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Abstract. Inspired by the work of Wardowski in [33] and Samet et
al. in [26], in this article, we introduce some new contractive conditions
for sequence of multi functions. We have constructed non-trivial examples
to validate our results. We have applied our results to find a solution of a
system of integral equations.

1. Introduction

The Banach contraction principle is a famous theorem in the field of fixed
point theory and it is not wrong to say that it brought about a new era in
metric fixed point theory. Since its inception, major and minor developments
have been made regarding its generalization. In the recent past Wardowski
([33]) categorized some mappings into a new family and called it F or F family.
Using the mappings from F family he introduced a new contraction condition
namely the F -contractions, which effectively generalized the famous Banach
contraction condition. Several researchers studying metric fixed point theory
have comprehensively generalized the Banach contraction condition, see for
example [2,30,25,18,13,29,22,24,28,20,1,26,6,21,7,19,14,3–5,15–17,27,12,31,
11,9,10,8,23,32,33]. Semat et al. in [26] also succeeded in generalizing Banach
contraction condition by introducing α-ψ-contraction. Many authors appre-
ciated these two conditions which can be seen in [6, 21, 7, 19, 14, 3–5, 15, 16].
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Keeping in view both of these ideas, in this paper we introduce new contrac-
tion conditions for a sequence of multifunction and prove corresponding fixed
point theorem. We also give a common fixed point theorem for sequence of
bounded multifunctions by using the δ-distance. To conclude our findings we
establish an existence theorem for a system of integral equations.

We gather some common results, notations and definitions, which are
required for this paper. Let (X, d) be a metric space. We denote the set
of all nonempty subsets of X by N(X), the class of all nonempty closed
subsets of X by C(X) and the class of all nonempty bounded subsets of X by
B(X). For b ∈ N(X), d(a,B) = inf{d(a, b) : b ∈ N(X)}. For A,B ∈ B(X),
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}. Note that δ satisfies all conditions of
a metric, except A = B ⇒ δ(A,B) = 0. For A,B ∈ C(X), the generalized
Hausdorff metric on C(X) is given as,

H(A,B) =

{

max{supx∈A d(x,B), supy∈B d(y,A)} if the maximum exists

∞ otherwise

Wardowski [33] introduced the following definition.

Definition 1.1. Let F be the class of all functions F : (0,∞) → R

satisfying:

(F1) F is increasing, that is, for each a1, a2 ∈ (0,∞) with a1 < a2, we have
F (a1) < F (a2).

(F2) For each sequence {dn} of positive real numbers we have limn→∞ dn =
0 if and only if limn→∞ F (dn) = −∞.

(F3) There exists k ∈ (0, 1) such that limd→0+ dkF (d) = 0.

Following are some examples of such functions.

(i) Fa = ln a for each a ∈ (0,∞).
(ii) Fb = b+ ln b for each b ∈ (0,∞).
(iii) Fc = − 1√

c
for each c ∈ (0,∞).

Wardowski ([33]) introduced F -contraction and proved corresponding fixed
point theorem as,

Definition 1.2 ([33]). Let (X, d) be a metric space. A mapping T : X →
X is F -contraction if there exist F ∈ F and τ > 0 such that for each x, y ∈ X
with d(Tx, T y) > 0, we have

τ + F (d(Tx, T y)) ≤ F (d(x, y)).

Note that if T is Fa-contraction, then it is also Banach contraction. This
it is not in the case for Fb-contraction.

Theorem 1.3 ([33]). Let (X, d) be a complete metric space and let T :
X → X be F -contraction. Then T has a unique fixed point.

Sgroi and Vetro [29] introduced the following theorem.
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Theorem 1.4 ([29]). Let (X, d) be a complete metric space and let T :
X → CB(X). Assume that there exist F ∈ F and τ > 0 such that

(1.1)
2τ + F (H(Tx, T y)) ≤ F (a1d(x, y) + a2d(x, Tx) + a3d(y, T y)

+ a4d(x, T y) + Ld(y, Tx)),

for each x, y ∈ X with Tx 6= Ty, where a1, a2, a3, a4, L ≥ 0 satisfying a1 +
a2 + a3 + 2a4 = 1 and a3 6= 1. Then T has a fixed point.

