SPEKTRALNI ANALIZATORI
S PROPORCIONALNIM BROJACIMA

P. GUGIĆ

Institut za medicinska istraživanja i medicinu rada, Zagreb
(Primljenio 10. X 1963)

Uspoređeno sa sve širim primjenom nuklearne energije, razvijaju se i
uređaji za detekciju i mjerenje ionizantnog zračenja. Značajno mjesto na
tom području zauzimaju spektralni analizatori. U ovom priručku su dati
osnovi rada i neke od suštinskih karakteristika njihovih sastavnih dijelova.

UVOD

Radionuklidi spontano emitiraju iz sebe ionizantno zračenje različitih
vrsta i energija, koje ima osobinu da ionizira materiju. Svaki radionu-
klid ima svoju vlastitu shemu raspada, koja je za nj
karakteristična i jednoznačno određena, kako po energijama i vrstama
zračenja tako i po načinu raspada (1). Budući da se pokazalo da po-
stoje velike mogućnosti primjene radionuklidu, zahvaljujući upravo tim
njihovim osobinama, učinjeni su ozbiljni pokušaji da se pronade metode
za brzo i tačno određivanje vrsta zračenja i njihovih energija. S time u
vezi je i na području nuklearne instrumentacije konstruiran veliki broj
mjernih uređaja. Istaknuto mjesto medu njima pripada bez sumnje
spektrenalnim analizatorima s proporcionalnim brojačima, pomoću kojih
se brzo i jednostavno mogu identificirati sheme radioaktivnog raspada-
danja i mjeriti jakosti radioaktivnih izvora.

Istraživanje sheme raspada radionuklida može se vršiti na više na-
čina (2). Neki od njih se temelje na činjenici da ionizantno zračenje
ionizira materiju kroz koju prolazi i da pri tome postepeno gubi svoju
vlastitu energiju. Jedna od takvih metoda istraživanja sastoji se u tome
da se energija tako dobivenih ionskih parova posredno ili neposredno
pravciti u električke impulse i zatim analizira na posebnim električni-
kim uređajima. Ako je veličina dobivenih električkih impulsa propor-
cionalna s energijama istraživanog zračenja i ako elektronički uređaj sa svoje strane ne naruši tu proporcionalnost, onda se analizom električkih impulsa može dobiti vjerna slika ionizacijskog polja, i po vrstama zračenja i po energijama. Uređaji koji rade na tom principu nazivaju se spektralni analizatori s proporcionalnim brojačima. Sastoje se od pretvarača, uređaja za oblikovanje, indikatora i izvora napona (Sl. 2).

Simboli upotrijebljeni u tekstu:

L – jakost svjetlosti
E – energija ionizantnih čestica
F – broj scintilacija fotovrha
S – ukupni broj scintilacija
Z – broj ionizantnih čestica ili gama fotona koji dospiju u brojač
A – amplituda električkih impulsa
x – put ionizantne čestice

Sl. 1 – Slika raspada Co–60 (1)
Pretvarači

Ima više vrsta pretvarača energije ionizantnog zračenja (4, 5) u električke impulse, ali za potrebe spektralne analize dolaze u obzir samo oni s linearnom karakteristikom funkcije \(A = f(E) \). Sve takve brojače je ispravno nazvati »proporcionalni brojači« (6). (Treba izbjegavati uobičajenu upotrebu tog izraza kao kraticu za »plinske proporcionalne brojače«, jer to stvara konfuziju u stručnoj terminologiji.) Najpoznatiji su plinski proporcionalni brojači, ionizacijske komore i scintilacijski brojači. Prve dvije vrste se primjenjuju kod mjerenja alfa-spектара, te mehaničkih beta i X spектара, a scintilacijski se brojači pretežno upotrebljavaju za mjerenje tvrdih beta i gamma zračenja. (Pod tvrdim odnosno mekim zračenjem se razumijeva zračenje velikih odnosno malih energija.) Područja primjene je vrlo teško razgraničiti, jer se vrlo često preklapaju i u najviše slučajevu će za krajinji izbor biti odlučni samo specifični zahtjevi i okolnosti.

