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QUASI-PARTICLE BASES OF PRINCIPAL SUBSPACES OF
THE AFFINE LIE ALGEBRA OF TYPE GV

MARIJANA BUTORAC
University of Rijeka, Croatia

ABSTRACT. The aim of this work is to construct the quasi-particle
basis of principal subspace of standard module of highest weight kAo of

level k > 1 of affine Lie algebra of type Gél) by means of which we obtain
the basis of principal subspace of generalized Verma module.

1. INTRODUCTION

Principal subspaces of standard modules of affine Lie algebras Agl) were
first introduced by B. L. Feigin and A. V. Stoyanovsky in [16]. Motivated
by the work of J. Lepowsky and M. Primc ([26]), Feigin and Stoyanovsky
related characters of principal subspaces with Rogers-Ramanujan type iden-
tities. This connection was further studied by many authors, in particular
in [3], [6,7], [8-11], [12], [13,14], [18], [24], [28,29], [30,31] and others. More
recently, Slaven Kozi¢ in [22,23] showed that character formulas for level 1
principal subspaces associated with the integrable highest weight module of
quantum affine algebra U, (5/[;) coincide with the character formulas found in
[16].

In [18], G. Georgiev constructed bases for principal subspaces of certain
standard Al(l)—modules by using monomials of certain vertex operator coef-
ficients corresponding to simple roots of A;, the so-called quasi-particles (cf.
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[16]), from which were easily obtained the Rogers-Ramanujan type charac-
ter formulas. In [4] and [5] we extended Georgiev’s construction of quasi-
particle bases for principal subspaces of standard module L(kAg) and gen-
eralized Verma module N(kAg) of highest weight kAo, k¥ € N for affine Lie

algebras of type Bl(l) and C’l(l), [ > 2. As a consequence we proved two new
series of Rogers-Ramanujan type identities obtained from the characters of
principal subspaces of generalized Verma module.

In this note we construct quasi-particle bases of principal subspaces of
generalized Verma module N (kAg) and its irreducible quotient in the case of

affine Lie algebra of type Gél). Two main steps in the construction are similar

to the case of Bél). First step is to find relations among quasi-particles from
which follow the spanning set of principal subspaces and the second step
is to prove that the spanning set is linearly independent by induction on
the linear order on quasi-particles. The main differences with the case of
Bél) are relations which describe the interaction of quasi-particles associated
to different simple roots and operators which we use in the proof of linear
independence, since we don’t have a simple current operator as in the proof
of independence for Bél).

To state our main results, denote by Wy a,) the principal subspace of
level k standard module and by ch Wi a,) the character of W, (xa,) and by
W (rae) the principal subspace of generalized Verma module N(kAg). Our
result states:

THEOREM 1.1.

ch WL(kAg)

- ¥

V> > >0
rél) Z“‘ZTéM)ZO
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(@), 0, (0),w (@), 0@ (q),o»

where 11 = Z];:l r§5) and ry = 32 rés).

s=1

This new fermionic formula which follows directly from quasi-particle ba-
sis of W (xa,) is related to the study of parafermionic Rogers-Ramanujan type
characters ([19]).

We use quasi-particle bases of W, in the construction of quasi-partic-
les bases of principal subspace Wiy (ra,) of generalized Verma module, from
which follows a generalization of Euler-Cauchy identity.
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THEOREM 1.2.

(1.1)
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where 11 =Y o, rgs) andro =3 < rés). The sum on the right side of (1.1)
is over all descending infinite sequences of non-negative integers with finite
support.

2. PRINCIPAL SUBSPACES

Let g be a complex simple Lie algebra of type G2 with a triangular decom-
position g = n_ @ h P ny, with the basis IT = {ay = %(—261 +erte3),an =
%(61 — €2)} of the root system R and the corresponding set of fundamental
weights {w1 = 201 + 32, w2 = a1 + 2a2}, where €7, €9, €3 are vectors of the
standard basis of R3. Denote by 8 = \/ig(fel — €9 + 2¢3) the highest root and
assume that all long roots a € R are normalized by the condition {(«, o) = 2,
where (-, -) denotes the invariant nondegenarate bilinear form on g, which in-
duces a bilinear form on h*. Denote by @ the root lattice and by P the weight

lattice of g. Then, P = Q. For later use we fix root vectors

(2.1) Taitas = [Tay, Tar]s Tas+2a; = [Tass Tastas),
Tai+3as = [Tazs Tar+2a2] s T2a1+30s = [Tars Tay+3as) -
Let g be the associated affine Lie algebra
g=g®Cd, g=g®Cltt '] ®Cc
with commutation relations
(2:2) [2(j1),y(J2)] = [=, 4] (J1 + J2) + (@, ) j10,+j2 0

