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Abstract. Based on a new papers of Aydi et al. in [7, 8], where the

concept of Hausdorff metric-like has been initiated, we introduce Suzuki
type contractive multivalued mappings on metric-like spaces. We also es-
tablish several fixed point results involving such contractions. We show
that many known fixed point results in literature are simple consequences
of our theorems. Our obtained results are supported by some examples
and an application.

1. Introduction and preliminaries

The study of fixed points for multivalued contractions using the Haus-
dorff metric was initiated by Nadler ([17]). Since then, Aydi et al. in [4, 5]
introduced the concept of a Hausdorff partial metric and provided some (com-
mon) fixed point results. Recently, Abbas et al. in [2] established some fixed
point theorems for Suzuki type contractive multivalued mappings on partial
Hausdorff metric spaces.

The purpose of this paper is to introduce the notion of Suzuki type con-
tractive multivalued mappings on metric-like spaces via the notion of Haus-
dorff metric-like which a new concept introduced in recent papers of Aydi
et al. ([7, 8]). We will establish some fixed point theorems involving such
contractions on metric-like spaces.

Mention that metric-like spaces have been discovered by Amini-Harandi
in [3] where some fixed point results have been established.
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Definition 1.1. Let X be a nonempty set. A function σ : X×X → [0,∞)
is said to be a metric-like (dislocated metric) on X if for any x, y, z ∈ X, the
following conditions hold:

(P1) σ(x, y) = 0 =⇒ x = y;
(P2) σ(x, y) = σ(y, x);
(P3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X, σ) is then called a metric-like (dislocated metric) space.

It is known that a partial metric ([16]) is also a metric-like. So a trivial
example of a metric-like space is the pair ([0,∞), σ), where σ : [0,∞) ×
[0,∞) → [0,∞) is defined as σ(x, y) = max{x, y}.

In the following example, we give a metric-like which is neither a metric
nor a partial metric.

Example 1.2. Let X = {0, 1} and σ : X ×X → [0,∞) defined by

σ(0, 0) = 2 and σ(x, y) = 1 if (x, y) 6= (0, 0).

Then, (X, σ) is a metric-like space. Note that σ is neither a metric since
σ(0, 0) 6= 0 nor a partial metric on X because σ(0, 0) > σ(1, 0).

Each metric-like σ on X generates a T0 topology τσ on X which has as a
base the family open σ-balls {Bσ(x, ε) : x ∈ X, ε > 0}, where Bσ(x, ε) = {y ∈
X : |σ(x, y) − σ(x, x)| < ε}, for all x ∈ X and ε > 0.

Observe that a sequence {xn} in a metric-like space (X, σ) converges to
a point x ∈ X , with respect to τσ, if and only if σ(x, x) = lim

n→∞

σ(x, xn).

Definition 1.3. Let (X, σ) be a metric-like space.

(a) A sequence {xn} in X is said to be a Cauchy sequence if there exists
lim

n,m→∞

σ(xn, xm) and is finite.

(b) (X, σ) is said to be complete if every Cauchy sequence {xn} in X con-
verges with respect to τσ to a point x ∈ X such that lim

n→∞

σ(x, xn) =

σ(x, x) = lim
n,m→∞

σ(xn, xm).

We need in the sequel the following trivial inequality:

(1.1) σ(x, x) ≤ 2σ(x, y) for all x, y ∈ X.

As in [7, 8], let CBσ(X) be the family of all nonempty, closed and bounded
subsets of the metric-like space (X, σ), induced by the metric-like σ. Note
that the boundedness is given as follows: A is a bounded subset in (X, σ) if
there exist x0 ∈ X andM ≥ 0 such that for all a ∈ A, we have a ∈ Bσ(x0,M),
that is,

|σ(x0, a)− σ(x0, x0)| < M.

