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ABSTRACT. Inspired by the work of Wardowski in [33] and Samet et
al. in [26], in this article, we introduce some new contractive conditions
for sequence of multi functions. We have constructed non-trivial examples
to validate our results. We have applied our results to find a solution of a
system of integral equations.

1. INTRODUCTION

The Banach contraction principle is a famous theorem in the field of fixed
point theory and it is not wrong to say that it brought about a new era in
metric fixed point theory. Since its inception, major and minor developments
have been made regarding its generalization. In the recent past Wardowski
([33]) categorized some mappings into a new family and called it F' or § family.
Using the mappings from § family he introduced a new contraction condition
namely the F-contractions, which effectively generalized the famous Banach
contraction condition. Several researchers studying metric fixed point theory
have comprehensively generalized the Banach contraction condition, see for
example [2,30,25,18,13,29,22,24,28,20,1,26,6,21,7,19,14,3-5,15-17,27,12,31,
11,9,10,8,23,32,33]. Semat et al. in [26] also succeeded in generalizing Banach
contraction condition by introducing a-w-contraction. Many authors appre-
ciated these two conditions which can be seen in [6,21,7,19,14,3-5,15,16].
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Keeping in view both of these ideas, in this paper we introduce new contrac-
tion conditions for a sequence of multifunction and prove corresponding fixed
point theorem. We also give a common fixed point theorem for sequence of
bounded multifunctions by using the d-distance. To conclude our findings we
establish an existence theorem for a system of integral equations.

We gather some common results, notations and definitions, which are
required for this paper. Let (X,d) be a metric space. We denote the set
of all nonempty subsets of X by N(X), the class of all nonempty closed
subsets of X by C(X) and the class of all nonempty bounded subsets of X by
B(X). For b € N(X), d(a, B) = inf{d(a,b) : b € N(X)}. For A,B € B(X),
§(A, B) = sup{d(a,b) : a € A,b € B}. Note that § satisfies all conditions of
a metric, except A = B = 0(A,B) = 0. For A, B € C(X), the generalized
Hausdorff metric on C(X) is given as,

max{sup,¢ 4 d(z, B),sup,¢p d(y, A)} if the maximum exists

oo otherwise

H(A,B) = {

Wardowski [33] introduced the following definition.

DEFINITION 1.1. Let § be the class of all functions F : (0,00) — R
satisfying:
(F1) F isincreasing, that is, for each ay,as € (0,00) with a1 < a2, we have
F(al) < F((ZQ).
(Fy) For each sequence {d,} of positive real numbers we have lim,,_, oo 0, =
0 if and only if limy,_,oc F(0,) = —00.
(F3) There exists k € (0,1) such that limy_,o+ 0¥F(2) = 0.

Following are some examples of such functions.
(i) F, =Ina for each a € (0, ).
(i) Fy =b+1nb for each b € (0, 0).

(ti1) F. = —% for each ¢ € (0, x0).

Wardowski ([33]) introduced F-contraction and proved corresponding fixed
point theorem as,

DEFINITION 1.2 ([33]). Let (X,d) be a metric space. A mapping T : X —
X is F-contraction if there exist F' € § and T > 0 such that for each x,y € X
with d(Tx, Ty) > 0, we have

T+ F(d(Tz, Ty)) < F(d(z,y)).

Note that if T' is Fj-contraction, then it is also Banach contraction. This
it is not in the case for Fj-contraction.

THEOREM 1.3 ([33]). Let (X,d) be a complete metric space and let T :
X — X be F-contraction. Then T has a unique fized point.

Sgroi and Vetro [29] introduced the following theorem.
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THEOREM 1.4 ([29]). Let (X,d) be a complete metric space and let T :
X — CB(X). Assume that there exist F € § and T > 0 such that

W 27+ F(H(Tx, Ty)) < Flard(z,y) + azd(z, Tx) + azd(y, Ty)
' -+ a4d(:c, Ty) + Ld(ya TI')),

for each x,y € X with Tx # Ty, where a1, asz,a3,a4, L > 0 satisfying a1 +
as +az+2a4 =1 and ag # 1. Then T has a fized point.

