
95
Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES

Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

INFO- 2173 UDK: 004.43C:004.43PHP-047.44

Primljeno/Received: 2017-03-08 Professional Paper/Stručni rad

BENCHMARKING PHP MODULES

MJERENJE BRZINE RADA PHP MODULA

Alen Šimec, Davor Lozić, Lidija Tepeš Golubić

Zagreb University of Applied Sciences, Zagreb, Croatia
Tehničko veleučilište u Zagrebu, Zagreb, Hrvatska

Abstract
This paper presents how C programming language
could be used for this type of tasks, created as PHP
module and then get imported in the PHP language.
The purpose of this paper is to show how and when
is better to build PHP modules in C, instead of nor-
mal PHP functions, and to show negative sides of
this type of programming. Profiling, as an important
aspect of finding application bottlenecks, is also dis-
cussed. Profiling systems like Xdebug, Qcachegrind
and Webgrind are also elucidated. This paper con-
tains source code which calculates Fibonacci se-
quence and multiplies 800x800 matrices written in C
and PHP programming languages. Results show that
whenever there is a need for a mathematical compu-
tation, C will be many times faster and that it is
much more cost-effective to write such code in C and
create a PHP module.

Sažetak
Ovaj rad predstavlja kako se za ovakve probleme
može koristiti programski jezik C, kao PHP modul,
te pozvati iz PHP jezika. Cilj ovog ujedno je pokazati
kako i kada je bolje, umjesto običnih PHP funkcija,
raditi PHP module u programskom jeziku C te pri-
kazati i negativne strane takvoga programiranja. Rad
objašnjava i pronalazak „uskog-grla” u aplikacijama
pomoću sustava kao što su Xdebug, qcachegrind i
webgrind. U radu je prikazan izvorni kod koji raču-
na Fibonaccijev niz te množi matrice veličine 800x800
u programskim jezicima C i PHP. Dobiveni rezultati
pokazuju da je u svim slučajevima gdje je bio po-
treban matematički izračun, programski jezik C bio
višestruko brži te da je u takvim slučajevima isplativ-
ije napisati izvorni kod u programskom jeziku C i
izraditi PHP modul.

1 Introduction

PHP language is mostly designed for develop-

ing web applications /1/ and, as such, is not suita-
ble for complex mathematical operations, nor is
suitable for systems where speed of such operation
executions is important. PHP is mostly used for
generating dynamic HTML content /2/. Since PHP
is built with C, it is possible to create PHP modules
in C and import them in the PHP language /3/.
Examples given in this paper are executed and
tested on Linux operating system, specifically
Debian distribution, but it should work on any
system with few or not any changes at all.
Qcachegrind and Webgrind are tested with OSX.
PHP source code could be downloaded with ver-
sioning control system like Git:

git clone https://github.com/php/php-src.git

2 PHP modules

PHP modules must be inside php-src/ext fold-
er and after executing ext_skel script, the skeleton
for your model should be created. After the skele-
ton is created, phpize prepares the build so it
needs to be executed:

php-src/ext/mymod# phpize
Artificial intelligence is focused on presenta-

tion of knowledge and its use. It is critical for
knowledge management. Artificial intelligence is
not only focused on explicit knowledge that can be
relatively easy to formalise with some form of its
presentation (manufacturing rules, semantic net-
works, triplet object of attribute value, frame-
works, predicates of the first row). Relationships
between business intelligence and other technolo-
gies that are directly related to business intelli-

S.Singaravelan, S.Jerina Catherina Joy, D.Murugan: AN INNER INTERRUPTION DISCOVERY AND DEFENSE SYSTEM BY USING
DATA MINING

Informatol. 50, 2017., 1-2, 87-94

ISSN 1330-0067 Coden: IORME7

/5/ A. A. Thu, "Integrated Intrusion Detection and
Prevention System with Honeypot on Cloud
Computing Environment," International Journal of
Computer Applications, vol. 67, 2013.

/6/ S. Chadli, M. Saber, M. Emharraf, and A. Ziyyat, "A
new model of IDS architecture based on multi-agent
systems for MANET," in Complex Systems (WCCS),
2014 Second World Conference on, 2014, pp. 252-258.

/7/ X. Meng and Y. Li, "A novel verifiable threshold
signature scheme based on bilinear pairing in mobile
ad hoc network," in Information and Automation (ICIA),
2012 International Conference on, 2012, pp. 361-366.