2. Main results

We begin this section by introducing the following definitions.

Definition 2.1. Let α : X × X → [0,∞). A sequence of mappings
{Ti : X → N(X)}∞i=1 is α-admissible sequence if for each x ∈ X and y ∈ Tix
for some i ∈ N such that α(x, y) ≥ 1, then we have α(y, z) ≥ 1 for each
z ∈ Ti+1y. A sequence of mappings {Ti : X → N(X)}∞i=1 is α∗-admissible
sequence if for each x, y ∈ X with α(x, y) ≥ 1, we have α∗(Tix, Tjy) ≥ 1 for
each i, j ∈ N, where α∗(Tix, Tjy) = inf{α(u, v) : u ∈ Tix and v ∈ Tjy}.

The sequence of mappings is said to be strictly α-admissible and strictly
α∗-admissible if we have strict inequality in the above definition.

Remark 2.2. (i) Note that if a sequence of mappings {Ti : X →
N(X)}∞i=1 is strictly α∗-admissible sequence, then it is strictly α-
admissible sequence.

(ii) When {Ti}
∞
i=1 is a constant sequence Definition 2.1 coincide with

definition of α-admissible and α∗-admissible given in [21, Page 4] and
[7, Page 1] respectively. Furthermore, if T is a singlevalued mapping
then these definition 2.1 coincide with [26, Definition 2.2].

Definition 2.3. Let (X, d) be a metric space and α : X×X → [0,∞) be a
function. A sequence of mappings {Ti : X → C(X)}∞i=1 is an Fα-contraction
of Hardy-Rogers-type, if there exist F ∈ F and τ > 0 such that for each
i, j ∈ N, we have

(2.1) τ + F (α(x, y)H(Tix, Tjy)) ≤ F (N(x, y)),

for each x, y ∈ X, whenever min{α(x, y)H(Tix, Tjy), N(x, y)} > 0, where

N(x, y) = a1d(x, y) + a2d(x, Tix) + a3d(y, Tjy) + a4d(x, Tjy) + Ld(y, Tix),

with a1, a2, a3, a4, L ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Theorem 2.4. Let (X, d) be a complete metric space and let {Ti : X →
C(X)}∞i=1 be an Fα-contraction of Hardy-Rogers-type satisfying the following
conditions:

(i) {Ti}
∞
i=1 is strictly α-admissible sequence;

(ii) there exist x0 ∈ X and x1 ∈ Tix0 for some i ∈ N with α(x0, x1) > 1;
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(iii) for any sequence {xn} ⊆ X such that xn → x as n → ∞ and
α(xn, xn+1) > 1 for each n ∈ N, we have α(xn, x) > 1 for each n ∈ N.

Then the mappings in the sequence {Ti}
∞
i=1 have a common fixed point.

Proof. By hypothesis (ii), we assume without loss of generality that
there exist x0 ∈ X and x1 ∈ T1x0 with α(x0, x1) > 1. If x1 ∈ Tix1 ∀i ∈ N,
then x1 is a common fixed point. Let x1 /∈ T2x1, as α(x0, x1) > 1 there exists
x2 ∈ T2x1 such that

(2.2) d(x1, x2) ≤ α(x0, x1)H(T1x0, T2x1).

Since F is increasing, we have

(2.3) F (d(x1, x2)) ≤ F (α(x0, x1)H(T1x0, T2x1)).