5. 2 – Blok schema spektralnog analizatora s proporcionalnim brojačem

Konstrukcija plinskih proporcionalnih brojača je vrlo jednostavna. Sastoji se iz dvije elektrode, na koje je namijetan istosmjerni električki napon i u čijem se međuprostoru nalazi plin određenog sastava i pritiska. Obično je to metan i argon, a pritisk je nešto malo veći od normalnog (8). Cilindrično kućište brojača je negativna, a centralno postavljena tanka metalna nit pozitivna elektroda. S obzirom na vrstu zračenja, pretvarači se koriste za mjerenje alfena, beta i gama zračenja. Osnovni komponenti pretvarača su visoki napon, pretvarač, oblikovač i pokazivač.

- **Visoki napon**
- **Pretvarač**
- **Oblikovač**
- **Pokazivač**
- **Niski napon**
- **Napon žarenja**

![Blok schema spektralnog analizatora s proporcionalnim brojačem](image-url)
čenja kojoj je brojač namijenjen, postoje na izgled vrlo različite izvedbe, ali je kod svih osnovni princip rada uvijek isti.
Na svom putu, ionizantna čestica ionizira plin u brojaču, tj. stvori niz ionskih parova, koji se pod utjecajem električnog polja multiplikiraju i idu na pozitivnu odnosno negativnu elektrodnu. Budući da su proizvedeni električki naboj, a s time i struja u električkom krugu, proporcionalna energija koju je upadna čestica predala plinu, postoji če analogija između rasprostranjenja amplituda električkih impulsija i energija mjerenog spektra, a to je upravo ono što se htjelo i postići.

![Diagram](image)

Sl. 3 - Slika spoja ionizacijskoj komore ili proporcionalnog brojača

Ionizacijske komore su vrlo slične plinskih proporcionalnih brojačima. One se sastojte iz dvije elektrode zatvorene u plinski komoru, najčešće normalnog pritiska. Elektrode im mogu biti plaštaste ili cilindrične, a jakost električnog polja treba biti dovoljno velika da stvoreni ionski parovi dospiju na pripadne elektrode. Razlika između ionizacijskih komora i plinskih proporcionalnih brojača je baš u jakosti polja. Kod ionizacijskih komora dovoljna je ona jakost polja koja će dovesti one pripadnim elektrodam, a kod plinskih proporcionalnih brojača polje mora biti tako jako, da usmjereni ioni mogu proizvesti i sekundarnu ionizaciju. Dosljedu to mno su i impulsii ionizacijskih komora osjetno manji, pa za-
htijevaju i mnogo veće pojačanje nego kod plinskih proporcionalnih brojača. Zbog toga se ionizacijske komore upotrebljavaju za spektralnu analizu samo onda kad je od primarnog značaja dobro energetsko razlučivanje.

Drugi tip pretvarača energije su scintilacijski brojači. Oni su danas redovito sastavljeni od scintilatora i fotomultiplikatora, koji zajedničkim djelovanjem pretvaraju energiju ionizantne čestice u električki impuls. U scintilacijskom brojaču, ili kako se popularno kaže „scintilacijskoj glavi“, događaju se dvije energetske pretvorbe; nuklearnu u svjetlosnu, i svjetlosnu u električku. Prva nastaje u scintilatoru, a druga u fotomultiplikatoru.

Impozantni broj danas poznatih scintilatora, kojih ima u svu tri agregatna stanja, može se razvrstiti u tri osnovne skupine, i to su: organski materijali, anorganski materijali i plemeniti plinovi (t). Od svih se traži da imaju što veću efikasnost pretvaranja nuklearne energije u svjetlo-

\[\frac{dE}{dx} \]

Slika 4 - Uspoređeni prikaz eksperimentalnih rezultata i teoretske krivulje efikasnosti u zavisnosti od vrste ionizantnih čestica

snu, da budu što proximiraji za vlastitu svjetlosnu emisiju, da imaju maksimum emisionog spektra u području koje se što bolje podudara sa spektrom raspoloživih fotomultiplikatora i da vrijeme svjetlucanja bude što kraće. Pod vremenom svjetlucanja razumijeva se ono vrijeme...
koje je potrebno da bude emitiran dio od 1-e⁻¹ ili 63% od ukupnog broja fotona. I druge osobine, kao gustoća, oblik, higroskopičnost, agregatno stanje itd. igrat će važnu ulogu pri izboru scintilatora za određenu svrhu.

