviously does not refer to an LDPC code, but it is satisfactory
for explicative purposes:

Hm =

















1 0 0 1 1 0 1 0 0 0 0 0
0 0 1 0 1 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0 0 1 0
0 0 0 1 0 0 0 0 1 1 1 1

















(5)

In spite of its simplicity, matrix (5) is not trivial: the
corresponding Tanner graph, shown in Fig. 9 (a), has no
4-length cycles (as the consequence of a maximum overlap
between columns equal to 1), while the matrix is in lower
triangular form.

The code defined by (5) hasnm = 12 and km = 6 (rate
1/2); starting from it, we can construct a code withn = 10
and k = 6 (rate 3/5) by eliminating, for example, the ninth
and eleventh column and, consequently, the third and fifth row.
This way, the new matrix is:

H =









1 0 0 1 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 0
0 1 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 1 1









(6)

(a) Mother (b) Pseudo-puncutred

Fig. 9. Tanner graphs of the two codes: the mother code with matrix (5)
and the pseudo-punctured code with matrix (6)

and the Tanner graph becomes that shown in Fig. 9 (b):
nodes and edges are a subset of those in Fig. 9 (a), which
confirms the absence of any architectural modification. Like
the original graph, also the reduced one has no 4-length cycles;
moreover,H maintains the lower triangular structure. These
properties hold regardless of the code size and, therefore,can
be extended to larger (and more significant) codes as well. In
the next section, we provide examples of long codes designed
by pseudo-puncturing.

VI. EXAMPLES OF CODES DESIGNED BY

PSEUDO-PUNCTURING

We have already stressed in Section III that a good choice of
the matrix densityd is essential to obtain a good compromise
between the waterfall and the error floor behavior. When de-
signing punctured parity check matrixes (in the sense specified
in the previous section) for a wide range of rates, this may be
a problem: if the mother code has an almost regular matrix
(which is the result of the algorithm we have adopted for the
codes design), the value ofd does not change significantly
because of pseudo-puncturing. In other words, we can say that
pseudo-puncturing reduces linearly the number of symbols ‘1’
in the parity check matrix (or, that is the same, the number of
edges in the Tanner graph).

Due to the constraint on the value ofd, in order to obtain
pseudo-punctured codes with good performance, it is neces-
sary to start from a mother code whose parity check matrix
Hm has a rather large number of symbols ‘1’ (compared to
its “optimum” value); this way, the pseudo-punctured matrixes
can have a not too low number of symbols ‘1’ in their turn (that
would have favorable effects on the waterfall but catastrophic
effects on the error floor).

In the following of this section, we present a practical
example of codes designed through the pseudo-puncturing
mechanism, for the previously specified rate values range, and
matched with QAM constellations with different cardinalities.
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TABLE III

EXAMPLES OF CODES WITHk = 9720, DESIGNED BY

PSEUDO-PUNCTURING

Code n R E d QAM G
C12 13600 0.715 249569 4.73·10−3 16 −1 dB
C13 12750 0.762 186669 4.83·10−3 32 −0.9 dB
C14 11656 0.834 111308 4.93·10−3 16 +0.8 dB
C15 11330 0.858 90779 4.98·10−3 32 +0.7 dB
C16 10724 0.906 54646 5.07·10−3 128 +1.5 dB
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Fig. 10. BER performance of the codes in Table III

The parameters of the considered systems are detailed in Table
III. All codes havek = 9720; the table specifies also the rate
R, the number of edgesE and the symbols ‘1’ densityd.
The last column of the matrix reports the additional coding
gain G that the system based on LDPC codes permits to
obtain with respect to a TCM+RS system with the same
rate, at BER =10−6. In particular, codesC12 and C13 are
compared with TCM 2D, while codesC14, C15 andC16 with
TCM 4D. The TCM codes are based on convolutional codes
with rate 2/3. C12 is the mother code, whose parity check
matrix has been punctured with rather arbitrary and simple
rules (for example, progressively eliminating the columnsat
the rightmost side and the rows at the bottom ofHm). In
other words, the puncturing pattern has not been optimized,
deliberately. In spite of this, the comparison with the TCM+RS
system (which is an optimized scheme) shows improvements
immediately: for the 128-QAM constellation, the system based
on the LDPC code has an additional coding gainG = 1.5
dB with respect to the competing TCM+RS system. Thus,
it is evident that the codes design, in this specific example,
has privileged performance for high order constellations.This
is clearly explained by the large number of edges that code
C12 exhibits, for example in comparison with the analogous
code discussed in Section III and whose performance has been
plotted in Fig. 8. The latter has a smaller number of edges (or
symbols ‘1’ density) and this reflects on a more favorable start
of the waterfall region.
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Fig. 11. FER performance of the codes in Table III