/8/ D. Sharma, V. Kumar, and R. Kumar, "Prevention of
Wormhole Attack Using Identity Based Signature
Scheme in MANET," in Computational Intelligence in
Data Mining—Volume 2, ed: Springer, 2016, pp. 475-
485.

/9/ P. Casas, J. Mazel, and P. Owezarski, "Unsupervised
network intrusion detection systems: Detecting the
unknown without knowledge," Computer
Communications, vol. 35, pp. 772-783, 2012.

/10/ M. Panda, A. Abraham, and M. R. Patra, "A hybrid
intelligent approach for network intrusion detection,"
Procedia Engineering, vol. 30, pp. 1-9, 2012.

/11/ R. Akbani, T. Korkmaz, and G. Raju, "EMLTrust: an
enhanced machine learning based reputation system
for MANETs," Ad Hoc Networks, vol. 10, pp. 435-457,
2012.

/12/ M. Khouzani, S. Sarkar, and E. Altman, "Maximum
damage malware attack in mobile wireless networks,"
Networking, IEEE/ACM Transactions on, vol. 20, pp.
1347-1360, 2012.

/13/ M. S. Hoque, M. Mukit, M. Bikas, and A. Naser, "An
implementation of intrusion detection system using
genetic algorithm," arXiv preprint arXiv:1204.1336,
2012.

/14/ L. Mechtri, F. D. Tolba, and S. Ghanemi, "MASID:
Multi-Agent System for Intrusion Detection in
MANET," in Information Technology: New Generations
(ITNG), 2012 Ninth International Conference on, 2012,
pp. 65-70.

/15/ R. Selvaraj, V. M. Kuthadi, and T. Marwala, "Honey
Pot: A Major Technique for Intrusion Detection," in
Proceedings of the Second International Conference on
Computer and Communication Technologies, 2016, pp.
73-82.

96
Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES

Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

gence can be observed through five characteristics:
inputs, nature of inputs, outputs, components, and
users /4/.

Iside mymod.c are some templates for func-
tions which a developer can remove or leave for
testing purposes. In this example, the module is
called mymod so the test function is called con-
firm_mymod_compiled and this is the function
where the testing is performed. This is a simple
function which returns a simple number 100 to the
user.

// confirm_mymod_compiled() function
PHP_FUNCTION(confirm_mymod_compiled){
 RETVAL_LONG(100);
}

// inside shell (compiling and installing)
./configure && make && sudo make install

// module needs to be included inside php.ini
extension=mymod.so

// restarting server (in this example, Apache2)
sudo /etc/init.d/apache2 restart

// calling a function from PHP
<?php
 echo confirm_mymod_compiled(); // 100

2.1 Simple PHP benchmarking

Here is a simple test using Fibonacci Series in
PHP and in C, both using recursion.

PHP version:
function fibonacci($f){
 if($f < 2){
 return 1;
 }else{
 return fibonacci($f-1) + fibonac-

ci($f-2);
 }
}
C version:
long my_fib(long f){
 if (f < 2){
 return 1;
 }else{
 return(my_fib(f - 1) + my_fib(f - 2));
 }
}

// declaring PHP function which will call
my_fib()

PHP_FUNCTION(confirm_mymod_compiled)
{
 long f;
 if

(zend_parse_parameters(ZEND_NUM_ARGS()
TSRMLS_CC, "l", &f) == FAILURE) {

 return;
 }

 long r = my_fib(f);

 RETVAL_LONG(r);
}
Testing is quite simple with microtime before

and after the code. PHP function reference shows
microtime returns the current UNIX timestamp in
microseconds:

$startTime = microtime(true);

// your code

$endTime = microtime(true);
$result = $endTime - $startTime;

After executing the script few times, test shows

(in average) that the C version is about 80 times
faster when calculating 34th Fibonacci number:

Figure 1 - Benchmarking C and PHP with Fibo-
nacci Series calculated with recursion (lower is
better)

2.2. Matrix multiplication
 Multiplication of two matrices can be very
computationally expensive (O3) /5/. There are also
ways to reduce some steps and speed up the com-
putation but they are not part of this paper.
 In C language, matrix could be imple-
mented as a 2-dimensional array.

