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SUMMARY

We performed QTL mapping in testcrosses of maize population IBMSyn4 for three 
grain quality traits: oil and protein contents and test weight. 191 phenotyped and 
genotyped lines were used as a training set while 85 genotyped only lines com-
prised a validation set used to calculate best linear unbiased predictions (BLUP), 
making a total of 276 phenotypes for the QTL analysis. 92000 filtered Genotyping-
By-Sequencing (GBS) SNP markers were used to calculate BLUPs, while a set of 
2178 genetically mapped SSRs was used in QTL analysis. By simple QTL scan, 
we scored several minor effect QTLs: one for oil content (chromosome 1), one for 
protein content (chromosome 10) and four for test weight (chromosomes 1, 3, 5 
and 10). QTLs associated with test weight were found to be additive, and 18.25% 
of phenotypic variance was explained by their joint effect. Only one QTL for test 
weight was found to be significant in composite interval mapping and it was map-
ped on chromosome 5. This QTL accounted for 9.97% of phenotypic variance. QTLs 
detected in this study represent monitoring of commercially most successful elite 
maize germplasm for grain quality traits. 

Key-words: best linear unbiased predictions, IBM population, maize, quantitative 
trait loci, grain quality traits

INTRODUCTION

In developing countries, maize grains are the only 
source of proteins and caloric value for several million 
people (Nuss and Tanumihandrjo, 2011), as well as a 
valuable source of oil (Prasanna et al., 2001). Grain qual-
ity traits such as the content of oil and proteins and test 
weight play an important role in determining the value of 
produced maize. Test weight in maize reflects a degree 
of maturity, uniformity and integrity and presents an 
important parameter in grading grains for the different 
purposes (Quiang-Ding et al., 2011). There are several 
options of phenotyping these traits, but the one that 
offers the highest throughput with satisfactory reliability 
and repeatability of results is near infrared transmittance 
(NIT) analysis (Lee et al., 2007). Selection for grain oil 
and protein contents are some of the longest-spanning, 
still perpetuating selection strains with very high effi-

ciency and gain per cycle of breeding (Bennetzen and 
Hake, 2009). Grain oil and protein contents, as well 
as test weight, are quantitative traits of high heritabil-
ity, and associated quantitative trait loci (QTLs) were 
identified in a number of studies (Goldman et al., 1993; 
Goldman et al., 1994; Wassom et al., 2008; Zhang et al., 
2008; Quiang-Ding et al., 2011). Enrichment of maize 
cultivars for grain oil and protein content presents an 
increase in their nutritional values, while test weight, 
being a complex trait, offers a number of benefits. So 
far, traditional breeding approaches have been used in 
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breeding for these traits (Dorsey – Redding et al., 1991), 
although their high heritability and quantitative nature 
make them a perfect fit for genomic selection (GS). GS 
allows predictions of phenotypic and breeding values of 
individuals that have been only genotyped (validation 
set and other lines derived from the population) based 
on genetic marker data that has been accounted for 
marker effects (trained) by best linear unbiased predic-
tion (BLUP) in a training set (genotyped and phenotyped) 
(Meuwissen et al. 2001).  BLUP calculations have been 
used extensively in maize breeding (Bernardo, 1996; 
Balint-Kurti et al., 2010; Lian et al., 2015). The prereq-
uisite for BLUP is genotypic covariance between lines 
in genotype space. At the core of its calculation is a 
maximum-likelihood algorithm for mixed models able 
to account for a single variance component (marker 
effects) besides residual error (Endelman, 2011).  

Objectives of our study were: a) to perform best 
linear unbiased predictions (BLUPs) to scan for QTLs in 
full set of lines from IBMSyn4 population; b) to detect 
QTLs for oil content, protein content and test weight in 
testcrosses of IBMSyn4 population.

MATERIAL AND METHODS

Plant material, phenotyping and experimental design
A total of 191 intermated recombinant inbred lines 

(IRILs) of the maize biparental IBMSyn4 population 
(the cross between the inbred lines B73 and Mo17 
intermated for four generations, Lee et al. 2002) were 
testcrossed to the Agricultural Institute Osijek propri-
etary line 84-28A of Iodent genetic background. The 
experiment was set as an unreplicated incomplete block 
design in the growing season of 2015 in Osijek. Ears 
were hand-harvested and shelled at approximately 20% 
moisture. 500 g samples were collected and the meas-
uring of oil and protein contents, and test weight were 
performed with NIT Infratec Grain Analyzer machine 
model 1241. Each sample was measured three times 
and average of three measurements was used for fur-
ther analysis. 

Genotyping
Genotyping By Sequencing (GBS) was performed 

by Panzea (panzea.org) with the enzyme ApeKI accord-
ing to Elshire et al. (2011). The total of 955,690 SNPs 
was extensively filtered and finally, ~92000 SNP 
markers were chosen. These markers were not geneti-
cally mapped, and they were used only for calculation 
of BLUPs since prediction accuracy is directly influ-
enced by marker density. 2178 SSRs (Simple Sequence 
Repeat, Andorf et al., 2010) comprised another set of 
genetically mapped markers that was used for QTL 
mapping. 

