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Vol. 52(72)(2017), 45 – 52

ON SEQUENCES OF CONSECUTIVE SQUARES ON

ELLIPTIC CURVES

Mohamed Kamel and Mohammad Sadek

Cairo University, Egypt and American University in Cairo, Egypt

Abstract. Let C be an elliptic curve defined over Q by the equation
y2 = x3+Ax+B where A,B ∈ Q. A sequence of rational points (xi, yi) ∈
C(Q), i = 1, 2, . . . , is said to form a sequence of consecutive squares on
C if the sequence of x-coordinates, xi, i = 1, 2, . . ., consists of consecutive
squares. We produce an infinite family of elliptic curves C with a 5-term
sequence of consecutive squares. Furthermore, this sequence consists of
five independent rational points in C(Q). In particular, the rank r of C(Q)
satisfies r ≥ 5.

1. Introduction

In [3], Bremner initiated the discussion of certain arithmetic questions on
rational points of elliptic curves attempting to relate the group structure on an
elliptic curve E to the addition group operation on the rational line. He raised
the question of the existence of a sequence of rational points in E(Q) whose
x-coordinates form an arithmetic progression in Q. Such sequence is called an
arithmetic progression sequence in E(Q). A variety of questions may be posed.
For instance, how long these sequences can be and how many elliptic curves
would have such long sequences of rational points. The existence of infinitely
many elliptic curves with length 8 arithmetic progressions was proved. Several
authors introduced different approaches to find infinitely many elliptic curves
with longer arithmetic progression sequences, see [1, 5, 7, 10].

In [4], the study of sequences of rational points on elliptic curves whose
x-coordinates form a geometric progression in Q was initiated. An infinite
family of elliptic curves having geometric progression sequences of length 4
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was exhibited. It was remarked that infinitely many elliptic curves with 5-
term geometric progression sequences can be constructed.

In this note, we discuss sequences of rational points on elliptic curves
whose x-coordinates form a sequence of consecutive squares. We consider el-
liptic curves defined by the equation y2 = ax3 + bx+ c over Q. We show that
elliptic curves defined by the latter equation with 5-term sequences of rational
points whose x-coordinates are elements in a sequence of consecutive squares
in Q are parametrized by an elliptic surface whose rank is positive. Hence,
one deduces the existence of infinitely many such elliptic curves. Moreover,
we show that the five rational points forming the sequence are linearly inde-
pendent in the group of rational points of the elliptic curve they lie on. In
particular, we introduce an infinite family of elliptic curves of rank ≥ 5.

2. Sequences of Consecutive Squares

Definition 2.1. Let C be an elliptic curve defined over a number field K
by the Weierstrass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6, ai ∈ K.

The sequence (xi, yi) ∈ C(K) is said to be a sequence of consecutive squares
on C if there is a u ∈ K such that xi = (u+ i)2, i = 1, 2, . . ..

The following proposition ensures the finiteness of the sequence of con-
secutive squares on an elliptic curve.

Proposition 2.2. Let C be an elliptic curve defined over a number field

K by a Weierstrass equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K.

Let (xi, yi) ∈ C(K) be a sequence of consecutive squares on C. Then the

sequence (xi, yi) is finite.

Proof. We can assume without loss of generality that xi = (u + i)2,
i = 1, 2, . . ., u ∈ K. This sequence gives rise to a sequence of rational points
on the genus 2 hyperelliptic curve

C : y2 + a1x
2y + a3y = x6 + a2x

4 + a4x
2 + a6.

Namely, the points (u + i, y) ∈ C(K). According to Faltings’ Theorem, [6],
one knows that C(K) is finite, hence the sequence is finite.

Based on the above proposition, one may present the following definition.

Definition 2.3. Let C be an elliptic curve over Q defined by a Weier-

strass equation. Let (xi, yi) ∈ C(Q), i = 1, 2, . . . , n, be a sequence of consecu-

tive squares on C. Then n is said to be the length of the sequence.
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3. Constructing elliptic curves with long sequences of

consecutive squares

In this note, we focus our attention on the family of elliptic curves given
by the affine equation C : y2 = ax3 + bx+ c over Q. We will show that there
are infinitely many elliptic curves defined by the latter equation containing
5-term sequences of consecutive squares.