The closedness is taken in (X, τσ) (where τσ is the topology induced by σ).
Let Ā be the closure of A with respect to the metric-like σ. We have
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Definition 1.4.

a ∈ Ā⇐⇒ Bσ(a, ǫ) ∩A 6= ∅ for all ǫ > 0

⇐⇒ there exists {xn} ⊂ A, xn → a in (X, σ).

If A ∈ CBσ(X), then Ā = A.

For A,B ∈ CBσ(X) and x ∈ X , define

σ(x,A) = inf{σ(x, a), a ∈ A}, δσ(A,B) = sup{σ(a,B) : a ∈ A} and

δσ(B,A) = sup{σ(b, A) : b ∈ B}.

Lemma 1.5 ([7, 8]). Let (X, σ) be a metric-like space and A be any
nonempty set in (X, σ), then

(1.2) if σ(a,A) = 0, then a ∈ Ā.

Let (X, σ) be a metric-like space. For A,B ∈ CBσ(X), define

Hσ(A,B) = max {δσ(A,B), δσ(B,A)} .

We also have some properties of Hσ : CBσ(X)× CBσ(X) → [0,∞).

Proposition 1.6 ([7, 8]). Let (X, σ) be a metric-like space. For any
A,B,C ∈ CBσ(X), we have the following:

(i) : Hσ(A,A) = δσ(A,A) = sup{σ(a,A) : a ∈ A};

(ii) : Hσ(A,B) = Hσ(B,A);

(iii) : Hσ(A,B) = Hσ(B,A) = 0 implies that A = B;

(iv) : Hσ(A,B) ≤ Hσ(A,C) +Hσ(C,B).

In view of Proposition 1.6, the mapping Hσ : CBσ(X) × CBσ(X) →
[0,+∞) is called a Hausdorff metric-like induced by σ.

From now on, we denote by

M(x, y) := max{σ(x, y), σ(x, Tx), σ(y, T y),
1

4
{σ(x, T y) + σ(y, Tx)}}

for a multivalued map T : X → CBσ(X) and x, y ∈ X.

Also, let ψ : [0, 1) → (0, 1] the non-increasing function defined by

(1.3) ψ(r) =

{

1, 0 ≤ r < 1
2
,

1− r, 1
2
≤ r < 1.

In this paper, we introduce the concept of Suzuki type contractive multivalued
mappings on metric-like spaces. We establish some fixed point results for
multivalued mappings involving above contractions. We will present some
examples and an application.
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2. Fixed point of multi-valued contraction mappings

We start with the following useful lemmas.

Lemma 2.1. Let A,B ∈ CBσ(X) and a ∈ A. Then, for all ǫ > 0, there
exists a point b ∈ B such that σ(a, b) ≤ Hσ(A,B) + ǫ.

Lemma 2.2. Let A,B ∈ CBσ(X) and a ∈ A. Suppose that σ(a,B) > 0.
Then, for each 0 ≤ h < 1, there exists b ∈ B such that hσ(a, b) < σ(a,B).

Proof. We argue by contradiction, that is, there exists 0 ≤ h < 1, such
that for all b ∈ B, there is hσ(a, b) ≥ σ(a,B). Then, hσ(a,B) ≥ σ(a,B).
Hence, h ≥ 1, which is a contradiction.

Lemma 2.3. Let A,B,C ∈ CBσ(X) and a ∈ A. Then

σ(a,B) ≤ σ(a, C) +Hσ(C,B).

Now, we state and prove our main result.

Theorem 2.4. Let (X, σ) be a complete metric-like space and T : X →
CBσ(X) be a multivalued mapping. Suppose there exists 0 ≤ r < 1 such that
T satisfies the condition

(2.1) ψ(r)σ(x, Tx) ≤ σ(x, y) implies Hσ(Tx, T y) ≤ rM(x, y)

for all x, y ∈ X, where ψ is defined by (1.3). Then, T has a fixed point, that
is, there exists a point x⋆ ∈ X such that x⋆ ∈ Tx⋆.