[e,g] =0, [d,z(5)] = jz(5),
where z(j) = x ®@ ¢/ for x,y € @, j,j1,52 € Z, (cf. [21]). We consider g-
subalgebras
L(ny) =ny @C[t,t71],
L(ny)>o =1y @C[t], L(ng)co=n4p @ Ct™]

and
E(na) =N ® C[tvtil]a
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where
n, = Cz,

are one-dimensional g-subalgebras generated with root vectors zo, @ € R.

We extend our form (-,-) to h = h @ Cc @ Cd. The set of simple roots of
g is {ap, a1, a2} and {Ag, A1, A2} is the set of fundamental weights. Denote
by L(Ag) a standard (i.e. integrable highest weight) g-module of level 1 with
the highest weight vector vr(,)-

Fix k € N. Denote by N(kAg) the generalized Verma module and by
L(kAy) its irreducible quotient. The induced g-module N(kAg) is defined as

N(kAo) = U(8) ®u(gs0) CUNRAG):

where g>0 = @@,,50 9 ® t" & Cc and Coy(xa,) is 1-dimensional g>o-module,
such that
CUN(kA) = KUN(kA0)s AUN(kAG) = 05 (8@t )un(ra,) =0, J >0.
Set
UN (ko) = 1 @ UN(kAo)-

The generalized Verma module has a structure of a vertex operator alge-
bra, as its irreducible quotient L(kAg) and all the level k standard modules
are modules for vertex operator algebra L(kAg). The vertex operator map is
determined by

Y (@(~Dowgean ) = Y alm)z "™ = a(2)
meZ
for z € g (cf. [25]). We will use the commutator formula among vertex
operators:

Y (@a(=1)on(kno), 21), Y (28(=1) 0N (kAo), 22)]
(2.3) B (—1)
Syl
j>0
where o, 8 € R, (cf. [17]).
Denote by vp(za,) the highest weight vector of L(kAg). We define a
principal subspace Wr,(xa,) of L(kAo) (see [16,18]) as
Wrkao) = U(L(n4))0r(kAo)

and the principal subspace Wi (x,) of the generalized Verma module N (kAo)
as

d J 1 Z1 . r
d_,21 zy 0 2_2 Y(za(j)zs(—1) UN(kAO);Z2)a

W ko) = U(L(n4))Un(kAo)-
Note that the map

frULMy)<0) = WNaag):  f(B) = bun(ra)
is an isomorphism of £(n4)<o-modules. If we order basis elements of ny

{mal yLags Tagtazr Lag+2azr Lai+3azs L2 +3a2}
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in the following way:

Ty < Tay < Tagtas < Tag+2as < Tagj+3as < L2a71+3as
and basis elements of £(n )<
{Za(m):a € Ry,m <0}
as:
x(m) <y(m') & z<y or x=y and m<m/,
then from the Poincaré-Birkhoff-Witt theorem follows that vectors

Tay (mi) o Tas (mil ):L'Otl (m%) Ty (m;2)

(2.4)
1
D200 +302 (M) * P20 +30 (MG )UN (kAg) s
where ml1 <o <mpt <0, >0, 1<4i<6, form a basis of a vector space
WN (ko)-

In next sections, we construct bases of principal subspaces W, (xa,) and
Wi (kao) in terms of certain coefficients of vertex operators corresponding to
vectors T, (—1) VL (kay) (and 2o, (—1) VN (kA,)), Where r > 1 and «; € 1L

First, we choose a special subspace of U(L(ny))

U =U(L(na,))U(L(nay))-

It is easy to see that principal subspaces are generated by operators in U
acting on the highest weight vectors vpa,) and vy (za,) (see Lemma 3.1 in
[18]).