One observes that if (t2, d), ((t + 1)2, e), and ((t + 2)2, f) lie in C(Q),
where t ∈ Q, then these rational points form a 3-term sequence of consecutive
squares. Indeed, one has

d2 = at6 + bt2 + c,

e2 = a(t+ 1)6 + b(t+ 1)2 + c,

f2 = a(t+ 2)6 + b(t+ 2)2 + c.

It is a standard linear algebra exercise to show that

(3.1)

a =
(3 + 2t)d2 − 4(1 + t)e2 + (1 + 2t)f2

4(15 + 73t+ 135t2 + 125t3 + 60t4 + 12t5)
,

b =
(3 + 2t)(3 + 3t+ t2)(7 + 9t+ 3t2)d2

4(1 + 2t)(15 + 43t+ 49t2 + 27t3 + 6t4)

+
(1 + t)(−4(4 + 2t+ t2)(4 + 6t+ 3t2)e2)

4(1 + 2t)(15 + 43t+ 49t2 + 27t3 + 6t4)

+
(1 + t)(4 + 2t+ t2)(4 + 6t+ 3t2)f2

4(1 + 2t)(15 + 43t+ 49t2 + 27t3 + 6t4)
,

c =
(2 + t)2(15 + 43t+ 46t2 + 22t3 + 4t4)d2

4(1 + 2t)(15 + 28t+ 21t2 + 6t3)

−
8t2(2 + t)2(2 + 2t+ t2)e2 + t2(1 + 5t+ 10t2 + 10t3 + 4t4)f2

4(1 + 2t)(15 + 28t+ 21t2 + 6t3)
.

In particular, one has the following result.

Remark 3.1. The above argument indicates that given d, e, f ∈ Q(t),
there exist a, b, c ∈ Q(t) such that the ordered pairs (t2, d), ((t + 1)2, e) and
((t+2)2, f) are three rational points on the elliptic surface y2 = ax3 + bx+ c.

Now, if ((t+3)2, g) ∈ C(Q), then one has a 4-term sequence of consecutive
squares on C. In fact, using the above values for a, b, c, one then sees that

(3.2)

g2 =
(5 + 2t)((2 + t)(14 + 12t+ 3t2)d2 − 3(1 + t)(13 + 10t+ 3t2)e2)

(1 + t)(1 + 2t)(5 + 6t+ 3t2)

+
3(2 + t)(1 + 2t)(10 + 8t+ 3t2)f2

(1 + t)(1 + 2t)(5 + 6t+ 3t2)
.

Therefore, in view of Remark 3.1, one needs to find the elements d, e, f and
g in Q(t) satisfying the latter equation in order to construct an elliptic curve
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C with a 4-term sequence of consecutive squares. In fact, since (d, e, f, g) =
(1, 1, 1, 1) is a solution for equation (3.2), the general solution (d, e, f, g) is
given by the following parametrization:
(3.3)
d = (2 + t)(5 + 2t)(14 + 12t+ 3t2)p2 + 3(1 + t)(5 + 2t)(13 + 10t+ 3t2)q2

− 3(2 + t)(1 + 2t)(10 + 8t+ 3t2)w2 + 6(20 + 66t+ 66t2 + 31t3 + 6t4)pw

− 6(65 + 141t+ 111t2 + 41t3 + 6t4)pq,

e = − (2 + t)(5 + 2t)(14 + 12t+ 3t2)p2 − 3(1 + t)(5 + 2t)(13 + 10t+ 3t2)q2

− 3(2 + t)(1 + 2t)(10 + 8t+ 3t2)w2 + 6(20 + 66t+ 66t2 + 31t3 + 6t4)qw

+ 2(140 + 246t+ 166t2 + 51t3 + 6t4)pq,

f = − (2 + t)(5 + 2t)(14 + 12t+ 3t2)p2 + 3(1 + t)(5 + 2t)(13 + 10t+ 3t2)q2

+ 3(2 + t)(1 + 2t)(10 + 8t+ 3t2)w2 − 6(1 + t)(5 + 2t)(13 + 10t+ 3t2)qw

+ 2(2 + t)(5 + 2t)(14 + 12t+ 3t2)pw,

g = − p2(140 + 246t+ 166t2 + 51t3 + 6t4)

+ 3(q2(65 + 141t+ 111t2 + 41t3 + 6t4)

− (20 + 66t+ 66t2 + 31t3 + 6t4)w2).