The BER and FER curves for codesC12-C16 are plotted
in Fig. 10 and Fig. 11, respectively. These curves confirm the
above considerations: performance of codesC12 and C13 is
worse than expected (and in fact, in Table III, their coding
gain G is negative, which means that TCM+RS system is
better): their design has been conditioned by the goal to
improve performance of codesC14, C15 and, most of all,C16,
characterized by the highest rates. Anyway, even under such
constraint, the performance achieved seems good for all rates,
with prompt waterfall and no error floor in the explored region.

Discussion above is based on the coding gainG at BER
= 10−6. Anyway, in our simulations we have found that
the TCM+RS curves and the LDPC curves have comparable
slopes in the explored region of signal-to-noise ratios; this
means that the value of the gain remains approximately the
same also in the neighborhood of BER =10−6 (for example,
up to 10−7).

Aiming at further improving performance in a so wide range
of values forR (between 0.715 and 0.906, in the proposed
example) it could be convenient to use more than just one
mother code; two mother codes, for example, should be a
reasonable compromise: the former for the lowest rates and
the latter for the highest ones. This way, the constraints in
fixing the structure of the parity check matrix for the mother
code could be somewhat relaxed and a range ofR as large as
that considered in our simulations could be covered with very
high efficiency.

VII. O UTLINE OF DIFFERENT PUNCTURING STRATEGIES

In this paragraph we present a brief overview of the most
significant approaches proposed in previous literature to design
rate compatible codes, aiming at emphasizing the noveltiesand
discussing the advantages offered by the pseudo-puncturing
solution here proposed.

As stressed in the previous sections, to find an optimum
puncturing pattern is usually a very difficult task, quite un-
feasible to face in analytical terms. In the case of classic
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Fig. 12. BER comparison between punctured and pseudo-punctured codes

puncturing, a strategy often pursued in previous literature
is that of a random choice of the punctured bits. Random
puncturing is very simple to implement (through the adoption
of elementary algorithms for random generation of a uniformly
distributed integer variable) and does not need, in principle,
any optimization. However, such a strategy can yield, at
random, quite unsatisfactory results as well, so that it seems
advisable to limit somehow the choice, in order to avoid those
patterns that will certainly lead to bad performance. A first
rule in this sense consists in preventing inclusion, among
the punctured bits, of a whole stopping set; otherwise, the
decoding algorithm is not able to recover the information
relative to those nodes. In the case of lower triangular parity
check matrixes, the rule is satisfied by limiting puncturingto
the lastr bits of the codeword [19], i.e. electing for puncturing
the columns in the rightmost side. Any column subset of the
triangular portion, in fact, is not a stopping set, because the
node corresponding to the leftmost column of this subset has
at least one neighbor (due to the topmost ‘1’) that is singly
connected to the set.

We have applied such a strategy to codeC12 in Table III,
by puncturing 2270 bits in such a way as to obtain a code with
rateR = 0.858, and compared its performance, at a parity of
IMAX , with codeC15 in the table, obtained through pseudo-
puncturing. The comparison is shown in Fig. 12 for the BER
and in Fig. 13 for the FER. The performance ofC12 is also
shown as a reference. Looking at the figures, it is clear that the
pseudo-puncturing strategy outperforms the classic one with
constrained random choice of the punctured bits, with more
than 2 dB of additional coding gain for this specific example.
Moreover, no error floor appears in the pseudo-punctured code
curves.

McLaughlin et al. have applied the density evolution al-
gorithm to find optimized puncturing patterns for LDPC
codes with rate0.5 ≤ R ≤ 0.9. Though the conceptual
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Fig. 13. FER comparison between punctured and pseudo-punctured codes

