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Abstract. This paper deals with a Brocard-Ramanujan-type equa-
tion of the form

un1un2 . . . unk
+ 1 = u2

m

in unknown nonnegative integers k, n1, n2, . . . , nk and m with k ≥ 1, where
u = (un)∞n=0 is either a Lucas sequence or its associated sequence. For
certain infinite families of sequences we completely solve the above equa-
tion, extending some results of Marques [15], Szalay [21] and Pongsriiam
[18]. The ingredients of the proofs are factorization properties of Lucas se-
quences, the celebrated result of Bilu, Hanrot and Voutier on primitive di-
visors of Lucas sequences and elementary estimations concerning the terms
involved.

1. Introduction

Brocard ([4, 5]) and independently Ramanujan ([19]), unaware of Bro-
card’s papers, posed the diophantine equation

(1.1) n! + 1 = m2

in positive integer unknowns n and m. Solutions to (1.1) are called Brown
numbers. Known Brown numbers are (n,m) = (4, 5), (5, 11) and (7, 71), but
it is still an open problem if there exists any other. Erdős conjectured that the
above list of Brown numbers is complete, which is supported by considerable
computational evidence. Namely, Gupta ([10]) showed that up to n = 63 one
cannot find an additional solution. This was later improved by Wells ([22]) to
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n ≤ 107 and by a joint work of Berndt and Galway [2] to n ≤ 109. Further,
Overholt ([16]) proved that a weaker version of the abc-conjecture implies the
finiteness of Brown numbers, but his result does not give an effective upper
bound on the sizes of the solutions.

Much study went into various generalizations of (1.1). Da֒browski [6]
verified finiteness for the setting

n! +A = m2

with A ∈ Z. However, his proof for square A still assumes a weaker version
of the abc-conjecture. Another generalization was investigated by Berend and
Osgood [1], who showed that if P ∈ Z[x] is of degree at least 2, then the
density of the set of positive integers n such that

(1.2) P (x) = n!

has a solution x, is zero. (1.2) was also considered by Erdős and Obláth ([9])
and Pollack and Shapiro ([17]) with P (x) = xd ± 1 and d ≥ 3 being a prime.
Provided that the full abc-conjecture holds, Luca ([13]) found that (1.2) can
have only finitely many solutions. We would like to point the interested
reader to another paper of Da֒browski [7], where additional generalizations
are mentioned.

Variants of (1.1) involving linear recurrences have also been studied. Since
the focus of this paper is the solution of equations of such type, we introduce
some of the definitions at this point. Let P and Q be nonzero coprime integers
such that the polynomial x2 − Px + Q has two distinct roots α and β with
the property that α/β is not a root of unity. Define

un =
αn − βn

α− β
and vn = αn + βn (n ≥ 0).

The sequences u = (un)
∞
n=0 and v = (vn)

∞
n=0 are called the Lucas and associ-

ated Lucas sequences corresponding to the pair (P,Q), respectively. Notable
examples are the sequences of Fibonacci and Lucas numbers, both correspond-
ing to the pair (1,−1).

Luca and Shorey ([14]) investigated the equation

unun+1 . . . un+k−1 + t = yl,

where u = (un)
∞
n=0 is a Lucas sequence and t is not a power of some rational

number. They proved effective finiteness results on the solutions. A more spe-
cific equation has been considered by Marques ([15]), namely: he completely
solved a Fibonacci analogue of (1.1), the equation

FnFn+1 . . . Fn+k−1 = F 2
m

in positive integers m,n, k with k ≥ 2. In fact, he considered k = 1 as well,
but fails to find the sporadic solutions in that case. A more general version

Gn1Gn2 . . .Gnk
+ 1 = G2

m
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was completely solved by Szalay ([21]), where G can be taken as the sequence
of Fibonacci, Lucas or balancing numbers. We mention that Pongsriiam ([18])
extended the existing results for Fibonacci and Lucas numbers further by
relaxing the conditions on the indices even more and investigating additional
equations.