Consult [8, §7] for finding parametric rational solutions of a homogeneous
polynomial of degree 2 in several variables.

Remark 3.2. The points (t2, d), ((t + 1)2, e), ((t + 2)2, f), ((t + 3)2, g),
where d, e, f, g ∈ Q(t, p, q, w) are given as above, are rational points on the
elliptic surface y2 = ax3 + bx+ c, where a, b, c are defined in (3.1).

Now, we assume that ((t+ 4)2, h) is a rational point on the elliptic curve
y2 = ax3+ bx+ c. In particular, there exists a 5-term sequence of consecutive
squares on the latter curve. Then one has

h2 = Ap4 +Bp3 + Cp2 +Dp+ E(3.4)

with

A = (140 + 246t+ 166t2 + 51t3 + 6t4)2,

B =
4(5 + 2t)2(196 + 322t+ 202t2 + 57t3 + 6t4)

3 + 2t
((87 + 83t+ 27t2 + 3t3)q

− 3(52 + 58t+ 22t2 + 3t3)w),
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C =
2(5 + 2t)

3 + 2t
(5(78330 + 250402t+ 346118t2 + 271991t3 + 132943t4

+ 41217t5 + 7851t6 + 828t7 + 36t8)q2 − 12(41580+ 154358t+ 243358t2

+ 217563t3 + 121708t4 + 43727t5 + 9852t6 + 1272t7 + 72t8)qw

+ 15(2 + t)2(−2828− 2552t+ 784t2 + 2364t3

+ 1395t4 + 360t5 + 36t6)w2),

D =
12(35 + 24t+ 4t2)

3 + 2t
((5655 + 17662t+ 23115t2 + 16782t3 + 7345t4

+ 1938t5 + 285t6 + 18t7)q3 + (6660 + 18502t+ 22620t2 + 15567t3

+ 6515t4 + 1683t5 + 255t6 + 18t7)q2w − 5(3708 + 11842t+ 16104t2

+ 12237t3 + 5651t4 + 1593t5 + 255t6 + 18t7)qw2

+ 3(2 + t)2(260 + 888t+ 972t2 + 544t3 + 153t4 + 18t5)w3),

E = 9((65 + 141t+ 111t2 + 41t3 + 6t4)2q4 + 8(22750 + 79965t+ 121251t2

+ 105282t3 + 57708t4 + 20529t5 + 4643t6 + 612t7 + 36t8)wq3

− 2(120300+ 457050t+ 737244t2 + 678163t3 + 394077t4 + 149001t5

+ 35957t6 + 5088t7 + 324t8)w2q2 + 8(2 + t)2(1750 + 6380t+ 7959t2

+ 5294t3 + 1987t4 + 408t5 + 36t6)qw3

+ (20 + 66t+ 66t2 + 31t3 + 6t4)2w4).

Observing that the above expressions are homogeneous in q and w, one may
assume that w = 1. The following result then holds.

Theorem 3.3. The curve

C : Y 2 = AX4 +BX3 + CX2 +DX + E

is birationally equivalent over Q(t, q) to an elliptic curve E with

rank E(Q(t, q)) ≥ 1.

Proof. After homogenizing the equation describing C, one obtains Y 2 =
AX4 +BX3Z + CX2Z2 +DXZ3 + EZ4 with a rational point R = (X : Y :
Z) = (1 : 140 + 246t + 166t2 + 51t3 + 6t4 : 0). The curve C is birationally
equivalent to the cubic curve E defined by the equation V 2 = U3−27IU−27J ,
[9], where I = 12AE − 3BD + C2 and J = 72ACE + 9BCD − 27AD2 −
27B2E− 2C3. The discriminant ∆(E) of E is given by (4I3−J2)/27, and the
specialization of E is singular only if ∆(E) = 0. Moreover, the point

P =

(
3
3B2 − 8AC

4A
, 27

B3 + 8A2D − 4ABC

8A3/2

)
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lies in E(Q(t, q)) since A is a square. One considers the specialization t =

1, q =
81

40
to obtain the specialization

P̃ =

(
−4786935489

100
,
−56568093052527

50

)

of the point P on the specialized elliptic curve

Ẽ : y2 = x3−
147183268996968521373

10000
x+

171278570868444028577352480093

250000
.