value of density evolution is highly recognized, its practical
impact may be questionable: basically, it provides asymptotic
results that do not match, necessarily, with the real code
behavior. In [18], for example, a mother code with block
length n = 131072 and R = 0.5 was designed and properly
punctured up toR = 0.95; the performance obtained was very
good but rather far from the theoretical result, that therefore
represents a lower bound, especially for the highest rates.
The designed code was irregular, while no discussion was
made about encoding complexity. In most applications, the
codeword length must be significantly smaller (in radio links,
for example, where it is necessary to control delay [20]) whilst
to limit encoding complexity is often a mandatory task. The
codes we have considered in this paper are about one order
of magnitude shorter than that in [18]; at the same time,
the parity check matrixes have been designed through criteria
that aim at maximizing the girth length in the Tanner graph
(so increasing the minimum distance), maintaining almost
constant the weight of the parity check matrix columns. This,
combined with the lower triangular form, that is achieved at
no additional cost, makes encoding of pseudo-punctured codes
particularly easy. In [21] the same approach of [18], called
intentional puncturing, was applied to shorter codes, but in this
case not achieving an equally favorable result: the proposed
punctured LDPC code had performance better than that of
the randomly punctured code but worse than that of an “ad
hoc” design, at least for the medium/low error rates of interest.
On the contrary, we have verified, through several numerical
examples, that pseudo-punctured codes can be designed, rate-
by-rate, that are able to ensure the same performance of “ad
hoc” codes, just from the neighborhood of the waterfall knee.

An example is shown in Fig. 14, for the BER, and in Fig.
15, for the FER: the performance of codeC16, obtained by
pseudo-puncturing, is comparable with that offered by an “ad
hoc” code that we have designed for the same rate. This
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Fig. 14. BER comparison between “ad hoc” (a.h.) and pseudo-punctured
codes
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Fig. 15. FER comparison between “ad hoc” (a.h.) and pseudo-punctured
codes

demonstrates that pseudo-puncturing may be lossless, in the
sense that, for a specific rate, it is not difficult to construct,
through a suitable choice of the mother code parameters, a
pseudo-punctured code that behaves like a dedicated code.
Obviously, this does not mean that, for the same mother code,
such an excellent performance is retained for the other rates: in
Figs. 14 and 15, for example, codeC14 shows a penalty with
respect to an “ad hoc” code with the same rate (R = 0.834).

The density evolution algorithm for punctured codes has
been improved in [22] and [23], and its application to find
good puncturing patterns has been made even easier. Anyway,
best results were found for the binary erasure channel (BEC),
while other channels (like the AWGN channel, here of interest)

require some form of further refinement and optimization.
Thus, the problem of reducing the penalty induced by punc-
turing in conventional channels remains, and the proposal
of alternative approaches, like the pseudo-puncturing here
considered, appears justified anyway.

In [19], the density evolution approach has been applied
in conjunction with information nulling and parity puncturing
techniques. This is a possible answer to the problem claimedin
Section VI of obtaining good punctured codes for a wide range
of rate values: the designed mother code has an intermediate
rate, from which lower rates can be achieved by nulling (i.e.,
shortening the code) and higher rates by puncturing.

A similar idea justifies the proposal in [24] where, however,
the lowest rates are obtained by code extension. Opposite to
puncturing, extending consists in adding parity check equa-
tions, when necessary. Though interesting in principle, the
proposed procedure has a number of drawbacks, namely: 1)
it precludes the lower triangular form for the parity matrix
of the extended code; 2) it is obtained by adding regular
square blocks, of weight 3, in the right bottom corner of
the matrix; moreover, the blocks cannot have an arbitrary
size: a minimum dimension exists in order to avoid the
appearance, inside the block, of short cycles; 3) the added
parity equations do not yield an almost uniform weight for
the rows. Drawback 1) implies that Gaussian elimination is
required, that can cause the loss of the sparse character for
the matrix; drawback 2) limits the granularity of the achievable
rates, that cannot assume any value [With pseudo-puncturing,
instead (and, really, with classic puncturing as well) we can
proceed by eliminating a single row and column (a single
bit), so that there are much less theoretical limitations onthe
number of rates or the rate values we can generate.]; finally,
drawback 3) is not a favourable choice to have maximum
decoding efficiency.

In [25], the extending procedure has been improved in such
a way as to provide a more uniform row weight distribution
and a stronger dependency between the columns of the parity
check matrix of the mother code and the newly added columns.
Moreover, the modified extending is deterministic (which
makes design and implementation modular and simple), and
the PEG algorithm is applied to design the mother code and
the extended one with matrixes having lower triangular form
(with the advantage it implies, in regard to the encoding
complexity, that grows linearly with the code size). In spite
of these improvements, however, the procedure is exposed to
criticism: granularity of the rate remains limited and, most of
all, the PEG algorithm is applied separately to code portions,
that does not ensure that the PEG advantages remain when
these portions are inserted in the whole code. To the point that,
because of the addition of two side-by-side identity matrices at
the lower left part of the matrix, 4-length cycles may appear,
with their dangerous impact on the code performance. On
the contrary, this risk is absolutely absent in our pseudo-
puncturing procedure.