From (2.1) we have

(2.4)

τ + F (d(x1, x2)) ≤ τ + F (α(x0, x1)H(T1x0, T2x1))

≤ F
(

a1d(x0, x1) + a2d(x0, T1x0) + a3d(x1, T2x1)

+ a4d(x0, T2x1) + Ld(x1, T1x0)
)

≤ F
(

a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2)

+ a4d(x0, x2) + L.0
)

≤ F
(

a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2)

+ a4(d(x0, x1) + d(x1, x2)
)

= F
(

(a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(x1, x2)
)

.

Since F is increasing, we get from above that

d(x1, x2) < (a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(x1, x2).

That is,

(1− a3 − a4)d(x1, x2) < (a1 + a2 + a4)d(x0, x1).

As a1 + a2 + a3 + 2a4 = 1, thus we have

d(x1, x2) < d(x0, x1).

From (2.4), we have

τ + F (d(x1, x2)) ≤ F (d(x0, x1)).

If x2 ∈ Tix2 ∀i ∈ N then x2 is a common fixed point. Let x2 /∈ T3x2. Since
{Ti}

∞
i=1 is strictly α-admissible, we have α(x1, x2) > 1. There exists x3 ∈ T3x2

such that

(2.5) d(x2, x3) ≤ α(x1, x2)H(T2x1, T3x2).

Since F is increasing, we have

(2.6) F (d(x2, x3)) ≤ F (α(x1, x2)H(T2x1, T3x2)).
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From (2.1) we have

(2.7)

τ + F (d(x2, x3)) ≤ τ + F (α(x1, x2)H(T2x1, T3x2))

≤ F
(

a1d(x1, x2) + a2d(x1, T2x1) + a3d(x2, T3x2)

+ a4d(x1, T3x2) + Ld(x2, T2x1)
)

≤ F
(

a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3)

+ a4d(x1, x3) + L.0
)

≤ F
(

a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3)

+ a4(d(x1, x2) + d(x2, x3)
)

= F
(

(a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3)
)

.

Since F is increasing, we get from above that

d(x2, x3) < (a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3).

That is,

(1− a3 − a4)d(x2, x3) < (a1 + a2 + a4)d(x1, x2).

As a1 + a2 + a3 + 2a4 = 1, thus we have

d(x2, x3) < d(x1, x2).

Now from (2.7) we have

τ + F (d(x2, x3)) ≤ F (d(x1, x2)).

So we have

F (d(x2, x3)) ≤ F (d(x1, x2))− τ ≤ F (d(x0, x1))− 2τ.

Continuing in the same way we get a sequence {xn} ⊂ X such that

xn ∈ Tnxn−1, xn−1 6= xn and α(xn−1, xn) > 1 for each n ∈ N.

Furthermore,

(2.8) F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ for each n ∈ N.

Letting n → ∞ in (2.8) we get limn→∞ F (d(xn, xn+1)) = −∞. Thus by
property (F2), we have limn→∞ d(xn, xn+1) = 0. Let dn = d(xn, xn+1) for
each n ∈ N. From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

dknF (dn) = 0.

From (2.8) we have

(2.9) dknF (dn)− dknF (d0) ≤ −dknnτ ≤ 0 for each n ∈ N.

Letting n→ ∞ in (2.9) we get,

(2.10) lim
n→∞

ndkn = 0.



168 T. KAMRAN, FAHIMUDDIN AND M. U. ALI

This implies that there exists n1 ∈ N such that ndkn ≤ 1 for each n ≥ n1.
Thus we have

(2.11) dn ≤
1

n1/k
, for each n ≥ n1.

To prove that {xn} is a Cauchy sequence. Consider m,n ∈ N with m > n >
n1. By using the triangular inequality and (2.11), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=
m−1
∑

i=n

di ≤
∞
∑

i=n

di ≤
∞
∑

i=n

1

i1/k
.