Proof. Let x0 ∈ X and x1 ∈ Tx0. Clearly, if σ(x0, x1) = 0, then x0 = x1
and x0 is a fixed point of T. Assume that σ(x0, x1) > 0. Since Tx0, T x1 ∈
CBσ(X) and x1 ∈ Tx0, so by Lemma 2.1, there exists a point x2 ∈ Tx1 such
that

σ(x1, x2) ≤ Hσ(Tx0, T x1) +
1− r

2
M(x1, x0).

But ψ(r) ≤ 1, so

ψ(r)σ(x0 , T x0) ≤ σ(x0, T x0) ≤ σ(x0, x1).

Thus, from (2.1)

σ(x1, x2) ≤ Hσ(Tx0, T x1) +
1− r

2
M(x0, x1)

≤ rM(x0, x1) +
1− r

2
M(x1, x0)

=
1 + r

2
M(x0, x1).

If σ(x2, x1) = 0, then x2 = x1 and so x1 is a fixed point of T. Assume
that σ(x2, x1) > 0. Then, by Lemma 2.1, there exists a point x3 ∈ Tx2 such
that

σ(x3, x2) ≤ Hσ(Tx2, T x1) +
1− r

2
M(x2, x1).(2.2)
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Again ψ(r) ≤ 1, so

ψ(r)σ(x1 , T x1) ≤ σ(x1, T x1) ≤ σ(x1, x2).

From (2.1), we have

σ(x2, x3) ≤ Hσ(Tx1, T x2) +
1− r

2
M(x1, x2)

≤ rM(x1, x2) +
1− r

2
M(x1, x2)

=
1 + r

2
M(x1, x2).

Continuing in this fashion, we produce a sequence {xn} ⊂ X such that xn+1 ∈
Txn and σ(xn, xn+1) > 0 with

σ(xn, xn+1) ≤ Hσ(Txn−1, T xn) +
1− r

2
M(xn−1, xn).

We have

ψ(r)σ(xn−1, T xn−1) ≤ σ(xn−1, T xn−1) ≤ σ(xn−1, xn).

From (2.1)

0 < σ(xn, xn+1) ≤ Hσ(Txn−1, T xn) +
1− r

2
M(xn−1, xn)

≤ rM(xn−1, xn) +
1− r

2
M(xn−1, xn)

=
1 + r

2
M(xn−1, xn),

where

M(xn−1, xn) = max{σ(xn−1, xn), σ(xn−1, T xn−1), σ(xn, T xn),

1

4
[σ(xn−1, T xn) + σ(xn, T xn−1)]}

≤ max{σ(xn−1, xn), σ(xn−1, xn), σ(xn, xn+1),

1

4
[σ(xn−1, xn+1) + σ(xn, xn)]}

≤ max{σ(xn−1, xn), σ(xn, xn+1),
1

4
[3σ(xn−1, xn)+σ(xn, xn+1)]}

= max{σ(xn−1, xn), σ(xn, xn+1)}.

Thus, for all n ∈ N

0 < σ(xn, xn+1) ≤
1 + r

2
max{σ(xn−1, xn), σ(xn, xn+1)}.

If σ(xn, xn+1) > σ(xn−1, xn) for some n, so due to the fact that 0 ≤ r < 1,

0 < σ(xn, xn+1) ≤
1 + r

2
σ(xn, xn+1) < σ(xn, xn+1)
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which is a contradiction. Then, for all n ∈ N

σ(xn, xn+1) ≤
1 + r

2
σ(xn−1, xn).

Moreover, by induction

σ(xn, xn+1) ≤ (
1 + r

2
)nσ(x0, x1), for alln = 0, 1, . . .

Since r ∈ [0, 1), then
∑

n

(
1 + r

2
)n <∞. So, for all p ∈ N

σ(xn, xn+p) ≤

n+p−1
∑

k=n

σ(xk, xk+1) ≤

n+p−1
∑

k=n

(
1 + r

2
)kσ(x0, x1)

≤
∞
∑

k=n

(
1 + r

2
)kσ(x0, x1) → 0, as n→ ∞.