Statistical analysis 
Filtering of GBS data was performed in TASSEL 

version 5 software (Bradbury et al., 2007) by exclusion 
of rare alleles and residual heterozygosity. All other 

statistical analyses were performed in R programming 
language (R Core Team, 2012). Package {rrBLUP} 
was used for BLUP calculations. 191 genotyped and 
phenotyped IRILs were used as a training set, while the 
other 85 lines that were genotyped only were used as 
a validation set for predictions. BLUPs were calculated 
using the equation:

Xgy     (1)
y = phenotypic mean, μ = overall mean of train-

ing set, X = marker matrix, g = marker effects, = 
residual effects

QTL analysis was performed with {qtl} package 
(Broman et al., 2003) in a set of 276 lines comprised 
of 191 observed entries and 85 predictions obtained 
by BLUP. Initial QTL scan was performed with scanone 
function assuming one QTL per chromosome and offer-
ing a loose implementation of WinQTL “simple interval 
mapping” function. LOD score confidence intervals 
were calculated with bootstrap procedure running 1000 
permutations. Putative QTLs scored with scanone were 
used as cofactors for further analysis and composite 
interval mapping (CIM) forward selection procedure. 
CIM was performed using Haley-Knott regression and 
window size of 10 cM. 1000 permutations test was also 
run for CIM results. 

RESULTS AND DISCUSSION

Weak to moderate correlations were observed 
for all three analysed traits (data not shown). Weak to 
moderate correlations for these traits were observed 
earlier (Dorsey – Redding et al., 1991; Li et al., 2009). 
In initial QTL analysis of grain oil content, a single QTL 
was identified at position 386.4 cM of chromosome 1 
(Table 1). Putative QTL explained 5.69% of phenotypic 
variance and was highly significant at P=<0.001 in 
model testing. Comparable QTL was reported by Zhang 
et al. (2008), although positions on genetic maps used 
in the present study cannot be directly compared due 
to high resolution and greater size of IBM map (Falque 
et al., 2005) compared to an F2 map used by Zhang 
et al. (2008). QTL for protein content was detected on 
chromosome 10, at 53 cM. Putative QTL accounted for 
6.19% of phenotypic variance for the trait and it was 
highly significant at the P=<0.001 level (Table 1). 
Interestingly, Li et al. (2009) identified the same QTL at 
nearly the same position (53.2 cM), though this position 
was in bin 10.02, while on our map it is 10.01. Possibly, 
it was the same QTL we identified. Zhang et al. (2008) 
also mapped QTLs for grain protein content, but none of 
QTLs were detected in our study. 

As expected, a larger number of smaller effect 
QTLs was identified for test weight which is a rather 
complex trait. QTL on chromosome 1, at position 405 
cM (csu3) explained 4.13% of phenotypic variance and 
was highly significant (P=<0.001). A QTL was identi-
fied at chromosome 3, although with nonsignificant phe-
notypic effect. A QTL on chromosome 5 at position 307 
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cM (umc2298) had highly significant effect at P=0.003 
and was accounted for explaining 2.67% of phenotypic 
variance (Table 1). All three QTLs found were previously 
identified by Quiang-Ding et al. (2011), although QTL 
on chromosome 3 was mapped at a different position. 
Another QTL for test weight on chromosome 10 at posi-
tion 445.7 was accounted for 3.31% of phenotypic vari-
ance of trait and its effect was significant at P=0.001. 
This might be a QTL for kernel weight identified by 
Prado et al. (2014), mapped on bin 10.03 across all 

investigated populations. In our study of one biparental 
population, it was found at bin 10.06/10.07. QTLs for 
test weight were tested for additive effects with model 
y = Q1 + Q2 + Q3 + Q4 and “drop one” procedure. 
The percentage of phenotypic variance explained by 
their additive action was found to be 18.25%, which 
was highly significant at P =<0.001 (Table 1, last row) 
and exceeded sum of phenotypic variances attributed to 
each QTL individually.

Table 1. Results of initial QTL scan assuming single QTL per chromosome 
Tablica 1. Rezultati inicijalnog QTL skena pod pretpostavkom jednog QTL-a po kromosomu 

Trait 
Svojstvo

Chr 
Krom.