0 2 4 6

Speed (seconds)

Speed (seconds)
C 0,064888954
PHP 5,378473997

C
PHP

97
Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES

Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

PHP_FUNCTION(run_multiplication)
{
 int n = 800;

 // matrices
 int firstM[n][n], secondM[n][n], re-
sultM[n][n];

 // counters and a temporary sum
 int i, j, k;
 int sum = 0;

 srand(time(NULL));
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 firstM[i][j] = rand() % 100 +
1;
 }
 }

 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 secondM[i][j] = rand() %
100 + 1;
 }
 }
 …
}

Two 800x800 matrices are populated with ran-
dom numbers between 1 and 100. srand function
sets the global seed variable which changes the
output of the rand function /6/. Multiplication in
this example takes O3:

for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 sum = 0;
 for (k = 0; k < n; k++) {
 sum = sum + firstM[i][k] * secondM[k][j];
 }
 resultM[i][j] = sum;
 }
}

Defining matrices in PHP is similar:

$n = 800;
$firstM = $secondM = $resultM = [];
for ($i = 0; $i < $n; $i++) {
 for ($j = 0; $j < $n; $j++) {
 $firstM[$i][$j] = rand() % 100 + 1;
 }

}

for ($i = 0; $i < $n; $i++) {
 for ($j = 0; $j < $n; $j++) {
 $secondM[$i][$j] = rand() % 100 + 1;
 }
}

Multiplication in PHP stays the same:

for ($i = 0; $i < $n; $i++) {
 for ($j = 0; $j < $n; $j++) {
 $sum = 0;
 for ($k = 0; $k < $n; $k++) {
 $sum = $sum + $firstM[$i][$k] * $se-
condM[$k][$j];
 }
 $resultM[$i][$j] = $sum;
 }
}

2.3. Explanation

Relatively speaking, PHP is not a slow lan-
guage. The problem is that PHP is an interpreted
language. While executing C which is already
compiled and directly executed on a processor,
PHP language needs to go through some phases
like parsing, converting to opcodes, etc. and this is
the heart of the problem.

The problem also worth mentioning here is the
stack. Whenever a function is called, a new stack is
created only for that function and that is what is
happening inside the Fibonacci version with recur-
sion. The advantage that compiled languages have
here, is the possibility of having a great compiler
which can inline the function (like copying the
code) instead of calling the function and creating
the new stack. Without recursion, results (approx-
imately, C was 110 times better) are better:

Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES
Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

gence can be observed through five characteristics:
inputs, nature of inputs, outputs, components, and
users /4/.

Iside mymod.c are some templates for func-
tions which a developer can remove or leave for
testing purposes. In this example, the module is
called mymod so the test function is called con-
firm_mymod_compiled and this is the function
where the testing is performed. This is a simple
function which returns a simple number 100 to the
user.

// confirm_mymod_compiled() function
PHP_FUNCTION(confirm_mymod_compiled){
 RETVAL_LONG(100);
}

// inside shell (compiling and installing)
./configure && make && sudo make install

// module needs to be included inside php.ini
extension=mymod.so

// restarting server (in this example, Apache2)
sudo /etc/init.d/apache2 restart

// calling a function from PHP
<?php
 echo confirm_mymod_compiled(); // 100

2.1 Simple PHP benchmarking

Here is a simple test using Fibonacci Series in
PHP and in C, both using recursion.

PHP version:
function fibonacci($f){
 if($f < 2){
 return 1;
 }else{
 return fibonacci($f-1) + fibonac-

ci($f-2);
 }
}
C version:
long my_fib(long f){
 if (f < 2){
 return 1;
 }else{
 return(my_fib(f - 1) + my_fib(f - 2));
 }
}

// declaring PHP function which will call
my_fib()

PHP_FUNCTION(confirm_mymod_compiled)
{
 long f;
 if

(zend_parse_parameters(ZEND_NUM_ARGS()
TSRMLS_CC, "l", &f) == FAILURE) {

 return;
 }

 long r = my_fib(f);

 RETVAL_LONG(r);
}
Testing is quite simple with microtime before

and after the code. PHP function reference shows
microtime returns the current UNIX timestamp in
microseconds:

$startTime = microtime(true);

// your code

$endTime = microtime(true);
$result = $endTime - $startTime;

After executing the script few times, test shows

(in average) that the C version is about 80 times
faster when calculating 34th Fibonacci number:

Figure 1 - Benchmarking C and PHP with Fibo-
nacci Series calculated with recursion (lower is
better)

2.2. Matrix multiplication
 Multiplication of two matrices can be very
computationally expensive (O3) /5/. There are also
ways to reduce some steps and speed up the com-
putation but they are not part of this paper.
 In C language, matrix could be imple-
mented as a 2-dimensional array.