Efikasnost pretvaranja nuklearnog energeta u svjetlosnu (dL/dE) osjetno se razlikuje za različite scintilatore, kao što se to vidi na tablici 1. Ta razlika se još više povećava ako se radi o različitim zračenjima. Pokazalo se, međutim, da se zavisnost efikasnosti od vrste čestica može teoretski objasniti i na osnovu toga izračunati krivulja dL/dE = f(dE/dx). koja – kao što se iz sl. 4 vidi – dhnim nadvodara eksperimentalnim rezultatima (10).

Krivulja na sl. 4 je snimljena s kristalom Cs J (Tl). Organski kristali ne daju iste takve rezultate, ali se ni suštinski ne razlikuju (10).

Anorganskscintilatori i plinovi imaju manju efikasnost od organskih scintilatora, ali im je velika prednost u tome što im je vrijeme svjetlucanja mnogo manje (4). Tako je efikasnost Na J (Tl) dvostruko veća od efikasnosti antracena, ali mu je zato vrijeme svjetlucanja deset puta veće (9).

Zbog specifičkih osobina raznih vrsta scintilacijskih materijala, za analizu različitih zračenja potrebno je izbori scintilatori. Tako se za mjerenje alfa-čestica najčešće upotrebljava Zn S (Ag), a to u obliku pršačka nanoseenog na pleksiglas ili direktno na čelo fotomultiplikatora u sloju debljine oko 8 mg/cm². (U nuklearnoj tehnici se debljina redovito izrađiva u dimenziji «masa na jedinici površine», zato jer masa igra presudnu ulogu u procesu kučenja ionizantnog zračenja). Osim toga se neki plinovi i Na J (Tl) isto tako mogu potrebno biti za mjerenje alfa-čestica. Prednost Zn S (Ag) pred ostalim scintilatorima je u dobroj efikasnosti, koja je oko tri puta veća od efikasnosti Na J (Tl), a masa mu je u lošem energetskom razlučivanju. Za mjerenje jakih alfa izvora prikladni su plemenit plinovi, jer im je vrijeme svjetlucanja kratko (oko 10⁻⁴ sek.) (6).

Za analizu beta spektra potrebno je analizirati obično antracen, stilben i terpenil, a ponekad i plastički scintilatori koji su uprosločen energetskom razlučivanju u izvjesnim slučajevima prikladni zbog relativno niške riječi i velike mogućnosti oblikovanja (6).

području od 20–40° C mnogo je manja nego kod Na J (TI) (11). Mane su mu u manjoj svjetlosnoj emisiji, duljem vremenu svjetlucanja (tabl. 1) i u tome što je 2–2,5 puta skuplji od Na J (TI) (10).

Tablica 1

<table>
<thead>
<tr>
<th>Svetlost</th>
<th>Spektralni maksimum</th>
<th>Vrijeme svjetlucanje</th>
<th>Relativna efikasnost za bcvta žlake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na J (TI)</td>
<td>3,67</td>
<td>1100</td>
<td>0,25 (10)</td>
</tr>
<tr>
<td>Ca J (TI)</td>
<td>4,00</td>
<td>4200–5700</td>
<td>1,2</td>
</tr>
<tr>
<td>Ag Zn S</td>
<td>4,10</td>
<td>4500</td>
<td>10</td>
</tr>
<tr>
<td>Antracen</td>
<td>1,25</td>
<td>4400</td>
<td>0,027</td>
</tr>
<tr>
<td>Butadien + tetrafitil</td>
<td>1,96</td>
<td>4000</td>
<td>5,10–9</td>
</tr>
<tr>
<td>Di benilheksatrien</td>
<td>0,86</td>
<td>4500</td>
<td>0,025</td>
</tr>
<tr>
<td>Xenon</td>
<td>ultra- ljubičasto</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drugi dio scintilacijske glave je fotomultiplikator. Sastoji se od fotoosjetljive katode, 10–16 dinoda i kolektora. Cijev je zatvorena u evakuiranom staklenom pasulu s jednom posebno priređenom prozirnom površinom i izvodima za električki napon (13). Kad foton energije od najmanje 1000 eV (7) padne na fotokatodu, on iz nje izbije sekundarni elektron. Taj se elektron u električkom polju ubrzava i usmjerava prema elektrode. A sve elektrode su tako porazmještene da električko polje, uspostavljeno iz vanjskih naponima, usmjerava elektrone od katode preko svih dinoda do kolektora. Faktor pojačanja, koji se na taj način postigne, ide kod komercialnih cijevi do oko 106, a specijalno konstruirani fotomultiplikatori od 18 elektroda i 4000 V dostižu pojačanje od 2·106 i osjetljivost od 200 amp/lumen (10).