3. QUASI-PARTICLE BASES OF PRINCIPAL SUBSPACES

We start this section with introducing all necessary notions and facts
needed in the construction of quasi-particle bases of principal subspaces. Some
terms and labels which we use, but are not mentioned, are the same as in our
previous work, therefore, for more details we refer to [4,5] and also to [18].

3.1. Quasi-particle monomials. For given i € {1,2}, r €¢ Nand m € Z
define a quasi-particle of color ¢, charge r and energy —m by

Zra, (M) = Res, {zm"”'_l:cmi (z)} ,
where z,4,(z) is a vertex operator
Tray (2) 1= Ta, (2)" = Y ((za,(—1))" VL(kAg)» Z)-
Zra; (2) 18 the generating function of quasi-particles of color ¢ and charge 7.
Denote by b(c;) the monochromatic quasi-particle monomial, that is the

product of quasi-particles of the same color . We say that monomial b “col-

ored” with more colors is a polychromatic monomial. As in the case of Bél),
our basis monomials will be “colored” with two colors i = 1,2 and our mono-
mials will have the form

b = b(a)b(ar).
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For monomial

b(a2)b(a1) = Tn ,02 (m.,-él) 2) “ Ty son (m1,2)
ry ’
Tn (4, Lo (m7‘§1) 1) “Tng 1on (ml,l)a
D, ;
we will say it is of charge-type
/ .
R = (nré1)72, ceey n172,nr§1>71, ceey n171> s

where
0<nm,<...<ni,

dual-charge-type
R = (rél), . ,7"582);7"51), .. ,risl)) ,

where
and color-type

where
&

Si
r; = an = Z?‘Et) and s; € N,
p=1 t=1

(cf. [4,5,18]) if for every color R and R’ are mutually conjugate partitions
of r; (cf. [1]). We use the same terminology for the products of generating
functions.

We assume that all monomial factors are sorted so that energies of quasi-
particles of the same color and the same charge form an increasing sequence
of integers from right to left. We compare charge-type R’ and R’, where R/ =
(WF(;)’Q, e ,ﬁm), so that we compare their charges from right to left, i.e. we
write R! < R’ if there is u € N, such that N1y =M1, N2 =N24, .- Nyu—1,4 =
My—1,i, and u = 71(1) +1or Ny < M.

We compare two monomials b and b by comparing first their charge-

types R’ and R’ and then their sequences of energies (mrm g1t mm) and
2 )
(m?y)g, e ,ml) (in a similar way as charge-types, again starting from color
1=1):
b<b if R <,
< R
! R =R and (m (1) ,...,m11)<(m,_(1) ,...,mll).
ri 2 ; ) .
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3.2. Relations among quasi-particles. On a standard module L(kAg), we
have vertex operator algebra relations

(31) x(k—i—l)al (Z) = 0,

(32) x(3k+1)a2 (Z) = 07

(3.3) Tna; (2)VL(kAo) € WL(kAo) [[2]],
and

(3.4) Tna, (M)VLxA) =0, for m > —n,

when n <k for i =1 and n < 3k for i = 2, (see [25,27]).

In reducing the set Uvpka,) to the spanning set we use relations for
a sequence of monochromatic monomial vectors (see Lemma 2.2.1 in [4], or
[20,18,15])

Tna; (M)Tn/a, (ml)UL(kAo)v T (M — 1)Tnra, (M’ + 1)UL(kAg)a e
e T, (M= 20+ D)@, (m' 4+ 20— 1)vg o)

colored with color ¢ and with charge-type (n,n’), where n < n’, which we
express as a (finite) linear combination of monomial vectors

(35)  na, (J)Tnra; (J)vL(ka,) such that j <m —2n and j' >m'+2n

and monomial vectors with a factor quasi-particle z(,41)a, (j1), j1 € Z.
In the case when n = n’ monomials

Tna, (M) Tna, (M) with m’ —2n <m <m’
can be expressed as a linear combination of monomials
(3.6) Tna; (1) Tna, () with j <j'—2n

and monomials with quasi-particle 2(,11)q,(j1), j1 € Z (see Corollary 2.2.2
in [4], or [20,18,15]).