Thus, by symmetry of σ

lim
n,m→∞

σ(xn, xm) = 0.

This yields that the sequence {xn} is a σ−Cauchy. By completeness of (X, σ),
there exists x⋆ ∈ X such that

lim
n→∞

σ(xn, x
⋆) = σ(x⋆, x⋆) = lim

n,m→∞

σ(xn, xm) = 0.(2.3)

We will show that

σ(x⋆, T x) ≤ rmax{σ(x⋆, x), σ(x, Tx)} for all x 6= x⋆.(2.4)

First, take x 6= x⋆ ∈ X and so σ(x, x⋆) > 0. Since lim
n→∞

σ(xn, x
⋆) = 0, then

there exists N ∈ N such that

(2.5) σ(xn, x
⋆) ≤

1

3
σ(x, x⋆), for all n ≥ N.

Then, we have

(2.6)

ψ(r)σ(xn , T xn) ≤ σ(xn, T xn) ≤ σ(xn, xn+1)

≤ σ(xn, x
⋆) + σ(x⋆, xn+1) ≤

2

3
σ(x, x⋆).

By (2.5) and the triangular inequality, we can write

(2.7)
2

3
σ(x, x⋆) ≤ σ(x, x⋆)− σ(xn, x

⋆) ≤ σ(x, xn), for all n ≥ N.

Combining (2.6) and (2.7), we get

ψ(r)σ(xn, T xn) ≤ σ(x, xn), for all n ≥ N.

Therefore, from (2.1)

Hσ(Tx, Txn) ≤ rM(x, xn), for all n ≥ N,
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where

M(x, xn) = max{σ(x, xn), σ(x, Tx), σ(xn, T xn),
1

4
[σ(x, Txn) + σ(xn, T x)]}.

Note that

M(x, xn) ≤ max{σ(x, xn), σ(x, Tx), σ(xn, xn+1),
1

4
[σ(x, xn+1) + σ(xn, T x)]}.

We obtain

σ(x⋆, T x) ≤ σ(x⋆, xn+1) + σ(xn+1, T x)

≤ σ(x⋆, xn+1) +Hσ(Txn, T x)

≤ σ(x⋆, xn+1) + rmax{σ(x, xn), σ(x, Tx), σ(xn, T xn),

1

4
[σ(x, Txn) + σ(xn, T x)]}

≤ σ(x⋆, xn+1) + rmax{σ(x, xn), σ(x, Tx), σ(xn, xn+1),

1

4
[σ(x, xn+1) + σ(xn, x) + σ(x, Tx)]}.

In view of (2.3)

lim
n→∞

σ(x, xn) = σ(x, x⋆), lim
n→∞

σ(xn, xn+1) = 0.

Letting n→ ∞, we get

σ(x⋆, T x) ≤ rmax{σ(x, x⋆), σ(x, Tx),
1

4
[2σ(x, x⋆) + σ(x, Tx)]}

≤ rmax{σ(x, x⋆), σ(x, Tx)}.

This completes the proof of (2.4). Now, we will show that x⋆ ∈ Tx⋆. First,
consider the case 0 ≤ r < 1

2
. Suppose, on the contrary, that x⋆ 6∈ Tx⋆. By

Lemma 2.2, there exists a ∈ Tx⋆ such that

(2.8) 2rσ(a, x⋆) < σ(x⋆, T x⋆).

Since a ∈ Tx⋆, then a 6= x⋆. From (2.4), we have

σ(x⋆, T a) ≤ rmax{σ(x⋆, a), σ(a, Ta)}.