In this paper, we consider the equations

(1.3) un1un2 . . . unk
+ 1 = u2

m

and

(1.4) vn1vn2 . . . vnk
+ 1 = v2m

in unknown nonnegative integers k, n1, n2, . . . , nk and m with k ≥ 1, n1 <
n2 < · · · < nk, where u = (un)

∞
n=0 and v = (vn)

∞
n=0 are Lucas and associated

Lucas sequences, respectively. We completely solve both (1.3) and (1.4) for
the infinite families of sequences corresponding to the pairs of the form (P,±1)
except a certain case for which the reason of exclusion will be discussed later.
This way, we obtain an extension of the above mentioned results of Marques
[15] and Szalay [21], respectively. Our solution is based on factorization prop-
erties of Lucas and associated Lucas sequences, the celebrated result of Bilu,
Hanrot and Voutier [3] on primitive prime divisors and last, but not least,
elementary estimations on the sizes of terms involved.

2. New results

Before formulating our results we make a quick note on ”equivalent” so-
lutions to (1.3) and (1.4). Let (k, n1, n2, . . . , nk,m) be a solution. Observe
that if n is such that n 6= ni (i = 1, 2, . . . , k) and un = 1, then the inclusion
of n among the ni-s yields a new solution, where k is replaced by k + 1. Ob-
viously, the same can be said about the simultaneous inclusion of two terms
with −1 values. Further, exclusion of terms from the solution in the same
way is also possible. We call the solutions obtained by such constructions
equivalent. Since ±1 values in Lucas and associated Lucas sequences can be
listed explicitly without serious effort, see for instance, the papers of Hajdu
and Szikszai [11,12], and to avoid unnecessarily large number of solutions, we
restrict ourselves to the representative of these equivalence classes, where k is
minimal.

Our first theorem concerns the complete solution of (1.3) for the pairs of
the form (P,±1).

Theorem 2.1. Let u = (un)
∞
n=0 be the Lucas sequence corresponding to

the pair (P,±1). Further, if Q = −1, then suppose that P = 1 or that m is
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odd. Then all solutions to equation (1.3) are given by

(k, n1, n2, . . . , nk,m) =











(1, 0, 1)

(2,m− 1,m+ 1,m) if Q = 1 or Q = −1

and m is odd,

except the sequence corresponding to (1,−1), where (k, n1, n2, . . . , nk,m) =
(1, 4, 3), (1, 6, 4) and (2,m− 2,m+ 2,m) for even m are also solutions .

In the second theorem, we turn our attention to (1.4) and find it has no
solution for the pairs of the form (P,±1) apart from a few sporadic occur-
rences.

Theorem 2.2. Let v = (vn)
∞
n=0 be the associated Lucas sequence corre-

sponding to the pair (P,±1). Then (1.4) has no solution, except

(k, n1, n2, . . . , nk,m) = (1, 1, 0)

when (P,Q) = (3,±1) and

(k, n1, n2, . . . , nk,m) = (1, 2, 0), (2, 0, 3, 2)

when (P,Q) = (1,−1).

One may observe that in Theorem 2.2, the case Q = −1 does not require
any restrictions on P or m. We discuss the reasons after the proofs are given.

In the following remark, we establish connection between a problem pro-
posed in a paper of Dabrowksi and Ulas [8] and our results.

Remark 2.3. The results of Theorem 2.1 and 2.2 yields a partial answer
to Problem 4.10 in the extensive paper of Da֒browski and Ulas [8]. There the
authors ask for the description of the set of increasing functions f : N+ → N+

such that

f(1)f(2) . . . f(n) + 1 = f(m)2

has no solutions. Since the polynomials

x2 − Px± 1

have a dominant root, whenever |P | > 2, we know that u and v are increasing
at an exponential rate, thus falling under the scope of the above problem.

3. Preliminary results

In what follows, we establish the background used in the proofs of our
results. The first lemma concerns various factorization properties of Lucas
and associated Lucas sequences.

Lemma 3.1. Let u = (un)
∞
n=0 and v = (vn)

∞
n=0 be the Lucas and associated

Lucas sequences corresponding to the pair (P,Q), respectively. The following
properties hold.
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i) vn = u2n/un;
ii) if Q = 1, then u2

n − 1 = un−1un+1;
iii) if Q = −1 and n is odd, then u2

n − 1 = un−1un+1;
iv) if Q = 1 or Q = −1 and n is even, then v2n − 1 = u3n/un.

Proof. All of the formulas can be obtained by using the defining rela-
tions of the sequences together with the Vieta’s formula Q = αβ. We are not
aware of any piece of literature that covers the whole statement in this form,
however the book of Ribenboim [20] contains the relations scattered across
Section 2.4.