Next, we consider products of quasi-particles colored with different colors.
First, from commutation formulas (2.1) and (2.2) and induction on n,n’ € N
follows

LEMMA 3.1. Let n < 3k, n’ <k be fized. We have:
a)

Ty (0)20, (= 1)vpeng) = — 12, (= 1)y 4as (—1)VL(kAg)

n _
(5 Dearsans (Dnguny

n _
= () D sa0s (- Bosiansy
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b)
n n n—2
Ial(l)xag(_l)vL(kl\o) = 9 Loy (_1)xa1+2a2(_1)vL(kA0)
n n—3
- (3)%2 (=1)Zay+302 (—2)Vr(kAo)}

¢) oy (2)ah, (= 1)vrmae) = —(3) 70> (1)1 +302 (—1)VL(kAo):
d) Loy (j)xgz(_l)vl/(kl\o) =0, wherej > 3;
e) Lo, (O)Igl(_l)vL(kAo) = nlmgl_lwal-i-cm(_1)UL(ICA0);
£) @a,(j)75, (=1)vL(ka) = 0, where j > 1.

The previous lemma implies relation among quasi-particles of different
colors:

LEMMA 3.2. Let nqy <k, ny < 3k. One has

(Zl . Zg)min{3n17n2}93ma1 (Zl)fﬂn2a2 (22)

min{3ni,n2}

(3.7)

= (21 — 22) Tryas (22)Tnyan (21)-

PRrROOF. Note, that from commutator formula for vertex operators (2.3),
statements a), b), ¢) and d) of Lemma 3.1 and properties of é-function we
have

(38) (Zl - 22)393011 (Zl)xnzaz (22) - (Zl - 22)31'712&2 (22)1'041 (21)
In a similar way, using e) and f) parts of Lemma 3.1 we have
(39) (Zl - 22)93”1011 (Zl)I'OQ (22) - (Zl - 22)1'042 (22)1'711041 (21)

Now, from (3.8) and (3.9) follows the lemma. O

By using derived relations we can define the set of quasi-particle mono-
mials which generate our bases (acting on the highest weight vectors)

BWL(kAO) = U or, equivalently, U
n (1) 1§~»S”1,1Sk r§1>>m>r§’“)>o
R Zee2ry >
nrél)ag...gnmg% TéDZ"'ZTé%)ZO

{b = b(ag)b(al)

=Tn ) ,02 (mrél) 2) “ o pan (ml,Q)xn (1) Q1 (mr(l) 1) iy pon (ml,l) :
ry s ) Ty ,1 1
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. 1
mp1 < —Np1 — Zp>p,>02 min{n, 1,7y 1}, 1 <p < 7“5 );

: (1) .
Mpyr1,1 SMp1 —2np1ifnpgi11=mnp1, 1<p<ry’ =15
6!
7'1 . .
Mp2 < —Np 2 + Zq:l min {3ng,1, np,2} — Zp>p/>0 2 min{ny 2, ny 2},
1
1<p<n;

. 1
Mps12 < Mpa — 2np2 if npa = npyr2, 1 <p<ry) — 1

The condition on energies of quasi-particles colored with color ¢ = 2 contains
a part which follows from relation (3.7). The other conditions on energies
which follow from relations (3.1)—(3.6) are similar to difference conditions as

: (1)
in the case of B3 .
Now, we can state the Proposition 3.3, whose proof follows closely [18].

PROPOSITION 3.3. The set
By gy = {000 b€ Bugny, |
spans the principal subspace Wi, -

In the rest of this section we consider the proof of linear independence
of the set %WL(kAO). First, we introduce the properties of operators on a
standard module level 1, which we will use in our proof.

3.3. Projection mr. Let k > 1. We realize the principal subspace Wr )
as a subspace of the tensor product W?{f\o) C L(Ao)®*, where

UL(kAo) = UL(Ag) @ "+ @ UL(Ag)

k factors

is the highest weight vector.
For a chosen dual-charge-type

R = (Tél),...,ré3k);r§1),...,r§k)) ,

denote by mg: the projection of principal subspace Wiy, ra,) to the subspace

Witiaa) (0.0 © = & Wataoy 0

where WL(A")(M(J);TY)) is a h-weight subspace of weight u(;)ozz + ry)al €eQ
with
M(Qt) _ Té3t) n ré?;t—l) n T£3t—2)7
for every 1 <t <k.
We shall denote by the same symbol 7y the generalization of this projec-
tion to the space of formal series with coefficients in WJ?(];\())' Let