Since
∑∞

i=1
1

i1/k
is convergent series. Thus, limn→∞ d(xn, xm) = 0. Which

implies that {xn} is a Cauchy sequence. As (X, d) is complete, there exists
x∗ ∈ X such that xn → x∗ as n→ ∞. By condition (iii) we have α(xn, x

∗) >
1 for each n ∈ N. We claim that d(x∗, Tix∗) = 0 ∀i ∈ N. On contrary
suppose that d(x∗, Ti0x

∗) > 0 for some i0 ∈ N, there exists n0 ∈ N such that
d(xn, Ti0x

∗) > 0 for each n ≥ n0. For each n ≥ n0 and for above i0 we have

(2.12)

d(x∗, Ti0x
∗) ≤ d(x∗, xn+1) + d(xn+1, Ti0x

∗)

< d(x∗, xn+1) + α(xn, x
∗)H(Tn+1xn, Ti0x

∗)

< d(x∗, xn+1) + a1d(xn, x
∗) + a2d(xn, xn+1)

+ a3d(x
∗, Ti0x

∗) + a4d(xn, Tix
∗) + Ld(x∗, xn+1).

Letting n→ ∞ in (2.12) we have

d(x∗, Ti0x
∗) ≤ (a3 + a4)d(x

∗, Ti0x
∗) < d(x∗, Ti0x

∗).

Which is a contradiction. Thus d(x∗, Tix∗) = 0 ∀i ∈ N.

Example 2.5. Let X = N be endowed with the usual metric d(x, y) =
|x− y| for each x, y ∈ X . Define {Ti : X → C(X)}∞i=1 by

Tix =

{

{0, 1} if x = 0, 1,

{2x− 2, 2x} if x > 1

and α : X ×X → [0,∞) by

α(x, y) =











2 if x, y ∈ {0, 1},
1
4 if x, y > 1,

0 otherwise.

Take F (x) = x+ln x for each x ∈ (0,∞). Under this F condition (2.1) reduces
to

(2.13)
α(x, y)H(Tix, Tjy)

N(x, y)
eα(x,y)H(Tix,Tjy)−N(x,y) ≤ e−τ
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for each x, y ∈ X with min{α(x, y)H(Tix, Tjy), N(x, y)} > 0. Assume that
a1 = 1, a2 = a3 = a4 = L = 0 and τ = 1

2 . Clearly,

min{α(x, y)H(Tix, Tjy), d(x, y)} > 0

for each x, y > 1 with x 6= y. From (2.13) for each x, y > 1 with x 6= y we
have

1

4
e−

1
2
|x−y| < e−

1
2 .

Thus {Ti}
∞
i=1 is an α-F -contraction of Hardy-Rogers-type with F (x) = x +

lnx. For x0 = 1 we have x1 = 0 ∈ T1x0 such that α(x0, x1) > 1. Moreover,
it is easy to see that {Ti}

∞
i=1 is strictly α-admissible sequence and for any

sequence {xn} ⊆ X such that xn → x as n → ∞ and α(xn, xn+1) > 1 for
each n ∈ N, we have α(xn, x) > 1 for each n ∈ N. Therefore, by Theorem 2.4
{Ti}

∞
i=1 has a common fixed point in X .

Definition 2.6. Let (X, d) be a metric space and α : X × X → [0,∞)
be a function. A sequence of mappings {Ti : X → C(X)}∞i=1 is an Fα∗-
contraction of Hardy-Rogers-type, if there exist F ∈ F and τ > 0 such that for
each i, j ∈ N, we have

(2.14) τ + F (α∗(Tix, Tjy)H(Tix, Tjy)) ≤ F (N(x, y)),

for each x, y ∈ X, whenever

min{α∗(Tix, Tjy)H(Tix, Tjy), N(x, y)} > 0,

where

N(x, y) = a1d(x, y) + a2d(x, Tix) + a3d(y, Tjy) + a4d(x, Tjy) + Ld(y, Tix),

with a1, a2, a3, a4, L ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Theorem 2.7. Let (X, d) be a complete metric space and let {Ti : X →
C(X)}∞i=1 be an α∗-F -contraction of Hardy-Rogers-type satisfying the follow-
ing conditions:

(i) {Ti}
∞
i=1 is strictly α∗-admissible sequence;

(ii) there exist x0 ∈ X and x1 ∈ Tix0 for some i ∈ N with α(x0, x1) > 1;
(iii) for any sequence {xn} ⊆ X such that xn → x as n → ∞ and
α(xn, xn+1) > 1 for each n ∈ N, we have α(xn, x) > 1 for each n ∈ N.