2. MAIN RESULTS
We begin this section by introducing the following definitions.

DEFINITION 2.1. Let o : X x X — [0,00). A sequence of mappings
{T;: X - N(X)}2, is a-admissible sequence if for each x € X andy € Tz
for some i € N such that a(xz,y) > 1, then we have a(y,z) > 1 for each
z € Tiy1y. A sequence of mappings {T; : X — N(X)}$2, is au-admissible
sequence if for each x,y € X with a(x,y) > 1, we have a,(Tz, T;y) > 1 for
each i,j € N, where o (T;x, Tjy) = inf{a(u,v) : u € Tz and v € Tjy}.

The sequence of mappings is said to be strictly a-admissible and strictly
a.-admissible if we have strict inequality in the above definition.

REMARK 2.2. (1) Note that if a sequence of mappings {T; : X —
N(X)}2, is strictly a.-admissible sequence, then it is strictly a-
admissible sequence.

(i4) When {T;}32, is a constant sequence Definition 2.1 coincide with
definition of a-admissible and a.-admissible given in [21, Page 4] and
[7, Page 1] respectively. Furthermore, if T is a singlevalued mapping
then these definition 2.1 coincide with [26, Definition 2.2].

DEFINITION 2.3. Let (X, d) be a metric space and o : X x X — [0,00) be a
function. A sequence of mappings {T; : X — C(X)}2, is an F,-contraction
of Hardy-Rogers-type, if there exist F' € § and 7 > 0 such that for each
1,7 € N, we have
(2.1) 7+ Fla(z,y)H(Tix, Tjy)) < F(N(z,y)),
for each x,y € X, whenever min{a(x,y)H (Tiz,T;y), N(z,y)} > 0, where

N(’JJ, y) = ald(xa y) + agd(l‘, TZI) + a3d(ya T]y) + a4d(:c, ij) + Ld(ya ,-sz)a
with ay, as,as,aq, L > 0 satisfying a1 + as + az + 2a4 =1 and az # 1.
THEOREM 2.4. Let (X,d) be a complete metric space and let {T; : X —

C(X)}2, be an Fy-contraction of Hardy-Rogers-type satisfying the following
conditions:

(i) {T;}52, is strictly a-admissible sequence;
(ii) there exist xg € X and x1 € T;zo for some i € N with a(xg, x1) > 1;
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(iii) for any sequence {x,} C X such that x, — x as n — oo and
a(xy, Tny1) > 1 for each n € N, we have a(zy,,x) > 1 for each n € N.

Then the mappings in the sequence {T;}52, have a common fized point.

ProOOF. By hypothesis (ii), we assume without loss of generality that
there exist o € X and 21 € Thzp with a(zg,z1) > 1. If 21 € Tyxy Vi € N,
then x1 is a common fixed point. Let x; §é Toxq, as a(mo, x1) > 1 there exists
T € Toxq such that

(2.2) d(x1,22) < alxg, z1)H(T1x0, Tox1).

Since F' is increasing, we have

(2.3) F(d(z1,22)) < F(a(zg,z1)H(T120, To1)).

From (2.1) we have
T+ F(d(z1,22))

IN

T+ F(a(zo,21)H(Tizo, Tox1))
F(ald(xo, x1) + agd(xo, T1xo) + azd(x1, Toxq)
+ aqd(zo, Toz1) + Ld(z1, Tlxo))
< F(ald(xo,xl) + asd(zo, 1) + azd(x1, x2)
+ agd(zo,2) + L.0)
< F(ald(:co, x1) + agd(xo, x1) + asd(z1, x2)
+ aq(d(xo, 1) + d(x1, 932))
= F((a1 + as + aq)d(zo, z1) + (as + aq)d(z1, 1’2))
Since F is increasing, we get from above that

d(z1,22) < (a1 + a2 + asa)d(zo, x1) + (az + as)d(z1, z2).

IN

That is,
(1 —as —aq)d(z1,22) < (a1 + azs + aq)d(zo, x1).
As a1 + as + as + 2a4 = 1, thus we have
d(x1,x2) < d(xg,21).
From (2.4), we have
7+ F(d(z1,22)) < F(d(xo,x1)).