(310) Tn (1 ,02 (Z.,-él) 2) “ Ty san (21,2)1'” (1 o1 (Z.,-il) 1) " Ty gon (21,1)
P ) D )

be a generating function of the chosen dual-charge-type R and the corre-
sponding charge-type R’. Then, from relations (3.1) and (3.2) and definition
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of the action of Lie algebra on the modules, follows that the projection of the
generating function (3.10) is

TRLn (1) (Zrém o) Ty ras (21,1) VL(kA)
Ty I

=Cuzx (k) Z (3k—2) e T (k) Z (3k—1) s
" (3p—2) 2(12( ) ,2) " (3R_1) 20(2( Ty 72)
ry , ry ,

LRI (k‘,) Z(Bk) e
(3K 2a2( Ty 72)
o,

(3.11) Ty (12T o (Z001) T, (210) Vra)

KT, o (zr§1>72) T (er)ﬂ) T (zrég)ﬂ) e
D 2 7§ 2 P 2

e, (F12) T o, (F ) B0, (21.0) Vo),

where C € C*,

k
(®) (1) (2) (k—1) (k) 72 : ()
O0Smpy <3, mpy2nyp 2. ZMpn " 2Ny, Mp2 =) Tyh,
t=1

for every every p, 1 < p < rél), so that at most one nz(at)2 (1<t<k)canbel
or 2 and

k
t 1 2 k—1 k t
0 §n;7)1 <1, 1<t<k, nz(){ > nz(){ > ... >n](071 ) zn](gyi, Np1 = E nl()’)l,
t=1

for every every p, 1 < p < 7’9).

EXAMPLE 3.4. In the case when k£ = 2 the projection mg;, where R =
(6,5,4,3,2,1;3,2), of generating function
Tas (26,2)T20s (25,2) T30z (24,2)Tdas (23,2)T5a, (22,2)
T6aso (21,2)£Ea1(23,1)x2a1(22,1)I2a1(21,1)
on
WL(AO)(G;Q) ® WL(Ao)(15;3)

can be represented graphically as in the Figure 1, where at most one generating
function of color ¢ = 1 is placed on every tensor factor and at most three
generating functions of color ¢ = 2 are placed on every tensor factor.

We define the projection of monomial vector bvr,a,), with b € BWL(kAO)
colored with color-type (rg,r1), charge-type R’ and dual-charge-type R
(3.12)

b=z, 1 o2 (m,«“) 2) Ty pan (ml,Q)zn (1) o1 (m,«“) 1) Tng o (ml,l)
T5 ,2 2 ry 1 1
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VL(Ao)

YL(Ao)

FiGure 1. Example 3.4

as a coefficient of the projection of the generating function (3.11) which we
denote as

wmva(kAo).
Ifb € Bw,,,,, is a monomial of charge-type (ﬁ,f§1>727 e, ﬁ'f"ﬁ”,l’ ce 1),

dual-charge-type R = (Fgl), ... ,FéBk) ; F§1), . ,ng)) and such that
b<b,
then, from the definition of projection, follows that
WD%BUL(kAO) =0.
We will use this property of projection gy in the proof of linear independence.

3.4. Operator Ag. Denote by Ay the coeflicient of an intertwining opera-
tor zg(z)
Ap =Res,z ! z9(2) = z9(—1)
which commutes with the action of £(n,) and such that
(3.13) AGUL(AO) = xg(fl)vL(Ao).
We act with operator
1 @411, s<k

—_———

s—1 factors
on the vector burxa,) € Bw,, Ag)» Where quasi-particle monomial b is as in

(3.12). From the definition of projection, it follows that vector
(1®"'®1®A9®]—®"'®]-)(WSRbUL(kAO))
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is the coefficient of

(B14) 1I®---®A4Q1® - ® 1)7r9%xn7é1)’2a2 (2,00 5) - Tsan (21,1) VL (k) -

From (3.13) it follows that in the s-th tensor row of (3.14) we have

¥ Ins) o2 (2,02 ) TGy o2 (2,01 5)
2 ) 5 ,
(3.15) T 02 (ZT§3‘9)72) e (21,2)
{39)
:En(s()s) ai (ZT§S),1) T Tay (Zlvl)ze(il)vL(Ao) Q-
r3%) 1

where 0 < nééi <l,for1<p< TES) and 0 < né‘(’% <3, for1<p< 7“535_2).

