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A REMARK ON GLOBAL W 1,p
BOUNDS FOR HARMONIC

FUNCTIONS WITH LIPSCHITZ BOUNDARY VALUES

Nikos Katzourakis

University of Reading, UK

Abstract. In this note we show that gradient of harmonic functions
on a smooth domain with Lipschitz boundary values is pointwise bounded
by a universal function which is in Lp for all finite p ≥ 1.

1. Introduction

Kellogg in [K] pioneered the study of the boundary behaviour of the gra-
dient of harmonic functions on a bounded domain. Roughly speaking, he
established that in a domain of R

3 near a boundary region which can be
represented as the graph of a planar function, the gradient of any harmonic
function is continuous up to the boundary provided that the gradient of the
boundary function and of the harmonic function are Dini continuous them-
selves on the boundary. The celebrated theory of Schauder estimates [GT]
establishes strong relevant results for general uniformly elliptic PDEs, provid-
ing interior and global Hölder bounds for solutions and their derivatives in
terms of the Hölder norms of the boundary values of the solution and the right
hand side of the PDE. The Schauder theory has been improved and extended
by many authors, but typically for second order elliptic PDEs with boundary
values of the solutions and right hand sides of the PDEs in the Hölder spaces
C2,α or C1,α, in order to obtain uniform estimates for the solutions in the
respective Hölder spaces.

In [GH] Gilbarg-Hörmander have extended Schauder theory to include
hypotheses of lower regularity of the boundary values of the solution, of the
boundary of the domain and of the coefficients of the equations. Troianiello
[T] relaxed further some conditions of Gilbarg-Hörmander [GH]. In the paper
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[HS] Hile-Stanoyevitch, extending an older result of Hardy-Littlewood [HL],
proved that the gradient of a harmonic function with Lipschitz continuous
boundary values is pointwise bounded up to a constant by the logarithm of a
multiple of the inverse of the distance to the boundary.

However, it appears that in none of these results, even for the special
case of the Laplacian, there is an explicit global bound in Lp for the gradient
of harmonic functions which have just Lipschitz boundary values and not
C1,α. In this note we establish the following consequence of the result of
Hile-Stanoyevitch:

Theorem 1.1. Let n ≥ 2, Ω ⊆ R
n a bounded open set with C2 boundary.

Let also g : ∂Ω → R with g ∈ Lip(∂Ω), that is g ∈ C0(∂Ω) and

Lip(g, ∂Ω) := sup
x,y∈∂Ω, x 6=y

|g(x)− g(y)|

|x− y|
< ∞.

1. There exists a positive function fΩ,n : Ω → (0,∞) depending on Ω, n
such that

(1.1) fΩ,n ∈
⋂

p∈[1,∞)

LpΩ) ∩ C0(Ω)

and if u ∈ C2(Ω) ∩ C0(Ω) is the harmonic function solving

(1.2)

{

∆u = 0, in Ω,

u = g, on ∂Ω,

then we have the estimate

(1.3)
∣

∣Du(x)
∣

∣ ≤ Lip(g, ∂Ω) fΩ,n(x), x ∈ Ω.

2. Let (gm)∞1 ⊆ Lip(∂Ω) satisfy for some C > 0

(1.4) Lip(gm, ∂Ω) + max
∂Ω

|gm| ≤ C, m ∈ N.

Let also (um)∞1 ∈ C2(Ω) ∩ C0(Ω) be the harmonic functions solving

(1.5)

{

∆um = 0, in Ω,

um = gm, on ∂Ω.

Then, (um)∞1 is strongly precompact in
⋂∞

p=1 W
1,p(Ω) and if

(1.6) gmk −→ g in C0(Ω), as k → ∞,

then there is a unique limit point u ∈ C2(Ω)∩C0(Ω) of the subsequence
(umk)∞1 such that along perhaps a further subsequence

(1.7) umk −→ u in W 1,p(Ω) ∀ p ≥ 1, as k → ∞,

and the limit function u solves
{

∆u = 0, in Ω,

u = g, on ∂Ω.
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The motivation to derive the above integrability result and its conse-
quences comes from certain recent advances in generalised solutions of non-
linear PDE and vectorial Calculus of Variations in the space L∞ ([Ka4] and
[Ka2,Ka3]). The vectorial counterparts of harmonic functions provide useful
energy comparison maps since they are “stable” in Lp for all 1 < p < ∞.