0 2 4 6

Speed (seconds)

Speed (seconds)
C 0,064888954
PHP 5,378473997

C
PHP

98
Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES

Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

Figure 2 - Benchmarking C and PHP with Fibo-
nacci Series calculated without recursion - 1000th
Fibonacci number (lower is better)

Example with multiplying matrices has few
things which needs to be pointed out. In the exam-
ple written in C programming language, matrices
are inside a stack (no malloc-family function were
called) and the PHP example creates matrices on
the heap which is slower /7/. Before calling the
PHP example, a script must allow PHP to use 1GB
of memory:

ini_set('memory_limit', '1024M');

Figure 3 - matrix multiplication

In this example, C is approximately 103 times
faster.

3 Benchmarking with Xdebug,
Qcachegrind and Webgrind
 First step when optimizing PHP applica-
tions is profiling. With Xdebug, one can determine
bottlenecks in the application. To enable Xdebug
profiler, several lines must be added to the php.ini
file:

xdebug.profiler_enable = 1
xdebug.profiler_output_name = xdebug.out.%t
xdebug.profiler_output_dir = /tmp

The first line enables the profiler. The second

line formats the filename where the profiler data
will be saved and the third line tells the profiler
what is the default directory for saving the result.
One can also add a “trigger” which will only ena-
ble/save Xdebug results if there is a parameter in
the request:

xdebug.profiler_enable_trigger = 1
only enabled if XDEBUG_PROFILE is passed

As stated on the Xdebug profiler homepage,
Xdebug outputs a profiling information in the
form of a cachegrind file. To sum it up, there are
options for all major operating systems:

Operating system Software
Microsoft Windows QCacheGrind or Win-

CacheGrind
Linux KCacheGrind
MacOS QCacheGrind
Figure 4 - "cachegrind" software for different
operating systems

It’s recommended to install Graphviz also so a
user could see a call graph. For example, to install
QCacheGrind on OSX, one could do it with home-
brew. First, Qt should be installed:
brew install qt

After installing qt, qcachegrind could be in-
stalled:

brew install qcachegrind --with-graphviz

Graphviz installs dot, plain text graph descrip-
tion language. Graphviz installs dot in
/usr/local/bin/dot but in order to qcachegrind find
dot, it should be in /usr/bin/dot. One can create a
symlink for dot /8/ like this:
sudo ln -s /usr/local/bin/dot /usr/bin/dot

After installing qcachegrind, running it is easy:

$ qcachegrind

After opening and importing generated debug
file, qcachegrind shows a list of functions called in
the request. Generated debug file is in the
xdebug.profiler_output_dir directory specified in
php.ini.

0 0,001 0,002

Speed (seconds)

Speed (seconds)
C 1,50204E-05
PHP 0,001790047

C
PHP

0 100 200 300

Speed (seconds)

Speed (seconds)
C 2,46
PHP 254,03

C
PHP

99
Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES

Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

Figure 5 - list of function calls in one request

Figure 5 shows a list of function calls in a single
PHP request.

Figure 6 - call graph

There is also a call graph, generated with
Graphviz. Figure 6 shows a generated call graph
which shows how and where PHP functions are
called. There is also a callee map, shown in Figure
7.

Figure 7 - callee map

There is a qchachegrind alternative, called
Webgrind. Webgrind is a web frontend which
understands Xdebug profiling information. To
install Webgrind, it must be downloaded:
wget
https://github.com/jokkedk/webgrind/archive/mas
ter.zip

Unzip the application: unzip master.zip

cd webgrind-master

Serve the application with PHP: php –S lo-

calhost:1234

After opening localhost:1234 and opening your

debug files, webgrind should show something
similar like in Figure 8.

Figure 8- webgrind list of function calls

4 Conclusion

If a developer needs to create a cutting-edge
code which needs to be fast and efficient, doing
module in C and importing it into PHP is the best
way to go. Module in C is much faster but the
downside is that you need to know something
about PHP internals. If there is a need for creating
a module which needs to use heap memory, some
part of PHP, maybe module needs to be called
while PHP is starting or shutting down, developer
needs to understand PHP internals and structures
like zvalue /9/, understand a lot of macros, deal
with memory management and with a lot of low
programming concepts.

To find bottlenecks, developers can use
Xdebug with Qcachegrind or Webgrind. It’s crucial
to find a good development time – execution speed
ratio. There is no need to write everything as a
module in C but writing only parts which are bot-
tlenecks could give some amazing improvements.