Using MAGMA, [2], the point P̃ is a point of infinite order on Ẽ . Therefore,
according to Silverman’s specialization Theorem, the point P is of infinite
order on E .

Corollary 3.4. For any nontrivial sequence of consecutive rational

squares t20, (t0 + 1)2, (t0 + 2)2, (t0 + 3)2, (t0 + 4)2, there exist infinitely many

elliptic curves Em : y2 = amx3 + bmx + cm, m ∈ Z \ {0}, such that

(t0 + i)2, i = 0, 1, 2, 3, 4, is the x-coordinate of a rational point on Em. More-

over, these five rational points are independent.

Proof. We fix t = t0, q = q0, and w = 1 in Q. Substituting these values
into (3.4), one obtains the elliptic curve

Ct0,q0,1 : h2 = Ap4 +Bp3 + Cp2 +Dp+ E, A,B,C,D ∈ Q,

with positive rank, see Theorem 3.3. Now, one fixes a point P = (p, h) of
infinite order in Ct0,q0,1(Q). For any nonzero integerm, we set mP = (pm, hm)
to be the m-th multiple of the point P in Ct0,q0(Q).

Now, one substitutes t = t0, q = q0, w = 1, and p = pm into the formulas
for d, e, f, g ∈ Q(t, p, q, w) in (3.3) in order to obtain the rational numbers
dm, em, fm, gm, respectively. Then one substitutes dm, em, fm into the formu-
las for a, b, c ∈ Q(t, d, e, f) in (3.1) to get the rational numbers am, bm, cm,
respectively.

To sum up, one constructed an infinite family of elliptic curves Em : y2 =
amx3+bmx+cm, where m is a nonnegative integer. The latter infinite family
Em of elliptic curves satisfies the property that the points (t20, dm), ((t0 +
1)2, em), ((t0 + 2)2, fm), ((t0 + 3)2, gm), ((t0 + 4)2, hm) ∈ Em(Q). Thus, one
obtains an infinite family of elliptic curves with a 5-term sequence of rational
points whose x-coordinates form a sequence of consecutive squares in Q.

To show that the points (t2, dm), ((t + 1)2, em), ((t + 2)2, fm), ((t +
3)2, gm), ((t + 4)2, hm) ∈ Em(Q) are independent, one specializes t = 1, q =
81/40, w = 1 which yields the existence of the infinite point

(p, h) =

(
2201

2320
,
−62736289

18852320

)
∈ C1,81/40,1(Q).
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Therefore, the specialization t = 1, q = 81/40, w = 1, p = 2201/2320 gives us
the specialized elliptic curve

E : y2 =
42674183

52786496000
x3 −

612989889

7540928000
x+

1180698375893607

2487869785676800

with the following set of rational points in E(Q):

(
1,

−2367005

3770464

)
,

(
22,

8455597

18852320

)
,

(
32,

−10868031

18852320

)
,

(
42,

−29720351

18852320

)
,

(
52,

−62736289

18852320

)
.

Using MAGMA, [2], these rational points are independent.
According to Silverman’s Specialization Theorem, it follows that the

points (t2, dm), ((t + 1)2, em), ((t + 2)2, fm), ((t + 3)2, gm), ((t + 4)2, hm) are
independent in Em over Q(t, q, pm).

Remark 3.5. Corollary 3.4 implies the existence of an infinite family of
elliptic curves whose rank r ≥ 5.

Remark 3.6. In order to construct a 6-term sequence of consecutive
squares, we assume that the point ((t + 5)2, k) is a rational point on our
elliptic curve y2 = ax3 + bx+ c. Then the following relation is satisfied

k2 = A′p4 +B′p3 + C′p2 +D′p+ E′

for some A′, B′, C′, D′, E′ ∈ Q(t, q). Thus, the existence of a 6-term sequence
of consecutive squares on the elliptic curve is equivalent to the existence of a
rational point (p, h, k) on the algebraic curve defined by the following inter-
section

C : h2 = Ap4 +Bp3 + Cp2 +Dp+ E, k2 = A′p4 +B′p3 + C′p2 +D′p+ E′.

The curve C is a curve of genus 5. Therefore, Faltings’ Theorem implies that
given t ∈ Q, there are only finitely many elliptic curves over Q defined by
y2 = ax3 + bx + c for which (t+ i)2, i = 0, 1, . . . , 5, are the x-coordinates of
a 6-term sequence of consecutive squares.
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