3.5. Operators e,,. For every root a € R, we define on the level 1 standard
module L(Ag), the “Weyl group translation” operator e, by

ea =€xp T_q(l)exp (—za(—1))exp z_o(1)exp z4(0)
exp (=2-a(0)) exp z4(0),
(for properly normalized root vectors, cf. [21]). Then on L(Ag) we have
(3.16) €aVL(Ag) = —Za(—1)Vr(Ay),
(3.17) vp(j)ea = ears(j — B(a’)), BER, jEL
For a = 6, from (3.16) and (3.17), it follows that we can (3.15) write as

- ® xn(s)
1

Z (35—2) T (s) Z (3s—1) R
T(3572)Y20‘2( T2 ’2) nT§3571)72a2( T2 72)

) g (1)

n

P o Vg1 T (a1t @
177

By taking the corresponding coefficients, we have
(10 -@104p01®- - @) TRbuL(ka,) = (18- @10ep@1@- - @1)TRwb vL, (k)
where

bt = b ()bt (o) = b(ag)l‘nr(l) lal(mril>71 + 1) g, (M1 +1).

Now, let o = ;. We consider the projection mozbvp,a,) of the monomial
vector bug,(xa,) Where b € Bw, s, 18 @ monomial

b= b(a2)b(a1)Tsa, (—5)
(3.18) =In ) a2 (mr§1>72) Ty pas (M,2)
S

mnr(l) o (m,«51>71) Tng o (m2,1)1'sa1 (75%
i
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of dual-charge-type
R = (7‘51),...,7“53]6);7“51),...,rgs),O...,O) .
The projection is a coefficient of the generating function
Fﬁ%xnél)gm (Zré”,Q) Ty sas (21,2)3571%1)71@1 (Zr§1),1) STy o (22,1)
(VL(Ag) ® - B VL(Ag) @ Tay (1)UL (Ag) @+ + ® Tay (—1)vr(Ag))
T AT B Cr

xn(;z%k . (Zré%),Q) .. 'xngk;m (21,2)'UL(A0)
7, 2 ’
2

Q- ®
T (s Z (3s— X (s Z (3s—
& ”((?3;,2) a2( g3 2)72) ”((?3;,1) az( e 1)’2)
T ,2 Ty ,2

T (B0 0) B, (212)
oo,

@) oy (B0 1) B, (22.1)€an VL)
r¥) 1 ’

R ®
& z, an (Zr(l),Q) ) o (ZT(2),2) T ) o (ZT(3)72)
D 2 2 P 2 2 2 2

o, (22)2,00, (212)

mn(l()l) a1 (Zr§1)71) o xngllal (22’1)60‘11)’:(1\0)'
i

Now, if we shift 1 ® --- ® eq, ® €qy; @ -+ ® €4, all the way to left using
commutation relations (3.17) we get

TRbUL (o) = (1@ -+ @ €a; ® €a; @+ @ €q, )Tr-D'vra,,
where b’ is quasi-particle monomial

bl = b'(ag)b'(al)

_ (1) (s)
TR PR
(1) (s)
© o Tng pon (m1,2 —MNyo— n1,2)

3.19
( ) x”,.(l) Lo (mrﬁl),l + 2’”‘7«51)) o Tngion (mQ,l + 2711,2)
),

= Tn (1) 02 (m;él) 2) * Tng san (m/1,2)
5, ;

mnr(ll) 1M (m;il),l) “Tngion (m/2,1)a
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1<p<r® 1<t<s of dual-charge-type

R = (rél), . ,7535);7“?) —-1,.. .,r§5) — 1) .
PROPOSITION 3.5. Monomial ' (3.19) is an element of the set Bw, -

ProoOF. We will prove that m;ﬂ, 2<p< 7“51) and 1 < p < rél) satisfy
the same difference conditions as energies of quasi-particle monomials from

the set BWL(kAO)' We will consider only energies m;,’Q, since for the color ¢ = 1
(

the proof is similar as in the case of BQI). We have two cases:
1) if np o > 3s, then we have:

/
m

p2 =Mp2 — 3s

i
< —npo+ E min {3ng,1,np2} — g 2 min{ny,2,np 2} — 3s;
q=1 p>p'>0
! = 3
Mpy1,2 = Mp41,2 — 95
<My —2np2 — 358