1.5 LOD interval LOD R2 (%)1 P value
P vrijednost

Flanking markers  
Dodirni markeri

Oil /Ulje 1 229.6 - 934.5 3.51 5.69 0.000 AY110052 - uaz130a

Protein / Proteini 10 0.0 - 260.5 3.83 6.19 0.000 mmp48a - mgs1

Test weight / 
Hektolitarska masa

1 391.8 - 445.5 3.97 4.13 0.000 umc2228 - AY110396

3 203.4 - 828.9 3.69 0.21 0.404 mmp36 - mmp191

5 229.0 - 332.7 6.34 2.67 0.003 bcd207b - mmp19

10 442.2 - 450.8 4.05 3.31 0.001
agrr37c - 
AY110016

 18.25 0.000
1 Percentage (%) of the variance explained by QTL / Udio variance objašnjen QTL-om 

In composite interval mapping (CIM) procedure, 
putative QTLs identified via the scanone function were 
set as cofactors to perform the procedure of forward 
selection of QTLs by multiple regression. Only one QTL 
of moderate effect for test weight was identified (Table 
2) at position 307 cM (umc2298). Phenotypic variance 
explained by the QTL was 9.97 % and it was shown to 
be significant at P=<0.001 level. It was probably the 
same QTL identified by Quiang-Ding et al. (2011). 

Generally, our QTL results should be interpreted 
with caution since our study was conducted in only 
one environment and using genetically very narrow 
population. The major impediment to the implementa-
tion of QTL analysis results is the lack of consistency in 

results due to large QTL x environment interactions (Liu 
et al., 2014), especially for important traits such as test 
weight, oil and protein contents for which the selec-
tion has already been done in both parental lines. Both 
parental lines of IBM population, B73 and Mo17, have 
undergone several cycles of selection and have prob-
ably had the highest commercial success in the history 
of maize seed business (Hallauer et al., 2010), so these 
results represent monitoring rather than implementa-
tion for use in marker assisted selection. Results of 
composite interval mapping can be seen in Figure 1 
indicating other two possible QTLs on Chromosomes 1 
and 4 with LOD scores higher than 3 which were not 
significant.

Table 2. Results of composite interval mapping for test weight
Tablica 2. Rezultati složenog intervalnoga mapiranja za hektolitarsku masu

Trait 
Svojstvo

Chr  
Krom.

1.5 LOD interval LOD R2 (%)1 P value
P vrijednost

Flanking markers  
Dodirni markeri

Test weight  
Hektolitarska masa

5 301.6 - 310.0 8.21 9.97 0.000 bnl8.33 - umc86b

1 Percentage (%) of the variance explained by QTL / Udio variance objašnjen QTL-om 
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Figure 1. QTL for test weight scored with composite interval mapping procedure (the solid line denotes threshold 
at alpha = 0.05) 
Slika 1. QTL za hektolitarsku masu izračunat kompozitnim intervalnim kartiranjem (puna linija predstavlja prag značajnosti 
pri alfa = 0,05)

CONCLUSION

QTLs detected via simple QTL scan were not com-
pletely consistent with composite interval mapping. 
Only one QTL for test weight on chromosome 5 has been 
identified in both mapping procedures. All putative QTLs 
identified in this study can be useful guidelines in breed-
ing for grain oil and protein contents and test weight 
when using marker assisted selection. Applying best lin-
ear unbiased predictions was proved to be a worthwhile 
tool for QTL mapping in maize biparental populations 
using genotyping-by-sequencing data.
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QTL KARTIRANJE ZA SVOJSTVA KVALITETE ZRNA 
KOD TESTKRIŽANACA BIPARENTALNE POPULACIJE KUKURUZA 
KORIŠTENJEM PODATAKA GENOTIPIZACIJE SEKVENCIRANJEM

SAŽETAK

Proveli smo QTL kartiranje u test križancima IBMSyn4 populacije za tri svojstva kvalitete zrna: sadržaj ulja i 
proteina te hektolitarsku masu. 191 fenotipizirana i genotipizirana linija korištena je kao “training” populacija, 
dok je 85 linija, koje su bile samo genotipizirane, činilo „validacijsku“ populaciju pri izračunavanju najboljih 
linearnih nepristranih predviđanja (BLUP). QTL analiza provedena je na ukupno 276 fenotipova. 92000 
filtriranih SNP markera, dobivenih genotipizacijom sekvenciranjem (GBS), korišteno je za izračun BLUP-ova, 
dok je set od 2178 genetski kartiranih SSR markera korišten za QTL analizu. Pri jednostavnom QTL skeniranju, 
detektirali smo nekoliko QTL-ova slabijega fenotipskoga učinka: jedan za sadržaj ulja (kromosom 1), jedan 
za sadržaj proteina (kromosom 10) i četiri za hektolitarsku masu (kromosomi 1, 3, 5 i 10). QTL-ovi povezani 
s hektolitarskom masom imali su aditivno djelovanje te je njihovim združenim djelovanjem objašnjeno 
18.25% fenotipske varijance. Samo jedan QTL za hektolitarsku masu na petome kromosomu bio je statistički 
značajan pri kompozitnom intervalnom kartiranju. Navedeni QTL podržava 9.97% fenotipske varijance. QTL-
ovi detektirani u ovom istraživanju predstavljaju monitoring komercijalno najuspješnije elitne germplazme za 
svojstva kvalitete zrna.

Ključne riječi: najbolja linearna nepristrana predviđanja, IBM populacija, kukuruz, lokusi kvantitativnih 
svojstava, svojstva kvalitete zrna
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