Treći dio cvjet koji se ponekad ugrađuje u scintilacijsku glavu je "svjetlosna cijev" (light pipe). Nalazi se između kristala i fotomultiplikatora. Izradena je iz materijala prozirnog za spektralno područje scintilatora. Upotrebljava se onda kad je znak prozor i oblika nemoguće scintilator direktno priljubiti uz prozor fotomultiplikatora i onda kad je kristal jako tanak, pa ga treba odmaknuti od fotokatode radi jednoliknijeg osvjetlje-
nja. Svjetlosna cijev povećava mravo vrijeme i smanjuje osjetljivost, ali zato, naročito u drugom slučaju, poboljšava sposobnost energetskog razlučivanja (15, 16).

![Diagram schematic](#)

Sl. 5 - Shema spoja scintilacijske glave

Spojne površine scintilatora, svjetlosne cijevi i fotomultiplikatora vezuju se radi boljeg prolaza svjetlosti s prozirnim viskoznim supstancijama, kao što su kanada-balzam za antracen (9), te silikonsko ulje, silikonska mast i vaselin za Na J (Tl) (17). Pri sastavljanju treba biti uprezan, kako se nepravilnim rukovanjem ne bi smanjila prozirnost vezivnog materijala, jer se to, naročito kod silikonskog ulja, može dogoditi.

Obično se u kućištne scintilacijske glave ugrađuje još i prepojačalo s katodnim sljedilom. Svrha tog električkog sloga je da pomaže impulze iz fotomultiplikatora direktno na samom izlazu, tj. još prije nego se unijekaju s okolnim smetnjama, i drugo, da izlaz scintilacijske glave prilagodi niskomanskog izlazu priključnom kabela. Prvo je zbog toga da se odnos signal-a promijeni što većim, a drugo, da se gusćim izlazu nepriključeni impedančni kabela učini što manje.

Sve tri vrste spomenutih proporcionalnih brojača imaju svojih prednosti i mana. Scintilacijski brojači, koji se danas najviše proizvode, imaju veliku efikasnost za sve vrste zračenja, za razliku od drugih vrsta, na primjer, kojima je efikasnost za gamma zrake vrlo malena (oko 70% napredno 0,5%). Dalje, mrtvo vrijeme, tj. najkraće vrijeme između početaka dvaju susjednih impulsa, je kod scintilatora reda 10^{-8} sek. (8).
a kod plinskih proporcionalnih brojača oko 10^{-3} sek. (4). Prednost im je
v većom izlaznom impulsu u uspoređenju s plinskih proporcionalnih
brojačima, pa doljedno tome i u potrebi manjeg pojačanja. S druge
strane, plinski proporcionalni brojači imaju osjetno bolje energetsko
razuljivanje od scinitilacijskih brojača pa se stoga i upotrebljavaju tamo
gde jakost izvora nije kritična, a zahtijeva se dobro razuljivanje vrlo
bliskih energija (7).

Uređaji za oblikovanje impulsa

Iz proporcionalnog brojača električki impuls ide u uređaj za oblikova
anje i selekciju, koji može biti građen za integralnu ili diferencijalnu
spektralnu analizu. Prvi je u principu vrlo jednostavan, a sastoji se od
impulsnog pojačala (18) i diskriminatora (19). Za scinitilacijske proporcio
nale brojače je dovoljno pojačanje od oko 10^3, a plinski proporcio
nale brojači zahtijevaju pojačanje od oko 3×10^3 (6). Iz pojačala
impulsi idu u diskriminator. Amplitudna raspodjela impulsa mora na
ovom mjestu biti proporcionalna energijama ionizativih čestica. Budući
da je taj uvjet nemoguće postići za neograničeni energetski spektar, de
finiraju se granice u kojima je postignuta linearnost s određenim pro
centrom odstupanja. Pojačani impuls dolaze napokon u diskriminator,
koji pomoću jednog promjenljivog prednapona diskriminira sve one
impulse koji su niži od namještenog prednapona, a sve ostale propušta.
Grafički je to prikazano na slici 6, gdje je na apscisi naneseno vrijeme,
a na ordinati amplituda. Postepenim smanjenjem diskriminatora od naj
niže do najviše vrijednosti dobije se tzv. integralni spektar. Na slici 7
prikazan je takav spektar Co–60. Integralni analizatori se rijetko upo-
trebaju za spektralnu analizu, jer su im rezultati, kao što se vidi iz slike 7, jako nepregledni.