If 25 € Tyx2 Vi € N then 22 is a common fixed point. Let zo ¢ T3x5. Since
{T;}32, is strictly a-admissible, we have a(x1,z2) > 1. There exists 3 € Tz
such that

(2.5) d($2,$3) S 0&(.%1,I2)H(T2I1,T3I2).
Since F is increasing, we have

(2.6) F(d(z2,x3)) < F(a(xy,x2)H(Tox1, Tax2)).
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From (2.1) we have
T+ F(d(z2,23)) < 7+ F(a(x1,22)H(Taz1, T322))
< F(ald(xl, x2) + agd(x1, Tox1) + agd(x2, T3x2)
+ aqd(z1, T522) + Ld(z2, T2$1))
< F(ald(xl,xg) + asd(z1,x2) + azd(x2, x3)
+ aqd(x1,23) + L.O)
< F(ald(:cl, x9) + agd(x1,x2) + asd(xe, x3)
+ ag(d(z1, 2) + d(z2,23))
= F((a1 + as + aq)d(z1, 22) + (as + aq)d(z2, :L's))
Since F' is increasing, we get from above that
d(za,x3) < (a1 + ag + as)d(z1, x2) + (az + as)d(z2, x3).
That is,
(1 —a3 —aq)d(z2,x3) < (a1 + a2 + aq)d(z1, x2).
As a1 + as + a3z + 2a4 = 1, thus we have
d(za,x3) < d(x1,22).
Now from (2.7) we have
T+ F(d(z2,23)) < F(d(x1,z2)).
So we have
F(d(z2,23)) < F(d(x1,22)) — 7 < F(d(xg,21)) — 27.
Continuing in the same way we get a sequence {z,} C X such that

XTp € TnTp—1, Tn-1 # xn and a(x,—1,2,) > 1 for each n € N.

Furthermore,
(2.8) F(d(zn,2nt1)) < F(d(xo,21)) —nt for each n € N.
Letting n — oo in (2.8) we get lim, o0 F(d(Zn,%nt1)) = —oco. Thus by

property (F3), we have lim,, o d(zy, nt1) = 0. Let d,, = d(zp, zpy1) for
each n € N. From (F3) there exists k € (0,1) such that

lim dy F(dy) = 0.
From (2.8) we have
(2.9) d"F(d,) — d*F(dy) < —d*nr <0 for each n € N.
Letting n — oo in (2.9) we get,
(2.10) lim nd® = 0.

n—oo
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This implies that there exists ny € N such that ndfl < 1 for each n > n;.
Thus we have

(2.11) d, < for each n > n;y.

ni/k’
To prove that {z,} is a Cauchy sequence. Consider m,n € N with m > n >
ny. By using the triangular inequality and (2.11), we have

d(In,$m) < d(x'mxn—i-l) + d(xn+17xn+2) +---+ d(xm—hxm)

m—1 o]

> 1
= difzdiSZm-
n =N =N

1=

Since Zil ﬁ is convergent series. Thus, lim, e d(Zyn, ) = 0. Which
implies that {z,} is a Cauchy sequence. As (X,d) is complete, there exists
x* € X such that z,, — z* as n — oo. By condition (iii) we have a(z,,z*) >
1 for each n € N. We claim that d(z*,T;2*) = 0 Vi € N. On contrary
suppose that d(z*, T;,x*) > 0 for some iy € N, there exists ng € N such that
d(xy, Ti,x*) > 0 for each n > ng. For each n > ng and for above iy we have
d(z*, Tipx™) < d(z”, xpt1) + d(@nt1, Tigx™)

< d(:L'*, anrl) + O‘(xna x*)H(TnJrl:Ena Tlox*)

< d(z", Zpt1) + a1d(Tn, %) + a2d(xn, Tni1)
+ azd(z”, Tiyx™) + agd(xn, Tix™) + Ld(x™, Tpy1).

(2.12)

Letting n — oo in (2.12) we have
d(z*, Tiyx™) < (ag + aq)d(z", Tiyx™) < d(z*, T;,z™).
Which is a contradiction. Thus d(z*, T;2*) =0 Vi € N. O

EXAMPLE 2.5. Let X = N be endowed with the usual metric d(z,y) =
|z — y| for each z,y € X. Define {T; : X — C(X)}$2, by

oo {101} i =01,
{2z — 2,2z} if x> 1
and a: X x X — [0,00) by
2if 2,y € {0,1},

a(z,y) =4 1ifz,y>1,
0 otherwise.