Another possible assessment for pseudo-punctured codes
would be to compare their performance with that of Tor-
nado/LT/Raptor codes [26], [27], [28]. Such codes have been
firstly proposed for channels with erasures, where the informa-
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tion bits (or packets) are received as correct or discarded at all
(when packets include at least one bit in error). A receiver can
successfully decode the original source data once it receives
a sufficient number of bits (packets); this is the reason why
these codes are basically rate-less. However, erasure codes
need the presence of other codes, working at a lower layer, able
to act efficiently on the random errors induced by Gaussian
noise and, in this other framework, the analysis of LDPC
codes, seen as error correcting codes, must be conducted,
in more conventional terms, on the AWGN channel, where
performance depends on the spectral efficiency.

The applicability of Raptor Codes on the binary symmetric
channel, and the AWGN channel, in particular, has been also
studied in [29]. In practice, a Raptor Code over an AWGN
channel is used in the following way. Givenk source bits
x1 . . . xk, these are first pre-coded into a codeword(y1 . . . yn).
A suitable probability distributionΩ on {1 . . . n} is defined;
the distributionΩ is sampled to obtain a weightw, and a
further uniform sampling is made from the set of binary
vectors of weightw to obtain a vector(v1 . . . vn). The value of
the output symbol is then obtained as

∑n

i=1
viyi. The receiver

collects output bits from the channel and records the reliability
of each bit. This reliability translates into an amount of the
information of the bit. The receiver collects bits until thesum
of the informations of the individual bits isk (1 + ǫ) whereǫ
is an appropriate constant, called the reception overhead.Once
reception is complete, the receiver applies belief-propagation
decoding to recover the input bits.

Apparently, the concept of rate-less codes looks like the
concept of rate-compatible codes and it is certainly true that, in
principle, the performance of Raptor Codes could be compared
with that of punctured codes. Raptor codes are designed in
such a way as to have a reception overhead arbitrary close to
zero, thus obtaining nearly capacity-achieving codes. In this
sense, they should provide a formidable benchmark. It must
be noted, however, that, contrary to the erasure channel, where
“universal” Raptor Codes can be found, whose performance
comes arbitrarily close to the capacity regardless of the era-
sure probability, in the AWGN channel the optimum degree
distribution depends on the noise varianceσ2. This makes
the project of these codes very difficult, and only preliminary
examples of Raptor Codes tailored for the AWGN channel
have been presented up to now. Actually, it has been verified
that Raptor Codes designed for the binary erasure channel do
not perform too badly on the AWGN channel [29] as well. This
is an interesting starting point but the topic requires further
investigation.

Even assuming that the design problem is solved, the
management of these codes appears difficult, with a dynamical
adjustment of the Tanner graph to comply the changeable rate.
Though aware that the puncturing solution may be worse, and
intrinsically unable to approach the capacity for variablerates,
we feel that its implementation is much simpler, and therefore
more realistic in the present scenario.

Finally, for the sake of completeness, we want to mention
that in [30] the problem of obtaining multiple rate LDPC
codes with a unique architecture has been solved by a different
approach, that is maintaining constant the codeword lengthn.

In practice, starting from a mother code with low rate, higher
rate codes are obtained by reducing the number of rows in the
parity check matrix. Reduction is realized by combining rows
linearly, which is equivalent to replace a group of check nodes
with a single check node that sums all the edges coming into
each of the original check nodes. The mother matrix must be
properly designed for this purpose. Apart from the observation
that this approach requires optimization as well, and that rate
granularity is partly limited, the idea of maintaining constant
the codeword length can be inapplicable in many cases, where
instead the constraint is on the information word length, due
to the peculiarity of the application, that fixes the packet size
or needs compatibility with existing standards. Based on these
considerations, in our study we have assumed a constantk and
a variablen, which is the choice done, for the same reasons,
in all the papers reminded above.

VIII. C ONCLUSION

When adopted in a system using high order QAM constel-
lations to have large spectral efficiency, LDPC codes permit
to obtain very good performance, comparable with and even
better than that achieved by classic (and well-experienced)
solutions, like TCM+RS systems. In applications permitting
“ad hoc” designs, a significant additional coding gain can be
achieved with low efforts. Often, however, there is the needto
operate with variable rates and, in this case, it is desirable to
have fast and easy reconfigurability, avoiding to switch among
independent codes any time the rate changes.