Then the mappings in a sequence {Ti}
n
i=1 have a common fixed point.

Proof. The proof of this theorem runs along the same lines as the proof
of Theorem 2.9.

Definition 2.8. Let (X, d) be a metric space and α : X×X → [0,∞) be a
function. A sequence of mappings {Ti : X → B(X)}∞i=1 is an Fα-contraction
of Hardy-Rogers-type, if there exist F ∈ F and τ > 0 such that for each
i, j ∈ N, we have

(2.15) τ + F (α(x, y)δ(Tix, Tjy)) ≤ F (N(x, y)),
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for each x, y ∈ X, whenever min{α(x, y)δ(Tix, Tjy), N(x, y)} > 0, where

N(x, y) = a1d(x, y) + a2d(x, Tix) + a3d(y, Tjy)

+ a4d(x, Tjy) + Ld(y, Tix),

with a1, a2, a3, a4, L ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Note that H is not a metric on the set of bounded subsets of X , as the
following example shows.

Let X = R, endowed with usual metric then H(A,B) = 0 but A 6= B for
A = [0, 1) and B = [0, 1]. This implies that H is not a metric on Bounded
subsets of R. It would be interesting to see whether the conclusions of The-
orem 2.4 hold for bounded subsets of X . We will show that the conclusions
of Theorem 2.4 still hold for bounded subsets of X provided that the Hous-
dorff distance H(A,B) in definition 2.3 is replaced with δ(A,B) and the strict
inequality in (ii) of Theorem 2.4 is replaced by the soft inequality. More pre-
cisely we have the following result.

Theorem 2.9. Let (X, d) be a complete metric space and let {Ti : X →
B(X)}∞i=1 be an Fα-contraction of Hardy-Rogers-type satisfying the following
conditions:

(i) {Ti}
∞
i=1 is α-admissible sequence;

(ii) there exist x0 ∈ X and x1 ∈ Tix0 for some i ∈ N with α(x0, x1) ≥ 1;
(iii) for any sequence {xn} ⊆ X such that xn → x as n → ∞ and
α(xn, xn+1) ≥ 1 for each n ∈ N, we have α(xn, x) ≥ 1 for each n ∈ N.

Then the mappings in the sequence {Ti}
∞
i=1 have a common fixed point.

Proof. By hypothesis (ii), we assume without loss of generality that
there exist x0 ∈ X and x1 ∈ T1x0 with α(x0, x1) ≥ 1. If x1 ∈ Tix1 ∀i ∈ N,
then x1 is a common fixed point. Let x1 /∈ T2x1. As α(x0, x1) ≥ 1, there
exists x2 ∈ T2x1 such that

(2.16) d(x1, x2) ≤ α(x0, x1)δ(T1x0, T2x1).

Since F is increasing, we have

(2.17) F (d(x1, x2)) ≤ F (α(x0, x1)δ(T1x0, T2x1)).
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From (2.15) we have

(2.18)

τ + F (d(x1, x2)) ≤ τ + F (α(x0, x1)δ(T1x0, T2x1))

≤ F
(

a1d(x0, x1) + a2d(x0, T1x0) + a3d(x1, T2x1)

+ a4d(x0, T2x1) + Ld(x1, T1x0)
)

≤ F
(

a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2)

+ a4d(x0, x2) + L.0
)

≤ F
(

a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2)

+ a4(d(x0, x1) + d(x1, x2)
)

= F
(

(a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(x1, x2)
)

.

Since F is increasing, we get from above that

d(x1, x2) < (a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(x1, x2).