If the factorization properties listed in Lemma 3.1 are applicable, both
sides of our equations can be reduced to products involving terms of the
sequences. The celebrated result of Bilu, Hanrot and Voutier [3] concerning
primitive prime divisors is a powerful tool to compare the prime factors of
these products. For the statement of the result we need the notion of primitive
prime divisor. A prime p is said to be a primitive prime divisor of the un if
p | un, but p ∤ um for every positive m < n.

Lemma 3.2. Let u = (un)
∞
n=0 be the Lucas sequence corresponding to

the pair (P,±1). Then un has a primitive prime divisor for every n ≥ 13.
Further, if (P,Q) 6= (1,−1), then un admit a primitive prime divisor for every
n ≥ 5.

Proof. In view of Theorem C in [3], it is enough to check if the pairs
in Table 1 of [3] can yield any (P,Q) with Q = ±1 . Since this is not the
case, the first part of the statement follows. The second part is implied by
Theorem D and Table 3 there. Note that the definition of primitive prime
divisor in [3] do not allow primes dividing (α− β)2 = P 2 + 4Q.

Note that we introduced Lucas and associated Lucas sequences as expo-
nential functions of the roots of certain polynomials. However, these sequences
are also binary linear recurrences. We use this fact in our proofs to solve (1.3)
and (1.4) in several special cases.

Lemma 3.3. Let u = (un)
∞
n=0 and v = (vn)

∞
n=0 be the Lucas and associated

Lucas sequences corresponding to the pair (P,Q). Then for every n ≥ 0 we
have

un+2 = Pun+1 −Qun and vn+2 = Pvn+1 −Qvn

with u0 = 0, u1 = 1, v0 = 2 and v1 = P .

Proof. This is just an equivalent definition of the sequences.

Finally, we present a technical lemma needed to work out the case of
(1.4) when Q = −1, m is odd. There we do not have any useful factorization
properties and need to rely on another approach.
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Lemma 3.4. Let 2 ≤ n1 < n2 < · · · < nk be positive integers with k ≥ 1
and let x > 1 be a positive real number. Consider the function

(3.1) f(x) = fn1,n2,··· ,nk
(x) :=

(

1 +
1

x2n1

)

· · ·
(

1 +
1

x2nk

)

.

Then

(3.2) f(x) = 1 + ξ,

where

(3.3)
1

x2n1
≤ ξ < e

1
x2(x2

−1) − 1.

Further, for x ≥ 1 +
√
2 the representation (3.2) holds with

(3.4)
1

x2n1
≤ ξ < 0.037.

Proof. One can easily see from (3.1) that for any positive value x > 1 the
function f(x) can be written in the form (3.2) with some ξ > 0. Since k ≥ 1,
we have 1

x2n1
≤ ξ proving the lower bound in (3.3) (and (3.4)). For obtaining

the upper bound in (3.3) we combine (3.2) with the inequality between the
geometric and arithmetic means. Since

k
∏

i=1

(

1 +
1

x2ni

)

≤
(

k +
∑k

i=1
1

x2ni

k

)k

=

(

1 +

∑k

i=1
1

x2ni

k

)k

,

we get

(3.5) 1 + ξ = f(x) ≤
(

1 +

∑k

i=1
1

x2ni

k

)k

.

By assumption 2 ≤ n1 < n2 < · · · < nk are integers and we have that
ni ≥ n1 + (i− 1) for 1 ≤ i ≤ k, whence by x > 1 (and n1 ≥ 2) we may write
(3.6)

k
∑

i=1

1

x2ni

≤ 1

x2n1

(

1 +
1

x2
+ · · ·+ 1

x2(k−1)

)

<
x2/(x2 − 1)

x2n1
≤ 1

x2(x2 − 1)
.

Now, the combination of (3.5) and (3.6) gives

1 + ξ ≤
(

1 +

∑k

i=1
1

x2ni

k

)k

< e
1

x2(x2
−1) ,

which proves the upper bound (3.3). Finally, the upper bound in (3.4) is an

easy consequence of the upper bound in (3.3) with x ≥ 1 +
√
2.
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4. Proofs of the Theorems

Proof of Theorem 2.1. Note that the choice (P,Q) = (±1,−1) gives
the sequence of Fibonacci numbers or the Fibonacci numbers with alternating
signs. In these cases, solutions can be obtained trivially from the results
of Szalay [21]. Hence, without further mention, we suppose that (P,Q) 6=
(±1,−1).

Let u = (un)
∞
n=0 be the Lucas sequence corresponding to the pair (P,±1).