2. Proofs

Our notation is either self-explanatory or otherwise standard as e.g. in
[E], [Ka]. The starting point of our proof is the following estimate of Hile-
Stanoyevitch: under the hypotheses of Theorem 1.1, the gradient Du of a
harmonic function u ∈ C2(Ω) ∩ C0(Ω) which solves (1.2) with g ∈ Lip(∂Ω)
satisfies the logarithmic estimate

(2.1)
∣

∣Du(x)
∣

∣ ≤ C(Ω, n) Lip(g, ∂Ω) ln

(

diam(Ω)

dist(x, ∂Ω)

)

, x ∈ Ω.

for some C depending just on Ω (and the dimension). In (2.1), diam(Ω) is the
diameter of the domain and dist(x, ∂Ω) the distance of x from the boundary:

diam(Ω) := sup
{

|x− y| : x, y ∈ Ω
}

,

dist(x, ∂Ω) := inf
{

|x− z| : z ∈ ∂Ω
}

.

Proof of 1. of Theorem 1.1. Fix ε > 0 smaller than the diameter of
Ω and consider the inner open ε neighbourhood of Ω:

Ωε :=
{

x ∈ Ω : dist(x, ∂Ω) > ε
}

.

It is well known that (see e.g. [GT])

dist(·, ∂Ω) ∈ W
1,∞
loc (Rn)

and

(2.2)
∣

∣Ddist(·, ∂Ω)
∣

∣ = 1, a.e. on Ω.

Let p ∈ [1,∞). By the Co-Area formula (see e.g. [EG, Proposition 3, p. 118])
applied to the function

R
n ∋ x 7−→ χΩε(x)

(

ln

(

diam(Ω)

dist(x, ∂Ω)

))p

∈ R

(where χΩε is the characteristic function of Ωε), we have
∫

Ωε

(

ln

(

diam(Ω)

dist(x, ∂Ω)

))p

dx =

=

∫ diam(Ω)

ε









∫

{dist(·,∂Ω)=t}

(

ln

(

diam(Ω)

dist(z, ∂Ω)

))p

∣

∣Ddist(z, ∂Ω)
∣

∣

dHn−1(z)









dt

(2.3)
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where Hn−1 is the (n − 1)-dimensional Hausdorff measure. By using (2.2),
(2.3) simplifies to

∫

Ωε

(

ln

(

diam(Ω)

dist(x, ∂Ω)

))p

dx =

=

∫ diam(Ω)

ε

(

∫

{dist(·,∂Ω)=t}

(

ln

(

diam(Ω)

dist(z, ∂Ω)

))p

dHn−1(z)

)

dt

Further, since

dist(z, ∂Ω) = t, for all z ∈ {dist(·, ∂Ω) = t},

by setting

(2.4) Iε,p :=

∫

Ωε

(

ln

(

diam(Ω)

dist(x, ∂Ω)

))p

dx

we obtain

Iε,p =

∫ diam(Ω)

ε

(

∫

{dist(·,∂Ω)=t}

(

ln

(

diam(Ω)

t

))p

dHn−1(z)

)

dt

=

∫ diam(Ω)

ε

(

ln

(

diam(Ω)

t

))p

Hn−1
(

{dist(·, ∂Ω) = t}
)

dt.

(2.5)

As a consequence of the regularity of the boundary, standard results regarding
the equivalence between the Hausdorff measure and the Minkowski content
for rectifiable sets (see e.g. [AFP, Section 2.13, Theorem 2.106]) imply that
there is a C = C(Ω) such that

ess sup
0<t<diam(Ω)

Hn−1
(

{dist(·, ∂Ω) = t}
)

≤ C(Ω)

and hence the inequality (2.5) gives

(2.6) Iε,p ≤ C(Ω)

∫ diam(Ω)

ε

(

ln

(

diam(Ω)

t

))p

dt.

By the change of variables

ω :=
diam(Ω)

t

we can rewrite the estimate (2.6) as

Iε,p ≤ C(Ω) diam(Ω)

∫ diam(Ω)/ε

1

(lnω)p

ω2
dω

and by enlarging perhaps the constant C(Ω), we rewrite this as

(2.7) Iε,p ≤ C(Ω)

∫ diam(Ω)/ε

1

(

lnω

ω2/p

)p

dω.
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We now claim that

lim
ε→0

Iε,p ≤ C(Ω, n, p) < ∞.

Indeed, by using the following known property of the Gamma function
∫ ∞

1

lnp x

x2
dx = Γ(1 + p)

we readily conclude.