That is,

(1− a3 − a4)d(x1, x2) < (a1 + a2 + a4)d(x0, x1).

As a1 + a2 + a3 + 2a4 = 1, thus we have

d(x1, x2) < d(x0, x1).

Now from (2.18), we have

τ + F (d(x1, x2)) ≤ F (d(x0, x1)).

If x2 ∈ Tix2 ∀i ∈ N then x2 is a common fixed point. Let x2 /∈ T3x2, since
{Ti}

∞
i=1 is α-admissible, we have α(x1, x2) ≥ 1. There exists x3 ∈ T3x2 such

that

(2.19) d(x2, x3) ≤ α(x1, x2)δ(T2x1, T3x2).

Since F is increasing, we have

(2.20) F (d(x2, x3)) ≤ F (α(x1, x2)δ(T2x1, T3x2)).

From (2.15) we have

(2.21)

τ + F (d(x2, x3)) ≤ τ + F (α(x1, x2)δ(T2x1, T3x2))

≤ F
(

a1d(x1, x2) + a2d(x1, T2x1) + a3d(x2, T3x2)

+ a4d(x1, T3x2) + Ld(x2, T2x1)
)

≤ F
(

a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3)

+ a4d(x1, x3) + L.0
)

≤ F
(

a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3)

+ a4(d(x1, x2) + d(x2, x3)
)

= F
(

(a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3)
)

.
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Since F is increasing, we get from above that

d(x2, x3) < (a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3).

That is,

(1− a3 − a4)d(x2, x3) < (a1 + a2 + a4)d(x1, x2).

As a1 + a2 + a3 + 2a4 = 1, thus we have

d(x2, x3) < d(x1, x2).

Now from (2.21) we have

τ + F (d(x2, x3)) ≤ F (d(x1, x2)).

So we have

F (d(x2, x3)) ≤ F (d(x1, x2))− τ ≤ F (d(x0, x1))− 2τ.

Continuing in the same way we get a sequence {xn} ⊂ X such that

xn ∈ Tnxn−1, xn−1 6= xn and α(xn−1, xn) ≥ 1 for each n ∈ N.

Furthermore,

(2.22) F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ for each n ∈ N.

Letting n → ∞ in (2.22) we get limn→∞ F (d(xn, xn+1)) = −∞. Thus, by
property (F2), we have limn→∞ d(xn, xn+1) = 0. Let dn = d(xn, xn+1) for
each n ∈ N. From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

dknF (dn) = 0.

From (2.22) we have

(2.23) dknF (dn)− dknF (d0) ≤ −dknnτ ≤ 0 for each n ∈ N.

Letting n→ ∞ in (2.23) we get

(2.24) lim
n→∞

ndkn = 0.

This implies that there exists n1 ∈ N such that ndkn ≤ 1 for each n ≥ n1.
Thus we have

(2.25) dn ≤
1

n1/k
, for each n ≥ n1.

To prove that {xn} is a Cauchy sequence. Consider m,n ∈ N with m > n >
n1. By using the triangular inequality and (2.25) we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1
∑

i=n

di ≤

∞
∑

i=n

di ≤

∞
∑

i=n

1

i1/k
.

Since
∑∞

i=1
1

i1/k
is convergent series. Thus limn→∞ d(xn, xm) = 0. Which

implies that {xn} is a Cauchy sequence. As (X, d) is complete so there exists
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x∗ ∈ X such that xn → x∗ as n→ ∞. By condition (iii) we have α(xn, x
∗) ≥

1 for each n ∈ N. We claim that d(x∗, Tix∗) = 0 ∀i ∈ N. On contrary
suppose that d(x∗, Ti0x

∗) > 0 for some i0 ∈ N, there exists n0 ∈ N such that
d(xn, Ti0x

∗) > 0 for each n ≥ n0. For each n ≥ n0 and for above i0, we have

(2.26)

d(x∗, Ti0x
∗) ≤ d(x∗, xn+1) + d(xn+1, Ti0x

∗)

< d(x∗, xn+1) + α(xn, x
∗)δ(Tn+1xn, Ti0x

∗)

< d(x∗, xn+1) + a1d(xn, x
∗) + a2d(xn, xn+1)

+ a3d(x
∗, Ti0x

∗) + a4d(xn, Tix
∗) + Ld(x∗, xn+1).