!/

=Mp2

—2np2 when n,2 = npi1,2;
2) if np 9 < 3s, then we have:
o
Mpo = Mp2 — Np 2
rH
—Np2t E min {3ng,1, np,2} — E 2 min{ny 2, ny 2} — np2
g=1 p>p'>0
rH

= —npa+y min{3ng1,mp0} — Y, 2 min{nya,ny ak;
q=2 p>p'>0

IN

/ _
Mpt1,2 = Mpt+1,2 — Np2

IN

Mp,2 = 2Np2 — Np2

—m . —
=My o —2np2 When npo =nppq 0.

O

3.6. Proof of linear independence. We prove linear independence of the
set By, ,,,, by induction on charge-type of monomials from the set By, ,, -
Then from the Proposition 3.3 will follow

THEOREM 3.6. The set BW, 1a,) S @ basis of the principal subspace
WL(kno)-
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PRrROOF. First consider a finite linear combination

(3.20) > Cabavr(kng) =0

of monomial vectors bavpka,) € BW, rao) of the same color-type (ra,71).
Denote by b = b(az)b(a1)%n, ;a, (j) the smallest monomial in (3.20) such that
cq # 0. Assume that b is of charge-type
(3.21) R = (nTél),Q’ o ,n172;nrél)’1, o ,n1,1>
and a dual-charge-type
1 3k), (1

R = (ré ),...,ré );7"5 ),...,7’§n1’1)) )

which determines the projection 79 on the vector space
WL(80) (a0 @+ ® WL(AO)(M(2"1,1+1);O)

® WL(AO)(M(znl,l);,ri"l,l)) ® - ® WL(AO)(Mél)".il)y

where
Ml(t) _ TéBtfl) _"_réSt) +T£3t72)7 1<t<k.

Tox maps to zero all vectors bavr(ka,) in (3.20) with monomials b, of larger

charge-type’s than R’. Now, in
(3.22) anﬂ'ﬁ%bavL(kAo) =0

we have a projection of bavr,(xa,), Where b, are of charge-type 9.
On (3.22), we act with operators 1® - ® 4p® 1 ®---® 1 and commute
—_——

n1,1—1 factors

to the left with operators 1 ® -+ - Q®ep® 1®---® 1 until we get
—_———

n1,1—1 factors

(3.23) Z CaTrba(02)ba (1) 0, 0y (—11,1) VLAY = 0.
a

Note, that in (3.23) we only have monomial vectors of charge-type R’ with
quasi-particle Tp, ;a, (—n1,1), since operators used above at some point anni-
hilate all other monomial vectors with @y, ,o, (m1,1), m11 > —J.

From the consideration in previous subsection it follows that (3.23) can
be written as

(324) 1® - ®eg @ ea, <Z CaTTor~ b;(ag)b;(al)vL(MO)> =0,
a

and after dropping out the invertible operator 1 ® - - ® e, @ -+ @ €4, as

3 cam- bl (02)b (1)L gy = 0,
a
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where b (a2)b}(a1) € Bw,,,,, are quasi-particle monomials od dual-charge
type

R = (rél),...,rék);r§1) — 1,...,7’§"1’1) - 1) ,

with smaller charge-type from R’.
We repeat the described processes, until we get

(3.25) > camo-ba(@2)vrag) =0,
a

where monomial vectors b, (c2)vp(ka,) are colored only with color i = 2.

Similar as in the case of Bél)

as elements of

we will see vectors by (2)vr(ra,) in (3.25)

(3.26) WLA(3AO) KRR WLA(3AO),

k factors

where Wy a(sp,) is the principal subspace of level 3 standard ;lg (a2)-module

LA(3Ao) with the highest weight vector UL(A,)- Denote by 7, the projection
of (3.26) on

(3.27) WLA(AO)(Tégk)) & WL(AO)(TéE}k—l)) R ® WL(AO)(réﬂ) 02y WL(AU)(T;”)’

where WL(AO)(TS))’ 1 <t < 3k is a h-weighted subspace of Wy a(35,) of weight

rét)ag. From the condition (3.2), follows that monomial vectors

(3.28) T (Wﬁ%*ba(QQ)UL(kAO))

are elements of vector space (3.27). Now, using Georgiev’s argument from
[18] follows ¢, = 0. O

4. CHARACTERS OF PRINCIPAL SUBSPACES

From Theorem 3.6 we easily obtain the character of the principal subspace
WL (kao)>

(4.1) ch Wikag) = D dim Wrgeag) o @ Y5 95%
m,r1,72>0

where WL(kAU)(m,'rl,rz) is a weight subspace spanned by monomial vectors of
weight —m and color-type (r1,72) (see [4,5,18]).