References

/1/ Padilla, A.; Hawkins, T.: Turning PHP Web projects

for Maximum Performance. Springer Science, New
York, 2010.
ISBN 978-1-4302-2899-8

Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES
Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

Figure 2 - Benchmarking C and PHP with Fibo-
nacci Series calculated without recursion - 1000th
Fibonacci number (lower is better)

Example with multiplying matrices has few
things which needs to be pointed out. In the exam-
ple written in C programming language, matrices
are inside a stack (no malloc-family function were
called) and the PHP example creates matrices on
the heap which is slower /7/. Before calling the
PHP example, a script must allow PHP to use 1GB
of memory:

ini_set('memory_limit', '1024M');

Figure 3 - matrix multiplication

In this example, C is approximately 103 times
faster.

3 Benchmarking with Xdebug,
Qcachegrind and Webgrind
 First step when optimizing PHP applica-
tions is profiling. With Xdebug, one can determine
bottlenecks in the application. To enable Xdebug
profiler, several lines must be added to the php.ini
file:

xdebug.profiler_enable = 1
xdebug.profiler_output_name = xdebug.out.%t
xdebug.profiler_output_dir = /tmp

The first line enables the profiler. The second

line formats the filename where the profiler data
will be saved and the third line tells the profiler
what is the default directory for saving the result.
One can also add a “trigger” which will only ena-
ble/save Xdebug results if there is a parameter in
the request:

xdebug.profiler_enable_trigger = 1
only enabled if XDEBUG_PROFILE is passed

As stated on the Xdebug profiler homepage,
Xdebug outputs a profiling information in the
form of a cachegrind file. To sum it up, there are
options for all major operating systems:

Operating system Software
Microsoft Windows QCacheGrind or Win-

CacheGrind
Linux KCacheGrind
MacOS QCacheGrind
Figure 4 - "cachegrind" software for different
operating systems

It’s recommended to install Graphviz also so a
user could see a call graph. For example, to install
QCacheGrind on OSX, one could do it with home-
brew. First, Qt should be installed:
brew install qt

After installing qt, qcachegrind could be in-
stalled:

brew install qcachegrind --with-graphviz

Graphviz installs dot, plain text graph descrip-
tion language. Graphviz installs dot in
/usr/local/bin/dot but in order to qcachegrind find
dot, it should be in /usr/bin/dot. One can create a
symlink for dot /8/ like this:
sudo ln -s /usr/local/bin/dot /usr/bin/dot

After installing qcachegrind, running it is easy:

$ qcachegrind

After opening and importing generated debug
file, qcachegrind shows a list of functions called in
the request. Generated debug file is in the
xdebug.profiler_output_dir directory specified in
php.ini.

0 0,001 0,002

Speed (seconds)

Speed (seconds)
C 1,50204E-05
PHP 0,001790047

C
PHP

0 100 200 300

Speed (seconds)

Speed (seconds)
C 2,46
PHP 254,03

C
PHP

100
Alen Šimec, Davor Lozić, Lidija Tepeš Golubić: BENCHMARKING PHP MODULES

Informatol. 50, 2017., 1-2, 95-100

ISSN 1330-0067 Coden: IORME7

/2/ Smijulj, A.; Meštrović, A.: Izgradnja MVC modular-
nog radnog okvira.
Zbornik Veleučilišta u Rijeci, Vol. 2 (2014), No. 1, s.
215-232. ISSN 1848-1299

/3/ Bijakšić S.; Markić, B.; Bevanda, A.: Business intelli-
gence and analysis of selling in retail. Informatolo-
gia, Vol.47 No.4. 2014. ISSN: 1330-0067

/4/ Ibid.
/5/ Stothers A.J.: On the Complexity of Matrix Multipli-

cation. 2010, University of Edinburgh.
http://www.maths.ed.ac.uk/sites/default/files/atoms/
files/stothers.pdf

/6/ Parlante, N.: Essential C, 1996-2003, Stan-
ford.http://cslibrary.stanford.edu/101/EssentialC.pdf

/7/ Gribble, P.: Memory: Stack vs Heap (Summer 2012),
2016.
http://gribblelab.org/CBootcamp/7_Memory_Stack_v
s_Heap.html

/8/ Kehrer, P.: How to install qcachegrind (kcachegrind)
on Mac OSX Snow Leopard, 2011.
https://langui.sh/2011/06/16/how-to-install-
qcachegrind-kcachegrind-on-mac-osx-snow-leopard/

/9/ Popov, N.: Understanding PHP's internal function
definitions. 2012.
http://nikic.github.io/2012/03/16/Understanding-
PHPs-internal-function-definitions.html