Letting n→ ∞ in (2.26) we have

d(x∗, Ti0x
∗) ≤ (a3 + a4)d(x

∗, Ti0x
∗) < d(x∗, Ti0x

∗).

Which is a contradiction. Thus d(x∗, Tix∗) = 0 for all i ∈ N.

Example 2.10. Let X = {0, 1, 2, 3, ...} and

d(x, y) =

{

0 if x = y,

x+ y if x 6= y.

Define {Ti : X → B(X)}∞i=1 by

Tix =

{

{0} if x = 0,

{0, 1, 2, 3, ..., x} if x 6= 0

and α : X ×X → [0,∞) by

α(x, y) =











1 if x = y = 0,
1
2 if x, y > 1,

0 otherwise.

Take F (x) = x + ln(x) for each x ∈ (0,∞). Under this F condition (2.15)
reduces to

(2.27)
α(x, y)δ(Tix, Tjy)

N(x, y)
eα(x,y)δ(Tix,Tjy)−N(x,y) ≤ e−τ

for each x, y ∈ X with min{α(x, y)δ(Tix, Tjy), N(x, y)} > 0. Assume that
a1 = 1, a2 = a3 = a4 = L = 0 and τ = 1

2 . Clearly

min{α(x, y)δ(Tix, Tjy), d(x, y)} > 0

for each x, y > 1 with x 6= y. From (2.15) for each x, y > 1 with x 6= y, we
have

1

2
e−

1
2
(x+y) < e−

1
2 .

Thus {Ti}
∞
i=1 is an Fα-contraction of Hardy-Roger-type with F (x) = x+lnx.

For x0 = 1, we have x1 = 0 ∈ T1x0 such that α(x0, x1) ≥ 1. Moreover,
it is easy to see that {Ti}

∞
i=1 is α-admissible sequence and for any sequence
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{xn} ⊆ X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for each n ∈ N,
we have α(xn, x) ≥ 1 for each n ∈ N. Therefore by Theorem 2.9 {Ti}

∞
i=1 has

a common fixed point in X .

Definition 2.11. Let (X, d) be a metric space and α : X ×X → [0,∞)
be a function. A sequence of mappings {Ti : X → B(X)}∞i=1 is an Fα∗-
contraction of Hardy-Rogers-type, if there exist F ∈ F and τ > 0 such that for
each i, j ∈ N, we have

(2.28) τ + F (α∗(Tix, Tjy)δ(Tix, Tjy)) ≤ F (N(x, y)),

for each x, y ∈ X, whenever min{α∗(Tix, Tjy)δ(Tix, Tjy), N(x, y)} > 0, where

N(x, y) = a1d(x, y) + a2d(x, Tix) + a3d(y, Tjy) + a4d(x, Tjy) + Ld(y, Tix),

with a1, a2, a3, a4, L ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Theorem 2.12. Let (X, d) be a complete metric space and let {Ti : X →
B(X)}∞i=1 be an Fα∗-contraction of Hardy-Rogers-type satisfying the following
conditions:

(i) {Ti}
∞
i=1 is α∗-admissible sequence;

(ii) there exist x0 ∈ X and x1 ∈ Tix0 for some i ∈ N with α(x0, x1) ≥ 1;
(iii) for any sequence {xn} ⊆ X such that xn → x as n → ∞ and
α(xn, xn+1) ≥ 1 for each n ∈ N, we have α(xn, x) ≥ 1 for each n ∈ N.

Then the mappings in a sequence {Ti}
n
i=1 have a common fixed point.