We have ψ(r)σ(x⋆ , T x⋆) ≤ σ(x⋆, T x⋆) ≤ σ(x⋆, a). Then, from (2.1)

Hσ(Tx
⋆, T a)≤rmax{σ(x⋆, a), σ(x⋆, T x⋆), σ(a, Ta),

1

4
[σ(a, Tx⋆)+σ(x⋆, T a)]}.

By triangle inequality

σ(a, Tx⋆) + σ(x⋆, T a) ≤ 2σ(a, x⋆) + σ(x⋆, T x⋆) + σ(a, Ta)

≤ 4max{σ(x⋆, a), σ(x⋆, T x⋆), σ(a, Ta)}.

Then

Hσ(Tx
⋆, T a) ≤ rmax{σ(x⋆, a), σ(x⋆, T x⋆), σ(a, Ta)}.
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Again, having σ(x⋆, T x⋆) ≤ σ(x⋆, a), so

σ(a, Ta) ≤ Hσ(Tx
⋆, T a) ≤ rmax{σ(x⋆, a), σ(a, Ta)}.(2.9)

If σ(a, Ta) = 0, then by Lemma 1.5, a ∈ Ta, and then a is a fixed point of T.
Suppose that σ(a, Ta) > 0. So if σ(a, Ta) > σ(a, x⋆), then

σ(a, Ta) ≤ rσ(a, Ta) < σ(a, Ta)

which is a contradiction. Then

σ(a, Ta) ≤ rσ(x⋆, a) < σ(x⋆, a).

Therefore, by Lemma 2.3 and using (2.4) and (2.9)

σ(x⋆, T x⋆) ≤ σ(x⋆, T a) +Hσ(Ta, Tx
⋆)

≤ σ(x⋆, T a) + rmax{σ(x⋆, a), σ(a, Ta)}

≤ 2rmax{σ(x⋆, a), σ(a, Ta)} ≤ 2rσ(x⋆, a)

which is a contradiction. Thus, x⋆ ∈ Tx⋆.

Now, we consider the case 1
2
≤ r < 1. First, we will prove that

(2.10)

Hσ(Tx, Tx
⋆) ≤ rmax{σ(x, x⋆), σ(x, Tx), σ(x⋆, T x⋆),

1

4
[σ(x, Tx⋆) + σ(x⋆, T x)]},

for all x 6= x⋆.

Let us take x ∈ X such that σ(x, x⋆) > 0. Then, by definition of the
infimum, there exists yn ∈ Tx such that for each n ∈ N,

σ(x⋆, yn) ≤ σ(x⋆, T x) +
1

n
σ(x, x⋆).

By triangular inequality and using (2.4)

σ(x, Tx) ≤ σ(x, yn) ≤ σ(x, x⋆) + σ(x⋆, yn)

≤ σ(x, x⋆) + σ(x⋆, T x) +
1

n
σ(x, x⋆)

≤ (1 +
1

n
)σ(x, x⋆) + rmax{σ(x⋆, x), σ(x, Tx)}.

Case 1: If σ(x, x⋆) ≥ σ(x, Tx), then

σ(x, Tx) ≤ (1 + r +
1

n
)σ(x, x⋆)

Letting n→ ∞

σ(x, Tx) ≤ (1 + r)σ(x, x⋆).

By definition of ψ in the case 1
2
≤ r < 1, we have

ψ(r)σ(x, Tx) = (1− r)σ(x, Tx) ≤ (1 − r2)σ(x, x⋆) ≤ σ(x, x⋆).
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Then, from (2.1)

Hσ(Tx, Tx
⋆) ≤ rmax{σ(x, x⋆), σ(x, Tx), σ(x⋆, T x⋆),

1

4
[σ(x, Tx⋆) + σ(x⋆, T x)]}.

Case 2: If σ(x, x⋆) < σ(x, Tx), we get

σ(x, Tx) ≤ (1 +
1

n
)σ(x, x⋆) + rσ(x, Tx).

Thus

(1− r)σ(x, Tx) ≤ (1 +
1

n
)σ(x, x⋆).