By (2.4) we have that there is a constant C(Ω, n, p) depending only on
Ω, n, p such that

∫

Ω

(

ln

(

diam(Ω)

dist(x, ∂Ω)

))p

dx = lim
ε→0

Iε,p

≤ C(Ω, n, p).

(2.8)

By combining (2.8) with (2.1), we see that by setting

fΩ,n(x) := C(Ω, n) ln

(

diam(Ω)

dist(x, ∂Ω)

)

, x ∈ Ω

item 1. of Theorem 1.1 is established.

Proof of 2. of Theorem 1.1. Let um solve (1.5). By standard inte-
rior bounds on the derivatives of harmonic functions in terms of their bound-
ary values (see e.g. [GT]) and (1.4), we have that the Hessians (D2um)∞1 are
bounded in C0(Ω,Rn×n), that is uniformly over the compact subsets of Ω.
The same is true for the 3rd order derivatives as well; thus, for any Ω′

⋐ Ω,
there is C(Ω′) such that

3
∑

k=1

∥

∥Dkum
∥

∥

C0(Ω′)
≤ C(Ω′) ‖um‖C0(Ω)

and by the maximum principle we have

‖um‖C0(Ω) ≤ max
∂Ω

|gm| ≤ C.

As a consequence,
∣

∣Dkum(x)−Dkum(y)
∣

∣ ≤ C(Ω′)|x − y|,
∣

∣Dkum(x)
∣

∣ ≤ C(Ω′),

}

x, y ∈ Ω′, k = 0, 1, 2, 3, m ∈ N

and by the Ascoli-Arzela theorem, the sequence
(

um,Dum, D2um
)∞

m=1

is precompact uniformly over the compact subsets of Ω. Again by (1.4), we
have

∣

∣gm(x) − gm(y)
∣

∣ ≤ C|x− y|,
∣

∣gm(x)
∣

∣ ≤ C,

}

x, y ∈ ∂Ω, m ∈ N
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which gives that (gm)∞1 is bounded and equicontinuous on ∂Ω. Thus, by
the Ascoli-Arzela theorem and by the lower semicontinuity of the Lipschitz
seminorm with respect to uniform convergence, there is a subsequence (gmk)∞1
and g ∈ Lip(∂Ω) such that

gmk −→ g, as k → ∞ in C0(∂Ω).

Along perhaps a further subsequence, by the above bounds on (um)∞1 ⊆
C2(Ω) ∩C0(Ω), there is u ∈ C2(Ω) such that

(2.9)











umk −→ u, in C0(Ω),

Dumk −→ Du, in C0(Ω,Rn),

D2umk −→ D2u, in C0(Ω,Rn×n),

as k → ∞. By passing to the limit in the equation ∆um = 0 we get that
∆u = 0. Since the measure of Ω is finite, for any p ∈ [1,∞) by Hölder
inequality we have that

‖um‖Lp(Ω) ≤ |Ω|1/p
(

‖um‖C0(Ω)

)

≤ C(Ω, p).

By item 1. of the theorem and by (1.4), we have that

‖Dum‖Lp(Ω) ≤ C(Ω, n, p).

Hence, we have the bound

‖um‖W 1,p(Ω) ≤ C(Ω, n, p), p ≥ 1.

By the Morrey embedding theorem, by choosing p > n we have that (umk)∞1
is precompact in C0(Ω) and hence by (2.9) we have that

(2.10) umk −→ u, in C0(Ω) as k → ∞.

Hence, u = g on ∂Ω and as a consequence u solves the limit Dirichlet problem.
Finally, if E ⊆ Ω is a measurable subset, by the Hölder inequality we have
that

∫

E

∣

∣Dum(x)
∣

∣

p
dx ≤ |E|1−

p

p+1

(∫

E

∣

∣Dum(x)
∣

∣

p+1
dx

)
p

p+1

= |E|1−
p

p+1

(

‖Dum‖Lp+1(Ω)

)p

≤ |E|1−
p

p+1C(Ω, n, p).

Hence, the sequence of gradients (Dumk)∞1 is p-equi-integrable on Ω. By (2.9),
we have

Dumk −→ Du in measure on Ω, as k → ∞.

Since Ω has finite measure, the Vitali Convergence theorem (e.g. [FL]) implies
that

Dumk −→ Du in Lp(Ω), as k → ∞.

Item 2. of Theorem 1.1 has been established.
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