Mnogo praktičniji su uređaji za diferencijalnu analizu, poznati kao kanalni analizatori (5, 21, 22, 23, 24). Kod njih se također na ulazu nalazi impulsno pojačalo, iza kojega dolaze dva diskriminatora i antikoincidentni izlaz (Sl. 8). Ako je impuls veći od D₂ (Sl. 9), propustit će ga oba diskriminatora i tako uţvostručiti. Impuls iz gornjeg diskriminatora za određeno vrijeme zatvori antikoincidentnu jedinicu i tako onemogući drugom impulsu da se probije na izlaz. Takav impuls, koji je veći od D₂, neće biti odbijen.

Ako je impuls manji od D₂ a veći od D₁, onda će on uzdužiti samo donji diskriminator, pa budući da u tom slučaju blokirajući impuls gornjeg diskriminatora neće blokirati izlaz, donji će impuls nesmetano došpetiti na izlaz antikoincidentne jedinice. Takav impuls, kojemu se vrijednost nalazi između D₁ i D₂, bit će prema tome pružljen u indikator i registriran.

Impuls manji od D₁ nije u mogućnosti uzdužiti ni jedan od diskriminatora, pa prema tome ne može biti ni odbijen.

Razine D₁ i D₂ obično se nazivaju donjim i gornjim pragom, a njihov razmak kanalom analizatora. Skokovitim pomicanjem kanala od minimalne do maksimalne vrijednosti dobije se slika spektralne raspodele analiziranog zračenja u diferencijalnom obliku. Slika 10 ilustrira tako...
dobiveni diferencijalni spektar Co–60, na kojemu su, za razliku od integralnog spektra, uočljivo istaknuti fotovrhovi energija 1,17 i 1,33 MeV. Uobičajena mjera za ocjenu kvalitete diferencijalnog spektra je tzv. energetsko razlučivanje, koje je definirano kao kvocijent širine fotovrha na polovini visine i njegove energije. Na slici 10 energetsko razlučivanje

Slika 8 – Blok-sjema kanalnog analizatora

Slika 9 – Prikaz radu kanalnog analizatora
fotovrh za koballovu energiju od 1,17 MeV iznosi \(\frac{0.14 \times 10^2}{1.17} = 12\% \).

S primjenom linearnog pojačala, kao što je naprjed i pretpostavljeno, raspored fotovrhnova na aparati će biti linearan. Kad se radi o širokim spektralnim područjima, iza pojačala se dodaju elektronički slojovi s logaritamskom karakteristikom. S njima se u prvom redu obuhvaća širi energetski raspon, a u drugim redu postiže se linearni prikaz jakosti fotovrhova (24).

Pobjeđena izvedba jednokanalnih analizatora sadržava uređaj za automatsko pomicanje kanala (scanner). Taj se uređaj sastoji od jednog sinhronog motora koji pokreće osnovne potencijumetara gornjeg i donjeg diskriminatora, pa tako i kanal analizatora od jednog do drugog kraja njegova položaja. Ako se impulsi s uređaja za oblikovanje i selekciju preko brzinomjera impulsa (ratemeter) dovedu na pisač (recorder), onda će na papiru pisača biti nacrtao diferencijalni spektar (Sl. 10).

Za analizu izvora malih aktivnosti ili malih vremena poluraspada, jednokanalni analizatori ne daju dobre rezultate ni u slučaju automatskog pomicanja kanala. Zbog toga su izvedeni uređaji s nizom diskriminatora, koji čine višekanalne sisteme. Umjesto skokovitog pomicanja jednog kanala, kod višekanalnih analizatora jednovremeno broje svi kanali, pa se tako višestruko nahrava vrijeme mjerenja. Uređa u vremenu naročito se očituje kod rada s radionuklima kratkih perioda, gdje bi u slučaju primjene jednokanalnih analizatora, uz ostalo, trebalo vršiti i

Sl. 10 – Diferencijalni spektar Co-60
posebnu vremensku korikiju za svaki pojedini kanal. (Perioda radionuklida je vrijeme potrebno da se jakost radioaktivnog izvora smanji na polovicu.)