Take F(z) = z+Inx for each « € (0,00). Under this F condition (2.1) reduces
to

(2.13) Oé(I; y)H(j—Zny ij) ea(w,y)H(Tix,ij)—N(lny) <e T
N(z,y)
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for each z,y € X with min{a(z,y)H(Tiz,T;y), N(z,y)} > 0. Assume that
a1=1,a2=a3=a4=L:OandT=%. Clearly,

min{a(z,y)H (Tix, Tjy), d(x, y)} > 0

for each z,y > 1 with  # y. From (2.13) for each z,y > 1 with  # y we
have
le*%‘z*y‘ <e 7.

Thus {7T;}$2, is an a-F-contraction of Hardy-Rogers-type with F(z) = = +
Inz. For g = 1 we have 1 = 0 € Tixo such that a(xg,x1) > 1. Moreover,
it is easy to see that {T;}32, is strictly a-admissible sequence and for any
sequence {z,} C X such that z,, —  as n — oo and «a(z,,z,41) > 1 for
each n € N, we have a(z,,x) > 1 for each n € N. Therefore, by Theorem 2.4

{T;}2, has a common fixed point in X.

DEFINITION 2.6. Let (X, d) be a metric space and o : X x X — [0,00)
be a function. A sequence of mappings {T; : X — C(X)}2, is an Fyx-
contraction of Hardy-Rogers-type, if there exist F' € § and T > 0 such that for
each i,j € N, we have
(2.14) 7+ Flaw(Tia, Tyy) H(Tiz, Tyy)) < F(N (2, 1)),
for each z,y € X, whenever

min{a*(Tixa ij)H(TlIa ij)a N(Ia y)} > 0;
where
N(LL‘, y) = ald(xa y) + agd(l‘, T’L'T) + a3d(ya T]y) + a4d(:c, ij) + Ld(ya ,-sz)a
with ay, as, as,aq, L > 0 satisfying a1 + as + az + 2a4 =1 and az # 1.

THEOREM 2.7. Let (X,d) be a complete metric space and let {T; : X —
C(X)}52, be an au-F-contraction of Hardy-Rogers-type satisfying the follow-
ing conditions:

(i) {T;}s2, is strictly a..-admissible sequence;
(ii) there exist xg € X and x1 € T;zo for some i € N with a(xg, x1) > 1;

(iii) for any sequence {x,} C X such that x, — x as n — oo and
a(zy, Tny1) > 1 for each n € N, we have a(zy,,x) > 1 for each n € N.

Then the mappings in a sequence {T;}7_, have a common fized point.

PROOF. The proof of this theorem runs along the same lines as the proof
of Theorem 2.9. O

DEFINITION 2.8. Let (X, d) be a metric space and o : X x X — [0,00) be a
function. A sequence of mappings {T; : X — B(X)}52, is an Fy-contraction
of Hardy-Rogers-type, if there exist FF € § and 7 > 0 such that for each
1,7 € N, we have

(2.15) 7+ Fa(z,y)0(Tix, Tyy)) < F(N(x,y)),
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for each x,y € X, whenever min{a(x,y)d(Tiz, T;y), N(x,y)} > 0, where

N(z,y) = ard(x,y) + azd(z, T;x) + azd(y, Tjy)
+ aqd(z, Tjy) + Ld(y, Tix),

with a1, as, a3, a4, L > 0 satisfying a1 + a2 + as + 2a4 = 1 and a3z # 1.

Note that H is not a metric on the set of bounded subsets of X, as the
following example shows.

Let X =R, endowed with usual metric then H(A, B) =0 but A # B for
A =10,1) and B = [0,1]. This implies that H is not a metric on Bounded
subsets of R. It would be interesting to see whether the conclusions of The-
orem 2.4 hold for bounded subsets of X. We will show that the conclusions
of Theorem 2.4 still hold for bounded subsets of X provided that the Hous-
dorff distance H (A, B) in definition 2.3 is replaced with (A, B) and the strict
inequality in (ii) of Theorem 2.4 is replaced by the soft inequality. More pre-
cisely we have the following result.