The pseudo-puncturing strategy seems very promising for
designing sets of codes with variable rates, based on a single
(or very few, depending on the extent of the range of rates of
interest) mother code(s). No substantial hardware or software
changes are required when passing from one rate to another,
except for an easy puncturing action at the transmitter and,
in the sense explained, a “switch-off” of some routing paths
at the receiver. This way, the pseudo-puncturing strategy is
only slightly more complex than classic puncturing but, as
our simulations have shown, ensures better performance.

The fundamental problem of designing the parity check
matrix of the mother code, by selecting its own number of
edges and symbols ‘1’ density, has been faced by using some
heuristic guidelines, whose effectiveness has been provedin a
number of cases. We recognize this requires some skillfulness
for a rapid convergence to an acceptable result. A possible
development of the research could consist in searching for
analytical approaches to explain the rationale of the method,
thus translating it into general rules. Unfortunately, however,
this task, together with other issues still open in the analysis
of LDPC codes (like explicit formulas for the estimation of
their error rate performance, the minimum distance evaluation,
the weight distribution estimate, and others) is very difficult
to solve.

For a given number of edges and symbols ‘1’ density,
the problem of designing a good code remains. For this
purpose, we have proposed a new algorithm, called Local
Cycles Optimization, based on the progressive construction
of the Tanner graph of the code on an edge-by-edge basis.
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This method has revealed particularly useful in applications
showing stringent requirements on the complexity.

ACKNOWLEDGMENT

Part of this work has been sponsored by Siemens Mobile
Communications S.p.A. The authors wish to thank the whole
Siemens staff for helpful technical discussion and, in partic-
ular, Dr. Sergio Bianchi for having provided some results on
TCM+RS systems.

Prof. Giovanni Cancellieri and Dr. Andrea Carassai are also
acknowledged.

Finally, we are grateful to the anonymous reviewers that,
with their comments and suggestions, have contributed to
improve the quality of the paper.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,”IRE Trans. Inform.
Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[2] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse
matrices,” in Cryptography and Coding. 5th IMA Conference, ser.
Lecture Notes in Computer Science, C. Boyd, Ed. Berlin: Springer,
1995, no. 1025, pp. 100–111.

[3] ETSI EN 302 307 V1.1.1, “Digital video broadcasting (DVB); second
generation framing structure, channel coding and modulationsystems for
broadcasting, interactive services, news gathering and other broadband
satellite applications,” June 2004.

[4] JPL, “LDPC code selection for CCSDS,” CCSDS Meeting, Noordwijk,
Tech. Rep., Apr. 2003.

[5] S. Lin, “Structured low-density parity-check codes: Algebraic construc-
tions,” IEEE P802.3an Task Force Meeting, Portland, OR, Tech. Rep.,
July 2004.

[6] X.-Y. Hu and E. Eleftheriou, “Progressive edge-growth Tanner graphs,”
in Proc. IEEE Global Telecommunications Conference (GLOBE-
COM’01), San Antonio, Texas, Nov. 2001, pp. 995–1001.

[7] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,”IEEE Trans. Inform. Theory, vol. 47, pp. 638–656, Feb.
2001.

[8] Y. Kaji, M. P. Fossorier, and S. Lin, “Encoding LDPC codesusing the
triangular factorization,” inProc. International Symposium on Informa-
tion Theory and Its Applications (ISITA2004), Parma, Italy, Oct. 2004,
pp. 37–42.

[9] L. Ping, W. Leung, and N. Phamdo, “Low density parity checkcodes
with semi-random parity check matrix,”Electronics Letters, vol. 35, pp.
38–39, Jan. 1999.

[10] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,”IEEE Trans. Inform. Theory,
vol. 51, pp. 386–398, Jan. 2005.

[11] D. J. C. MacKay. (2004) Encyclopedia of sparse graph codes. [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[12] J. Hou, P. Siegel, L. Milstein, and H. Pfister, “Design oflow-density
parity-check codes for bandwidth efficient modulation,” inProc. Infor-
mation Theory Workshop, Cairns, Qld, Sept. 2001, pp. 24–26.

[13] G. Bosco, R. Garello, and F. Mininni, “On low density parity check
codes overZ8,” in Proc. Conference on Software, Telecommunications
and Computer Networks (SoftCOM2005), Marina Frapa, Croatia, Sept.
2005, SS1-5040-1509.

[14] Y. Li and W. E. Ryan, “Design of LDPC-coded modulation schemes,”
in Proc. 3rd International Symposium on Turbo Codes, Brest, France,
Sept. 2003, pp. 551–554.