We pass to the limit when n→ ∞

ψ(r)σ(x, Tx) ≤ σ(x, x⋆).

By (2.1), we obtain

Hσ(Tx, Tx
⋆) ≤ rmax{σ(x, x⋆), σ(x, Tx), σ(x⋆, T x⋆),

1

4
[σ(x, Tx⋆) + σ(x⋆, T x)]}.

This ends the proof of (2.10) in the two cases.
Since xn 6= xn+1 for all n ∈ N, then xn 6= x⋆ or xn+1 6= x⋆ for all n ∈ N.

So, we assume that xn 6= x⋆ for infinitely many n. Thus, we may suppose that
xn 6= x⋆ for all n ∈ N.

Suppose that σ(x⋆, T x⋆) > 0. We have for all n ∈ N

σ(x⋆, T x⋆) ≤ σ(x⋆, xn+1) + σ(xn+1, T x
⋆).

Since xn+1 ∈ Txn, it follows

σ(x⋆, T x⋆) ≤ σ(x⋆, xn+1) +Hσ(Txn, T x
⋆).

Then, by (2.10), we obtain

σ(x⋆, T x⋆) ≤ σ(x⋆, xn+1) + rmax{σ(xn, x
⋆), σ(xn, T xn), σ(x

⋆, T x⋆),

1

4
[σ(xn, T x

⋆) + σ(x⋆, T xn)]}.

We know that

σ(xn, T xn) ≤ σ(xn, xn+1),

σ(xn, T x
⋆) ≤ σ(xn, x

⋆) + σ(x⋆, T x⋆),

σ(x⋆, T xn) ≤ σ(x⋆, xn+1).

Then, by taking n→ ∞, we get

0 < σ(x⋆, T x⋆) ≤ rσ(x⋆, T x⋆) < σ(x⋆, T x⋆)

which is a contradiction. Hence, σ(x⋆, T x⋆) = 0 and so x⋆ ∈ Tx⋆ = Tx⋆.

Then, x⋆ is a fixed point of T.
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2.1. Some consequences. We state the following simple corollaries as con-
sequences of Theorem 2.4.

Corollary 2.5. Let (X, σ) be a complete metric-like space and T : X →
CBσ(X) be a multivalued mapping. Suppose that there exists 0 ≤ r < 1 such
that T satisfies the condition

ψ(r)σ(x, Tx) ≤ σ(x, y)

implies(2.11)

Hσ(Tx, T y) ≤ rmax{σ(x, y), σ(x, Tx), σ(y, T y)}

for all x, y ∈ X, where ψ is defined by (1.3). Then, T has a fixed point in X.

Proof. It suffices to consider Theorem 2.4 and to use the fact that (2.11)
implies (2.1).

We also have the following simple corollaries.

Corollary 2.6. Let (X, σ) be a complete metric-like space and T : X →
CBσ(X) be a multivalued mapping. Suppose there exists 0 ≤ r < 1 such that
T satisfies the condition

ψ(r)σ(x, Tx) ≤ σ(x, y)

implies(2.12)

Hσ(Tx, T y) ≤
r
3
{σ(x, y) + σ(x, Tx) + σ(y, T y)}

for all x, y ∈ X, where ψ is defined by (1.3). Then, T has a fixed point in X.

Corollary 2.7. Let (X, σ) be a complete metric-like space and T : X →
X be a mapping. Suppose there exists 0 ≤ r < 1 such that T satisfies the
condition

(2.13) ψ(r)σ(x, Tx) ≤ σ(x, y) implies σ(Tx, T y) ≤ rM(x, y)

for all x, y ∈ X, where ψ is defined by (1.3). Then, T has a fixed point, that
is, there exists a point x⋆ ∈ X such that x⋆ = Tx⋆.