THEOREM 2.9. Let (X,d) be a complete metric space and let {T; : X —
B(X)}$2, be an Fy-contraction of Hardy-Rogers-type satisfying the following
conditions:

(i) {T;}52, is a-admissible sequence;

(1) there exist xo € X and x1 € Tyzo for some i € N with a(zo,x1) > 1;

(iii) for any sequence {x,} C X such that x, — x as n — oo and
a(xy, Tny1) > 1 for each n € N, we have a(zy,,x) > 1 for each n € N.

Then the mappings in the sequence {T;}5°, have a common fized point.

ProOF. By hypothesis (ii), we assume without loss of generality that
there exist g € X and z1 € Tz with a(ze,z1) > 1. If 1 € Tya1 Vi € N,
then 7 is a common fixed point. Let z1 ¢ Toxy. As a(xg,x1) > 1, there
exists xo € Thxy such that

(2.16) d(z1,29) < a(zg, 21)0(T1x0, Tox1).

Since F' is increasing, we have

(2.17) F(d(z1,22)) < F(a(xo, z1)d(Tixo, Tow1)).
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From (2.15) we have
T+ F(d(z1,22))

IN

T+ F(a(zo, 21)0(Tixo, Tox1))
F(ald(xo, x1) + agd(xg, Thixo) + asd(z1, Toxy)
+ aqd(xo, Tox1) + Ld(xq, Tlxo))
< F(ald(xo, x1) 4 agd(xg, x1) + azd(z1, x2)
+ aqd(xo, x2) + L.O)
< F(ayd(zo, 1) + azd(zo, z1) + azd(z1, z2)
+ aq(d(zo,21) + d(x1, 1’2))
= F((a1 + ag + aq4)d(zo, z1) + (as + a4)d(l‘1,l‘2)).

IN

(2.18)

Since F is increasing, we get from above that
d(z1,22) < (a1 4+ a2 + aq)d(zo, 1) + (a3 + aq)d(x1, x2).
That is,
(1 — a3 — a4)d(l‘1,l‘2) < (a1 + as + a4)d(m0,xl).
As a1 + as + a3 + 2a4 = 1, thus we have
d(z1,29) < d(xo,271).
Now from (2.18), we have
T+ F(d(z1,22)) < F(d(xg,1)).

If o € Tyxo Vi € N then xs is a common fixed point. Let xo ¢ Tsxo, since
{T;}52, is a-admissible, we have a(x1,22) > 1. There exists x3 € Tzxy such
that

(2.19) d(za,23) < a1, 22)0(Tox1, T322).
Since F is increasing, we have
(2.20) F(d(za,23)) < Fa(xy,22)d(Texy, T5xa)).
From (2.15) we have
T+ F(d(x2,23)) < 7+ F(a(z1,22)0(Tox1, T5x2))

F(ald(xl ,x2) + asd(x1, Tox1) + asd(x2, T3x2)
+ aqd(x1, T3w2) + Ld(22, Tgxl))
< F(ald(xl,xg) + agd(x1,x2) + asd(x2, x3)

+ aqd(x1,23) + L.O)
< F(ard(zy, m2) + azd(w1, 22) + azd(z2, 3)

+ ag(d(x1, 2) + d(xa, acg))
= F((Ch + as + ag)d(x1,22) + (as + a4)d(x2,x3)).

<
<

(2.21)
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Since F is increasing, we get from above that
d(za,23) < (a1 + a2 + aq)d(z1,x2) + (a3 + aq)d(x2, x3).
That is,
(1 —as — aq)d(z2,23) < (a1 + as + aq)d(z1, x2).
As a1 + as + az + 2a4 = 1, thus we have
d(xe,x3) < d(x1,T2).
Now from (2.21) we have
T+ F(d(ze,23)) < F(d(x1,x2)).
So we have
F(d(za,23)) < F(d(x1,22)) — 7 < F(d(x0,21)) — 27.
Continuing in the same way we get a sequence {z,} C X such that

XTp € TnTp—1, Tn-1 # xn and a(x,—1,2,) > 1 for each n € N.