Dalji korak u poboljšanju uređaja za energetsku analizu učinjen je zamjenom diskriminatora analogno-digitalnim konverterima (28, 29), a kasnije primjenom memorije i katodne cijevi (30, 31, 32, 33). (Memorija je uređaj koji može određene podatke usklađiti i kasnije reproducirati.) S takvim višekanalnim analizatorima, koji mogu imati i po nekoliko stotina kanala, dobije se energetske spektar direktno prikazan na ekranu katodne cijevi. Broj impulsa u pojedinom kanalu može se u svaku doba očitati na jednom jedinom priključnom brojilu, koje kod analizatora s memorijom služi za očitavanje svih kanala analizatora.

Indikatori

Indikatori mogu biti izvedeni na principu brojila (scaler) ili brzinomjerena impulsa (ratemeter). Kod brojila je svaki impuls na neki način odvojeno registriran, a rezultat mjerenja je određeni broj impulsa. Brzinomjeri, međutim, pokazuju prosječni broj impulsa u određenom vremenu i iskazuju rezultate u broju impulsa na jedinici vremena.

Brojila ima binarnih i dekadskih (8, 21, 35, 36). Binarna su sastavljena od serije bistabilnih elektroničkih slogova, koji obično završavaju s dekadskim mehaničkim registrom. U binarnom sistemu je rezultat najčešće prikazan tinjalicama. Odlikuju se jednostavnosti konstrukcije i velikom brzinom brojanja. Može se postići mrtvo vrijeme od ispod 10⁻⁶ sek. Zbog nepreglednosti rezultata u binarnom sistemu, često se taj sistem izbjegava, a bistabilni slogovi se primjenjuju za gradnju dekadskih brojila (34). Takva brojila zadržavaju i dalje malo mrtvo vrijeme, ali im se broj elemenata donekle povećava.

Kod drugog tipa dekadskih brojila upotrebljavaju se za gradnju elektronike sa deset stabilnih stanja. Prednost im je u velikom pojednostavnjenju brojačkog sloga i u tome što direktno daju rezultate u dekadskom sistemu. A mana im je u relativno maloj brzini rada, koja je dekatrone s hladnom katodom tipa GC 10/4 B iznosi oko 4000 i/sec., a za jonometrone tipa G 10/241 E oko 20.000 i/sec. Mnogo veće brzinе rada postižu se s vakuumskom dekadskom cijevi, i sa trohotronom tipa VS 10 H, kod kojega se primjenjuje kombinacija električkog i magnitetskog polja. U slučaju E1T ta je brzina oko 30.000 i/sec., a u slučaju VS 10 H oko 9×10⁶ i/sec.

Brzinomjeri su naročito važne jedinice u sklopu jednokanalnih analizatora s automatskim pomicanjem kanala (36, 37). Kod takvih uređaja je pisan koji crta krivulju energetske spektra napajanj od brzinomjera. Njegov izlaz, izražen u istosmjernej strujih ili naponu, mora biti linearno proporcionalan mjerenom broju impulsa u jediniči vremena. Ako brzinom-
mjer nije linearan, deformirat će se spektar i rezultat će biti pogrešan, bez obzira na veliku tačnost svih ostalih elemenata. Mjerna područja komercijalnih brzinomjera su od oko 1 i/sek. do oko 10^6 i/sek.

Izvori napona

Zadnji po redu, ali ne i po važnosti, su izvori napona (power supply), koji elektroničke jedinice osposobljuju potrebnim električkim naponima (21). Mogu biti baterijski, akumulatorski ili električni. Prvi i drugi su samostalni izvori energije, a električni uređaji su samo pretvarač jednog oblika energije u drugi. Zbog toga ih treba napajati iz nekog drugog elektroenergetskog izvora.