3. Examples and application

3.1. Examples. First, we give the following illustrative examples.

Example 3.1. Let X = {0, 1, 2} and σ : X ×X → R+ defined by

σ(0, 0) = σ(1, 1) = 0, σ(2, 2) =
23

48
,

σ(0, 1) = σ(1, 0) =
1

3
, σ(0, 2) = σ(2, 0) =

11

24
, σ(1, 2) = σ(2, 1) =

1

2
.

Then (X, σ) is a complete metric-like space. Note that σ is not a partial
metric on X because σ(2, 2) > σ(2, 0).
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Define the map T : X → CBσ(X) by

Tx =

{

{0}, x 6= 2

{0, 1}, x = 2.

Therefore, we get

max{σ(x, Tx) : x ∈ X} = max{0,
1

3
,
11

24
} =

11

24
,

min{σ(x, y) : x, y ∈ X and x 6= y} =
1

3
.

Choose r = 3
4
and ψ(r) = 1

4
. Then

ψ(r)max{σ(x, Tx) : x ∈ X} =
1

4
×

11

24
=

11

96

<
1

3
= min{σ(x, y) : x, y ∈ X and x 6= y}.

Thus

ψ(r)σ(x, Tx) : x ∈ X} ≤ σ(x, y)

for all x, y ∈ X with x 6= y. Consequently, we show

Hσ(Tx, T y) ≤ rM(x, y),

for all x, y ∈ X. For this, we distinguish the following cases:
case 1: x, y ∈ {0, 1}. We have

Hσ(Tx, T y) = σ(0, 0) = 0 ≤ rσ(x, y) ≤ rM(x, y).

case 2: x ∈ {0, 1}, y = 2. We have

Hσ(Tx, T y) = Hσ({0}, {0, 1}) = max{σ(0, {0, 1}),max{σ(0, 0), σ(0, 1)}}

= max{min{σ(0, 0), σ(0, 1)},
1

3
}

=
1

3
≤ rσ(x, y) ≤ rM(x, y).

case 3: x = y = 2. We have

Hσ(Tx, T y) = Hσ({0, 1}, {0, 1}) = max{σ(0, {0, 1}), σ(1, {0, 1})}

= min{σ(0, 1), σ(1, 1)} = 0

≤ rσ(2, 2) ≤ rM(2, 2).

Hence, for all x, y ∈ X

ψ(r)σ(x, Tx) ≤ σ(x, y) implies Hσ(Tx, T y)) ≤ rM(x, y).

Thus, all hypotheses of Theorem 2.4 are satisfied. Then, T has a fixed point
which is u = 0.
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Example 3.2. Let X = {0, 1, 2} and σ : X ×X → R+ be defined by

σ(0, 0) = 1, σ(1, 1) = 3, σ(2, 2) = 0,

σ(0, 1) = σ(1, 0) = 4, σ(0, 2) = σ(2, 0) = 3, σ(1, 2) = σ(2, 1) = 7.

Then, (X, σ) is a complete metric-like space. Note that σ is not a partial
metric on X since σ(2, 1) > σ(2, 0) + σ(0, 1) − σ(0, 0). Define the map T :
X → CBσ(X) by

Tx =

{

{2}, x 6= 1,

{0, 2}, x = 1.

Therefore, we get

max{σ(x, Tx) : x ∈ X} = 4, min{σ(x, y) : x, y ∈ X and x 6= y} = 3.

Choose r = 4
5
and ψ(r) = 1

5
. Then

ψ(r)max{σ(x, Tx) : x ∈ X} =
4

5
< 3 = min{σ(x, y) : x, y ∈ X and x 6= y}.