Furthermore,
(2.22) F(d(zn,Znt1)) < F(d(xo,21)) —nt for each n € N.
Letting n — oo in (2.22) we get lim,— o0 F(d(2p,Tnt1)) = —o0. Thus, by

property (Fz), we have limy, o0 d(Zn,Tnt1) = 0. Let dp, = d(xp, 2p41) for
each n € N. From (F3) there exists k € (0,1) such that

lim d*F(d,) = 0.
n—oo

From (2.22) we have

(2.23) d*F(d,) — d* F(dy) < —d*nr < 0 for each n € N.
Letting n — oo in (2.23) we get

. ko
(2.24) nh_{r;O nd, = 0.

This implies that there exists ny € N such that ndﬁ < 1 for each n > n;.
Thus we have

(2.25) d, < for each n > n;.

ni/k’
To prove that {z,} is a Cauchy sequence. Consider m,n € N with m > n >
ny. By using the triangular inequality and (2.25) we have

d(In,$m) < d(x'mxn—i-l) + d(xn+17xn+2) + -+ d(xm—hxm)

m—1 00 o'} 1
:Zdiﬁzdi§2m~

Since Y22, ﬁ is convergent series. Thus lim, e d(2p, Zm) = 0. Which
implies that {z,} is a Cauchy sequence. As (X, d) is complete so there exists
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x* € X such that z,, — 2* as n — oo. By condition (iii) we have a(z,,x*) >
1 for each n € N. We claim that d(z*,T;2*) = 0 Vi € N. On contrary
suppose that d(z*, T;,2*) > 0 for some ip € N, there exists ng € N such that
d(xy, Tiyx*™) > 0 for each n > ng. For each n > ny and for above i, we have

d(z*, Tiyx™) < d(z*, Tpt1) + d(@nt1, Tigx™)
< d(@", xnt1) + a(zn, 2*)0(Thp1Zn, Tipx™)
< d(x*, Zpt1) + ard(Tn, ") + a2d(Tp, Trnt1)
+ asd(x™, T;yx") + asgd(xn, Tix™) + Ld(z™, 1)

(2.26)

Letting n — oo in (2.26) we have
d(x*, Tiyx™) < (ag + aq)d(z*, Tiyx™) < d(z*, T;,z*).
Which is a contradiction. Thus d(z*, T;z*) =0 for all 7 € N. O

EXAMPLE 2.10. Let X = {0,1,2,3,...} and
0if x =y,
d(z,y) = .
r+yifx #y.
Define {T; : X — B(X)}2, by
Tow— {0} if z =0,
{0,1,2,3,...,2}if x #0
and a: X x X — [0,00) by
lifz=y=0,
a(r,y) =1 5 ifz,y > 1,
0 otherwise.

Take F(z) = = + In(z) for each 2 € (0,00). Under this F condition (2.15)
reduces to

(2.27) (@, YT, TjY) o p)s(Tiw Ty0)~N(ww) < o

N(z,y) B
for each z,y € X with min{a(z,y)d(Tiz,Tjy), N(z,y)} > 0. Assume that
a1=1,a2=a3=a4=L:OandT=%. Clearly

min{a(z,y)d(Tiz, Tjy), d(x,y)} > 0

for each z,y > 1 with = # y. From (2.15) for each z,y > 1 with « # y, we
have

1eié(wy) <e 3.

Thus {7;}5°, is an F,-contraction of Hardy-Roger-type with F(z) = z+1nz.
For zp = 1, we have 1 = 0 € Tyzp such that a(xg,z1) > 1. Moreover,
it is easy to see that {7;}5°; is a-admissible sequence and for any sequence
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{zn} C X such that z,, = = as n — oo and a(zy, Tp41) > 1 for each n € N,
we have a(x,,x) > 1 for each n € N. Therefore by Theorem 2.9 {T;}3°, has
a common fixed point in X.

DEFINITION 2.11. Let (X,d) be a metric space and o : X x X — [0, 00)
be a function. A sequence of mappings {T; : X — B(X)}2, is an Fyx*-
contraction of Hardy-Rogers-type, if there exist ' € § and 7 > 0 such that for
each i,j € N, we have
(2.28) 7+ Flaw(Tia, Tyy)3(Tiw, Tyy)) < F(N(z,)),
for each z,y € X, whenever min{o.(T;z, T;y)0(Tix, Tjy), N(z,y)} > 0, where

N(LL‘, y) = ald(ma y) + agd(l‘, T’L':L') + a3d(ya T]y) + a4d(:c, ij) + Ld(ya ,-sz)a
with a1, as, a3, a4, L > 0 satisfying a1 + as + as + 2a4 = 1 and a3z # 1.