Substract 1 from both sides of (1.3) to get

un1un2 . . . unk
= u2

m − 1.

Depending on Q we apply either ii) or iii) of Lemma 3.1. This yields

(4.1) un1un2 . . . unk
= um−1um+1.

First suppose that m ≥ 6. From Lemma 3.2 it follows that both um−1 and
um+1 admits a primitive prime divisor. Comparing the prime factors on both
side of (4.1), a simple argument shows that unk

= um+1 and unk−1
= um−1.

Thus k = 2 and all the solutions in this case are given by

(k, n1, n2, . . . , nk,m) = (2,m− 1,m+ 1,m).

Now assume m ≤ 5. Note that nk ≤ 6 also holds in this case. Otherwise,
using Lemma 3.2 and a simple argument we show that there are no solutions.
Observe that using Lemma 3.3 for a fixed value of Q we can write un as a
polynomial in P . For instance, take Q = −1. Then the first few terms of u are
0, 1, P, P 2+1, P 3+2P, . . . . Since Q = ±1 and we only have finitely many
possibilities for n1, n2, . . . , nk and m, we can check all of the corresponding
polynomial equations and obtain the result.

Proof of Theorem 2.2. As in the proof of Theorem 2.1 we can exclude
the case (P,Q) = (±1,−1), since it gives the sequence of Lucas numbers or
the Lucas numbers with alternating signs, and those were also completely
treated by Szalay [21].

Let v = (vn)
∞
n=0 be the associated Lucas sequence corresponding to the

pair (P, 1). Substract 1 from both sides of (1.4). We apply i) and iv) of
Lemma 3.1 to get

(4.2)
u2n1

un1

u2n2

un2

· · · u2nk

unk

=
u3m

um

.

If m ≤ 4, then 2nk ≤ 12, otherwise, by Lemma 3.2, we would have that
u2nk

admit a factor that does not divide the right hand side of (4.2). Using
Lemma 3.3 we write the terms of v as polynomials in P . The first several
terms are 2, P, P 2 − 2, P 3 − 3P . . . . Using this we can reduce (1.4) to a
polynomial equation and with n1, n2, . . . , nk and m bounded we check all of
the possibilities.
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It remains to consider m ≥ 5. By Lemma 3.2, both um and u3m admit a
primitive prime divisor and a simple argument shows that 3m = 2nk. First,
assume that k = 1. Then (4.2) becomes

u2n1

un1

=
u3m

um

.

Eliminate u2n1 = u3m to get um = un1 . Now Lemma 3.2 implies m = n1,
contradicting 3m = 2n1.

Take k = 2. By rearranging the terms in (4.2) the equation simplifies to

u2n1um = un2un1 .

Since um has a primitive divisor, we can get m = n2 and m = n1. The former
is not possible, thus m = n1 and we divide both sides to get

u2n1 = un2 .

Observe that n2 = 3
2m > 5 and hence un2 has a primitive prime divisor.

This yields 2n1 = n2. Now we have the relations 3m = 2n2, 2n2 = 4n1 and
4n1 = 4m, leading to a contradiction.

Finally, assume that k ≥ 3. We rearrange the terms and eliminate u3m =
u2nk

to get
u2n1u2n2 . . . u2nk−1

um = un1un2 . . . unk
.

Like before, m = nk is not a possibility. But unk
has a primitive divisor, and

we find that nk = 2nk−1. Now 3m = 2nk = 4nk−1 and hence nk−2 < nk−1 =
3
4m. We know that um has a primitive divisor implying m = nk−1. Once
more, we find a contradiction, finishing the proof for Q = 1.

When Q = −1 and m is even we can verify the statement in an analogous
way. However, when m is odd and Q = −1 we do not have any useful
factorization properties and hence prove it differently.