Proof. The proof of this theorem runs along the same lines as the proof
of Theorem 2.9.

3. Application

In this section, as a consequence of our result we establish an existence
theorem for a system of integral equations. Let X = (C[a, b],R) be the
space of all real valued continuous functions defined on [a, b]. Note that X
is complete ([25]) with respect to the metric dτ (x, y) = supt∈[a,b]{|x(t) −

y(t)|e−|τt|}.
Consider the system of integral equations of the form

(3.1) x(t) = f(t) +

∫ b

a

Ki(t, s, x(s))ds,

for t, s ∈ [a, b] and i ∈ {1, 2, 3, · · · , N} with N ∈ N. Where Ki : [a, b]× [a, b]×
R → R and f : [a, b] → R are continuous functions.

Theorem 3.1. Let X = (C[a, b],R) and let {Ti : X → X}Ni=1 be the
operators defined as

(3.2) Tix(t) = f(t) +

∫ b

a

Ki(t, s, x(s))ds,
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for t, s ∈ [a, b]. Where Ki : [a, b] × [a, b] × R → R and f : [a, b] → R are
continuous functions. Assume that there exist γ : X → (0,∞), α : X ×X →
(0,∞) and the following conditions hold:

(i) for each i, j ∈ {1, 2, 3, · · · , N} there exists τ > 0 such that

|Ki(t, s, x) −Kj(t, s, y)| ≤
e−τ

γ(x+ y)
|x− y|

for each t, s ∈ [a, b] and x, y ∈ X. Moreover,

∣

∣

∣

∫ b

a

e|τs|

γ(x+ y)
ds
∣

∣

∣
≤

e|τt|

α(x, y)

for each t ∈ [a, b];
(ii) for x, y ∈ X, α(x, y) ≥ 1 implies α(Tix, Tjy) ≥ 1 for each i, j ∈
{1, 2, 3, · · · , N};

(iii) there exist x0 ∈ X such that α(x0, Tix0) ≥ 1 for some i ∈
{1, 2, 3, · · · , N};

(iv) for any sequence {xn} ⊆ X such that xn → x as n → ∞ and
α(xn, xn+1) ≥ 1 for each n ∈ N, we have α(xn, x) ≥ 1 for each n ∈ N.

Then the system of integral equations (3.1) has a solution in X.

Proof. First we show that {Ti} is an Fα-contraction of Hardy-Rogers-
type. For each i, j ∈ {1, 2, 3, · · · , N}, we have

|Tix(t)− Tjy(t)| ≤

∫ b

a

|Ki(t, s, x(s)) −Kj(t, s, y(s))|ds

≤

∫ b

a

e−τ

γ(x(s) + y(s))
|x(s)− y(s)|ds

=

∫ b

a

e−τe|τs|

γ(x(s) + y(s))
|x(s)− y(s)|e−|τs|ds

≤ e−τdτ (x, y)

∫ b

a

e|τs|

γ(x(s) + y(s))
ds ≤

e|τt|

α(x, y)
e−τdτ (x, y).

Thus we have

α(x, y)|Tix(t) − Tjy(t)|e
−|τt| ≤ e−τdτ (x, y).

Equivalently,

α(x, y)dτ (Tix, Tjy) ≤ e−τdτ (x, y).

Clearly natural logarithm belongs to F. Applying it on above inequality we
get

ln(α(x, y)dτ (Tix, Tjy)) ≤ ln(e−τdτ (x, y)),

after some simplification we get

τ + ln(α(x, y)dτ (Tix, Tjy)) ≤ ln(dτ (x, y)).
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Thus {Ti}
N
i=1 is an Fα-contraction of Hardy-Rogers-type with a1 = 1, a2 =

a3 = a4 = L = 0 and F (x) = lnx. Therefore by 2.9 it follows that the system
of operators (3.2) have a common fixed point, that is, the system of integral
equations (3.1) has a solution in X .
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