THEOREM 2.12. Let (X,d) be a complete metric space and let {T; : X —
B(X)}$2, be an Fyx-contraction of Hardy-Rogers-type satisfying the following
conditions:

(i) {T;}52, is a-admissible sequence;
(ii) there exist xg € X and x1 € T;zo for some i € N with a(xg, x1) > 1;

(iii) for any sequence {x,} C X such that x, — = as n — oo and
a(Tpn, Tnt1) > 1 for each n € N, we have a(x,,x) > 1 for each n € N.

Then the mappings in a sequence {T;}7_, have a common fized point.

PROOF. The proof of this theorem runs along the same lines as the proof
of Theorem 2.9. O

3. APPLICATION

In this section, as a consequence of our result we establish an existence
theorem for a system of integral equations. Let X = (Cl[a,b],R) be the
space of all real valued continuous functions defined on [a,b]. Note that X
is complete ([25]) with respect to the metric d-(z,y) = sup,e(qpilz(t) —

y(t)le~Im1.
Consider the system of integral equations of the form
b
(3.1) x(t) = f(t) —|—/ K;(t,s,z(s))ds,
a

fort,s € [a,b] and ¢ € {1,2,3,--- , N} with N € N. Where Kj : [a,b] X [a, ] x
R — R and f : [a,b] — R are continuous functions.

THEOREM 3.1. Let X = (C[a,b],R) and let {T; : X — X}, be the
operators defined as

b
(3.2) Tye(t) = £(t) + / Ki(t, s, 2(s))ds,
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for t,s € la,b]. Where K; : [a,b] x [a,b] x R = R and f : [a,b] — R are
continuous functions. Assume that there exist v: X — (0,00), @ : X x X —
(0,00) and the following conditions hold:

(i) for each i,j € {1,2,3,---, N} there exists T > 0 such that

e~ T
Ki(t,s,x) — K;(t,s8,y)] < ——

for each t, s € [a,b] and x,y € X. Moreover,
/ €|Ts\ e\'rt|
JEE
(z + y a(z,y)
for each t € [a,b];
(i1) for z,y € X, a(x,y) > 1 implies o(T;x,T;y) > 1 for each i,j €

|z —yl

{1a273a"' 7N};
(iii) there exist xo € X such that a(xzo,Tixzg) > 1 for some i €
{152735"' 7N};‘

(iv) for any sequence {x,} C X such that x, — = as n — oo and
a(xy, Tny1) > 1 for each n € N, we have a(zy,,x) > 1 for each n € N.

Then the system of integral equations (3.1) has a solution in X.

PROOF. First we show that {7;} is an F,-contraction of Hardy-Rogers-
type. For each i,j5 € {1,2,3,---, N}, we have

b
[Tiz(t) = Tyy(t)| < / [Ki(t, 5, 2(s)) — K(t, 5, y(s))|ds

b e—T
< / (e e ) T yle)lds

b e~ TelTsl
_ [T ts)e 1ol s
- / - j2(s) — y(s)le "l

z(s) +y(s))
e\Ts| e|7't\

— b —
<o) [ S T S g )

Thus we have
a(a,y)|Tiw(t) = Tiy()le™™ < e 7d (2, y).
Equivalently,
a(z,y)d: (Tix, Tiy) < e Tdr(z,y).
Clearly natural logarithm belongs to §. Applying it on above inequality we
get
In(a(z, y)ds (Tia, Tyy)) < In(e™"dx(z,y),
after some simplification we get

T+ In(a(z, y)d-(Tiz, T;y)) < In(d-(x,y)).
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Thus {T;}}¥, is an F,-contraction of Hardy-Rogers-type with a1 = 1, as =
a3 = a4 = L =0and F(z) = Inz. Therefore by 2.9 it follows that the system
of operators (3.2) have a common fixed point, that is, the system of integral

equations (3.1) has a solution in X. O
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