Thus

ψ(r)σ(x, Tx) : x ∈ X} ≤ σ(x, y)

for all x, y ∈ X with x 6= y. Consequently, we show that

Hσ(Tx, T y) ≤ rM(x, y),

for all x, y ∈ X. For this, we consider the following cases:
case(1): x, y ∈ {0, 2}. We have

Hσ(Tx, T y) = σ(2, 2) = 0 ≤ rM(x, y).

case(2): x ∈ {0, 2}, y = 1. We have

Hσ(Tx, T y) = Hσ({2}, {0, 2}) = max{σ(2, {0, 2}),max{σ(2, 2), σ(0, 2)}}

= max{0, 3} = 3 ≤ rσ(x, y) ≤ rM(x, y).

case(3): x = y = 1. We have

Hσ(Tx, T y) = Hσ({0, 2}, {0, 2}) = max{σ(0, {0, 2}), σ(2, {0, 2})}

= min{σ(0, 2), σ(0, 0)} = 1

≤ rσ(1, 1) ≤ rM(1, 1).

Hence, for all x, y ∈ X

ψ(r)σ(x, Tx) ≤ σ(x, y) implies Hσ(Tx, T y)) ≤ rM(x, y).

Thus, all hypotheses of Theorem 2.4 are satisfied. Then, T has a fixed point
which is u = 2.
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3.2. Application. Generally, a dynamical process consists of a state and
a decision space. The state space is the set of the initial state, actions and
transition model of the process; the decision space is the set of possible actions
that are allowed for the process.

In this section, we assume that U and V are Banach spaces and W ⊂ U

is a state space and D ⊂ V is a decision space. It is well known that the
dynamic programming provides useful tools for mathematical optimization
and computer programming as well. In particular, the problem of dynamics
related to multistage process reduces the problem of solving the functional
equation

q(x) = sup
y∈D

{f(x, y) +G(x, y, q(τ(x, y)))}, x ∈W,

which further can be reformulated as

(3.1) q(x) = sup
y∈D

{f(x, y) +G(x, y, q(τ(x, y)))}, x ∈W,

where τ :W ×D →W, f :W ×D → R, G : ×D×R → R. Here, we study the
existence and uniqueness of the bounded solution of the functional equation
(3.1).

Let B(W ) denote the set of all bounded real-valued functions on W and,
for an arbitrary h ∈ B(W ), define ‖h‖ = supx∈W |h(x)|. Clearly, (B(W ), ‖.‖)
is a Banach space. Take the metric-like σ defined by

σ(h, k) = sup
x∈W

|h(x)| + sup
x∈W

|k(x)|

for all h, k ∈ B(W ). Clearly, (B(W ), σ) is a complete metric-like space. We
also define T : B(W ) → B(W ) by

(3.2) T (h)(x) = sup
y∈D

{f(x, y) +G(x, y, h(τ(x, y)))}, x ∈W,

for all h ∈ B(W ) and x ∈ W . Obviously, if the functions f and G are
bounded, then T is well-defined. Finally, let

M(x, y) := max{σ(x, y), σ(x, Tx), σ(y, T y),
1

4
{σ(x, T y) + σ(y, Tx)}}.

We will prove the following theorem.

Theorem 3.3. Assume that there exists 0 ≤ r < 1 such that

(3.3) sup
y∈D

‖f(x, y) +G(x, y, h(τ(x, y)))}‖ ≤ r sup
x∈W

|h(x)|,

where x ∈ W, y ∈ D,T : B(W ) → B(W ) is given by (3.2) and the functions
G : W ×D × R → R and f : W ×D → R are bounded. Then the functional
equation (3.1) has a unique bounded solution.
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Proof. From (3.3), for all x ∈ W , y ∈ D, h ∈ B(W ) and k ∈ B(W ), we
have

σ(T (h), T (k)) = sup
y∈D

|f(x, y) +G(x, y, h(τ(x, y)))|

+ sup
y∈D

|f(x, y) +G(x, y, k(τ(x, y)))|

≤ r sup
x∈W

|h(x)| + r sup
x∈W

|k(x)|

≤ rσ(h, k) ≤ rM(h, k).

The mapping T has a unique fixed point, that is, the functional equation (3.1)
has a unique bounded solution.
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