[15] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE Trans. Inform. Theory, vol. 44, pp. 927–946, May 1998.

[16] R. Wesel, X. Liu, J. Cioffi, and C. Komninakis, “Constellation labeling
for linear encoders,”IEEE Trans. Inform. Theory, vol. 47, pp. 2417–
2431, Sept. 2001.

[17] F. Chiaraluce and R. Garello, “Extended Hamming product codes
analytical performance evaluation for low error rate applications,” IEEE
Trans. Wireless Commun., vol. 3, pp. 2353–2361, Nov. 2004.

[18] J. Ha, J. Kim, and S. McLaughlin, “Rate-compatible puncturing of low-
density parity-check codes,”IEEE Trans. Inform. Theory, vol. 50, pp.
2824–2836, Nov. 2004.

[19] T. Tian, C. Jones, and J. Villasenor, “Rate-compatible low-density parity-
check codes,” inProc. IEEE International Symposium on Information
Theory (ISIT), June 2004, p. 152.

[20] T. Flo, P. Orten, and B. Risløv, “Evaluation of coding schemes for
spectrally efficient low-delay radio systems,” inProc. Third International
Symposium on Turbo Codes, Brest, France, Sept. 2003, pp. 551–554.

[21] J. Ha, J. Kim, and S. McLaughlin, “Puncturing for finite length low-
density parity-check codes,” inProc. IEEE International Symposium on
Information Theory (ISIT), June 2004, p. 152.

[22] H. Pishro-Nik and F. Fekri, “Results on punctured LDPC codes,” in
Proc. IEEE Information Theory Workshop (ITW), San Antonio, Texas,
Oct. 2004, pp. 215–219.

[23] H. Pishro-Nik, N. Rahnavard, and F. Fekri, “Nonuniformerror correction
using low-density parity-check codes,”IEEE Trans. Inform. Theory,
vol. 51, no. 7, pp. 2702–2714, July 2005.

[24] J. Li and K. R. Narayanan, “Rate-compatible low density parity check
codes for capacity-approaching ARQ schemes in packet data communi-
cations,” inProc. International Conference on Communications, Internet
and Information Technology (CIIT), US Virgin Islands, Nov. 2002, pp.
201–206.

[25] M. Yazdani and A. Banihashemi, “On construction of rate-compatible
low-density parity-check codes,”IEEE Commun. Lett., vol. 8, no. 3, pp.
159–161, Mar. 2004.

[26] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,”IEEE Trans. Inform. Theory, vol. 47, no. 2,
pp. 569–584, Feb. 2001.

[27] J. W. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain
approach to asynchronous reliable multicast,”IEEE J. Select. Areas
Commun., vol. 20, no. 8, pp. 1528–1540, Oct. 2002.

[28] A. Shokrollahi. (2003, June) Raptor codes. [Online]. Available:
http://www.digitalfountain.com

[29] O. Etesami, M. Molkaraie, and A. Shokrollahi. (2004)
Raptor codes on symmetric channels. [Online]. Available:
http://www.cs.berkeley.edu/∼etesami/

[30] A. I. Vila Casado, W.-Y. Weng, and R. D. Wesel, “Multiplerate low-
density parity-check codes with constant blocklength,” inProc. Thirty-
Eighth Asilomar Conference on Signals, Systems and Computers, vol. 2,
Nov. 2004, pp. 2010–2014.

Marco Baldi was born in Macerata, Italy, in 1979.
He received the ‘Laurea’ degree in Electronic En-
gineering (summa cum laude) from the Università
Politecnica delle Marche in 2003. At present, he
is a Ph.D. student at the Università Politecnica
delle Marche, Department of Electronics, Artificial
Intelligence and Telecommunications. His research
activity mainly regards channel coding, with partic-
ular interest on iteratively decoded codes. He is co-
author of several scientific papers on various topics.

Franco Chiaraluce was born in Ancona, Italy, in
1960. He received the Laurea in Ingegneria Elet-
tronica (summa cum laude) from the Università di
Ancona in 1985. Since 1987 he joined the Dipar-
timento di Elettronica ed Automatica of the same
university. At present, he is an Associate Professor
at the Università Politecnica delle Marche. His main
research interests involve various aspects of com-
munication systems theory and design, with special
emphasis on coding, cryptography and multiple ac-
cess techniques. He is co-author of more than 150

scientific papers and two books. He is member of IEEE and IEICE.

100 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 1, NO. 2, DECEMBER 2005