Consider equation (1.4) in positive integer unknowns (n1, n2, · · · , nk,m)
with 1 ≤ n1 < n2 < · · · < nk and m ≥ 1 odd. If among the numbers
1 ≤ n1 < n2 < · · · < nk there exists at least one ni which is odd then
P = v1 | vni

and since m is also odd we have that P = v1 | vm also holds.
Hence equation (1.4) implies P |1, which is, by |P | ≥ 2 a contradiction. Thus
in what follows, we may suppose that all the numbers ni (1 ≤ i ≤ k) are even
and hence we may also assume that n1 ≥ 2. Since vj = αj + βj , αβ = −1, m
is odd, α is a real number and each ni (1 ≤ i ≤ k) is even, equation (1.4) can
be rewritten as

(4.3) |α|t
(

1 +
1

|α|2n1

)

· · ·
(

1 +
1

|α|2nk

)

= |α|2m +
1

|α|2m − 3.

where t = n1+n2+ · · ·+nk. By dividing both sides of (4.3) by |α|t and using

Lemma 3.4 with x = |α| ≥ 1 +
√
2 we get that

(4.4)
3

|α|t + 1 + ξ = |α|2m−t +
1

|α|2m+t
.
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where ξ satisfies (3.4), that is 1
x2n1

≤ ξ < 0.037.
We distinguish three subcases according to 2m = t, 2m < t and 2m > t,

respectively.
Case I: 2m = t. If 2m = t, then |α|2m−t = 1 and hence (4.4) leads to

3

|α|2m + ξ =
1

|α|4m ,

which, by ξ > 0, m ≥ 1 and |α| ≥ 1 +
√
2, leads to a contradiction.

Case II: 2m < t. If 2m < t, then, since 2m and t are integers, it follows
that 2m− t ≤ −1 and hence |α|2m−t ≤ 1

|α| . We have m ≥ 1 and t ≥ n1 ≥ 2

implying 1
|α|2m+t ≤ 1

|α|4 . Using these and the facts that 3
|α|t > 0 and ξ > 0,

equation (4.4) leads to

1 <
1

|α| +
1

|α|4 ,

which is a contradiction in view of |α| ≥ 1 +
√
2.

Case III: 2m > t. If 2m > t, then, since 2m and t are integers, it follows
that 2m− t ≥ 1 and hence |α|2m−t ≥ |α|. By t ≥ n1 ≥ 2 it implies 3

|α|t ≤ 3
|α|2 .

Further, by (3.4) of Lemma 3.4 we know that ξ > 0 is a positive number
with ξ < 0.037. Putting the above informations together and observing that

1
|α|2m+t > 0 we see that (4.4) leads to

|α| < 1 + ξ +
3

|α|t ≤ 1.037 +
3

|α|2 ,

which is a contradiction again in view of |α| ≥ 1+
√
2. This finishes the proof.

We finish the paper by some notes. The first one concerns the differences
in the assumptions of the theorems.

Remark 4.1. One may observe that Lemma 3.4 could have been extended
in a way to solve the case excluded by the conditions of Theorem 2.1, but
not by those of Theorem 2.2. However, the main difference show up in the
application of such a technical lemma. In fact, the authors are not sure if
there is an elementary way in which one can solve this remaining equation,
at least as easily as for associated Lucas sequences. Since one of our goals
is to keep the integrity of the paper by not considering anything else than
certain divisibility properties and trivial estimates, we omit it. Neverthless,
the interested reader is encouraged to solve this ”elusive” equation either by
disproving our intuition our applying deeper methods.

In what follows, we mention two possible generalizations.

Remark 4.2. In the paper of Bilu, Hanrot and Voutier [3], there are
analogous results for Lehmer sequences as for Lucas sequences. Since factor-
ization properties are very similar, one can expect a similar way to solve (1.3)
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and (1.4) with Lehmer sequences instead of Lucas sequences. However, the
authors predict that either a different proof or a considerable modification of
the last part of the proof of Theorem 2.2 is needed.

Remark 4.3. As it was mentioned in the Introduction, Pongsriiam ([18])
made further improvements on the results of Marques [15] and Szalay [21] by
relaxing the conditions on the indices further. Namely, he allows the equality
of the ni-s in (1.3) and (1.4) and replaces +1 by ±1. The authors expect that
the ideas presented in the proofs of Theorem 2.1 and 2.2 can be applied there
as well to obtain complete solution for pairs of the form (P,±1).

In view of Remark 4.2 and 4.3, we formulate the following problems.

Problem 4.1. Under the same assumptions as in Theorem 2.1 and 2.2,
completely solve equation (1.3) and (1.4), when u and v are replaced by
Lehmer and associated Lehmer sequences, respectively.

Problem 4.2. Under the same assumptions as in Theorem 2.1 and 2.2,
completely solve the equations

uα1
n1
uα2
n2

. . . uαk

nk
± 1 = u2

m

and

vα1
n1
vα2
n2

. . . vαk

nk
± 1 = v2m

to extend the results of Pongsriiam [18].
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