If we write conditions on energies of quasi-particles of a basis Bw, , r0)
in terms of the dual-charge-type (and the corresponding charge-type)

1 2 3k 1 2 k
(Té ),Té ),...,Té ),7"5 ),7"5 ),...,T§ )> :
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(1) (1)
ry Ty k
(42) 30> min{np3nga} =YY Y 4T,
s=1

p=1g=1

r

k
N2
(4.3) Z( Z 2min{ny 1, np 1} +np1) = ZT§6) ,
s=1

p=1 p>p'>0

r§V 3k
(4.4) Z( Z 2min{ny 2, Ny 2} +np o) = Z réé) ,

p=1 p>p'>0 s=1

then, we have the following result.

THEOREM 4.1.
ch WL(kAg)

V> > >0
rél) Z“‘ZTéM)ZO

where ()0 = 1, (@) = (1 — ) (1 —¢*) - (L —q") forr >0, 1 = S5 Y
3k (s)
and Ty = Ty .

s=1

s)2 s)2 s s s— s—
DML IR DAL RS DA SRR e R
T1,,T2

Y1 Y2

(@), 0, (0),w (@), 0@ (q),e»

At the end we state the theorem in which we describe the basis of the
principal subspace Wi (xa,):

THEOREM 4.2. The set By, = {bvN(kAO) :be BWN(kAO)}’ where

Bwy xag) = U or, equivalently, U
n (1) 1S~Sm,1 r§1>>r§2>>...>0
{1, >y 22>
) oSS {5520

b= b(ag)b(al)

=Tn ) ,02 (mr(l) 2) © Ty san (ml,Q)xn (1) 0 (mr(l) 1) T Tng o (ml,l) :
P 2 M 1

i 1.
Mmpn < —Np1 — Zp>p/>02 mln{np,l,np/,l}, 1 < P < s

] 1
Mp11 S Mp1 = 20p1 i nprig = np1, LS p <) — 1
1
' . .
Mp2 < —Np2+ > 1 min {3ng,1,np2} — 300 02 min{ny 2, ny 2},
OF
1 § p § T2 3
] 1
Myirs S Mp2 = 2p2 if nps =nprrz, L<p <y =1
is a basis of the principal subspace Wi (ia,)-
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The proof of the Theorem 4.2 is similar as in the case of W a,) (see
[4]), from which we can as before obtain the character of Wy (za,):

THEOREM 4.3.
ch WN(kAO)

rV>.>r( >0
Tél)z...Zva)ZO
u,v>0

where r1 = ZZ=1 7’§s) and ry = 2311 Tés)-

w s)2 v s)2 s 3s 3s—1 3s—2
q&s=1 Ti ) +Z§:1Té ) _2331 'f§ )(Té )+""é )+""é ))
T, T2

Y1 Y2,

(Q),.im_,.gz) - (Q),«Yn (Q),.ém_réw e (Q),.éw

From (2.4) and previous theorem follows a generalization of Euler-Cauchy
theorem (cf. (2.2.8) and (2.2.9) in [1] and (4.1) in [2]):

THEOREM 4.4.
(4.5)

1 1 1
go (1 —q™y1) (1 = q™y2) (1 — q"y1y2)
1 1 1
(1= qmy193) (1= qmyy3) (1 — q™yiy3)

5)? 5)? s), (3s 3s—1 352
B e S B I
— E yﬁy;é
- Y
1) (2 (3 (Q)Tu)_,@) (Q),.@)_T(s) e (Q)Tu)_,@) (q),.m_,.(s) S
.,.§ )27‘§ )27‘§ )>..>0 1 1 1 1 2 2 2 2

7‘&1) 27';2) 27';3) >...>20

where ri =Y TES) and r2 =3 5y rés). The sum on the right side of (4.5)
is over all descending infinite sequences of mon-negative integers with finite
support.
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