Za rad spektralnih analizatora potrebne su općenito tri vrste napona, i to: naponi žarenja, niski naponi i visoki naponi. Naponi žarenja su obično izmjenični, a služe za žarenje elektronka. Najčešće vrijednosti su im 6,3; 4 i 5 V. U slučaju varijacija mreže preko $\pm 5\%$, preporučljivo ih je stabilizirati. Vrijednosti niskih napona se kreću od oko -150 V do oko 500 V, a mogu se od konstrukcije do konstrukcije razlikovati. Stabilizacija koja se zahtijeva od jedinica niskog napona kreće se oko 0,01% za varijacije mreže od $\pm 1\%$. Visoki naponi se redovito izvodi

Sl. 11 - Scintilacijska glava tvrtke »Nuclear Chicago«, SAD
s promjenslim izlazom od oko 100 do oko 2000 V, a upotrebljava se za napajanje brojača. Stabilizacija ne smije biti manja od 0,01% za promjenu mreže od ±1%, a vremenske fluktuacije unutar 10-satnog pogona ne smiju prelaziti 0,1%. U slučaju da nestabilnost mrežnog napona prelazi ±10% nominalne vrijednosti, preporučuje se stabilizirati mrežni napon.

Osobitosti spektralnih analizatora

Uređaji za spektralnu analizu, bez obzira koliko je pažnje bilo obraćeno izboru njihovih sastavnih elemenata, neizbježno podliježu tehničkim nesavršenostima. Te se nesavršenosti očituju u nestabilnosti rada, koja može biti jednosmjerna ili dvosmjerna. Prva je uzrokovana staro-

![Diagram analizatora](image_url)
njem, a druga tehnološkim nedostacima, satim fluktuacijama napona za napajanje i nestabilnošću ambijenta u pogledu temperature, vlage, pritiska itd. Da bi se svi ti utjecaji sveli na minimum i tako osigurala reproduktivnost rezultata, izveden je čitav niz elektroničkih povratnih sprega, kojima se željeni cilj u velikoj mjeri i postiže. Međutim, uprkos svim tehničkim dostignućima, treba faktorima okoline obratiti punu pažnju i nastojati da se njihove fluktuacije što je više moguće smanje. Naročito treba paziti da se nekad ne počinje mjerenjem prije nego je uređaj postigao svoju radnu temperaturu. Taj se podatak obično navodi u uputstvima za rukovanje, ali se po potrebi muže vrlo lako i eksperimentalno odrediti.

Da bi se pogreška smanjila što je više moguće uređaj treba povremeno baždariti. Najtrivijalniji način je upotreba izvora poznanete energije i ugađanje visokog napona sve dok se vrh poznanete energije ne pojavlji na određenom mjestu. Mnogo je bolje rješenje da se jedan alfa izvor dugache perioda ugradi direktno u brojač. U slučaju scintillatora, to može biti i mala tinjačica s konstantnom svjetlosnom emisijom. Impulsi koji se iz tih izvora dobiju moraju biti veći od najvećeg impulsa koji pri analizi dolazi u obzir, i to zato da se ne bi miješali s osnovnim spektrom. Osim toga, ti konstantni izvori, uzeti kao referentne veličine u spruci s regulacionim sistemom, stabiliziraju visoki napom brojača i tako smanjuju utjecaj fluktuacije napona na fotomultiplikator od osme na otprije prvu potenciju (39).

Elektronički dio spektralnih analizatora je značajna, a brojači ne samo što se razlikuju po tipu, nego im je i oblik za pojedina zračenja različit. Stavište, prikladnim izborom i smještajem brojača moguće je ne samo popraviti uvjete mjerenja, već i određene energetske spektere formirati tako da se istaknu upravo oni dijelovi koji su u određenoj prilici od veće važnosti (40, 41, 42).

Razvoj spektralnih analizatora je još uvijek u punom napomu, počevši od pretvarača pa do naponskih izvora. Krupan korak u tom smislu učinjen je u posljednje vrijeme s poluvodićima (43). To se naročito odnosi na trajnost i prostorno smanjenje čitavog uređaja. Kod poluvodiča postaje za sada još neka ograničenja, no ona su iz dana u dan sve manja, i nije teško pretpostaviti da će spektralni analizatori s poluvodićima postići u skorij budućnosti ne samo veći vijek trajanja, nego i bolje mjerne rezultate (10).

LITERATURA

Summary

SPECTRUM ANALYSERS WITH PROPORTIONAL COUNTERS

Large application of nuclear energy brought about the development of instruments for the detection and measuring of ionizing radiation. In this field spectral analysers play an important part.

In this survey the principles of work and a few basic characteristics of the constituent parts of these analysers are presented.

Institute for Medical Research,
incorporating the Institute of Industrial Hygiene, Zagreb

Received for publication November 10, 1963